
HAL Id: hal-00909042
https://hal.science/hal-00909042

Submitted on 26 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Probabilistic Kleene Theorem
Benedikt Bollig, Paul Gastin, Benjamin Monmege, Marc Zeitoun

To cite this version:
Benedikt Bollig, Paul Gastin, Benjamin Monmege, Marc Zeitoun. A Probabilistic Kleene Theorem.
Automated Technology for Verification and Analysis (ATVA’12), Oct 2012, Thiruvananthapuram,
India. pp.400-415, �10.1007/978-3-642-33386-6_31�. �hal-00909042�

https://hal.science/hal-00909042
https://hal.archives-ouvertes.fr

A Probabilistic Kleene Theorem
⋆

Benedikt Bollig1, Paul Gastin1, Benjamin Monmege1, and Marc Zeitoun2

1 LSV, ENS Cachan, CNRS & Inria, France,
firstname.lastname@lsv.ens-cachan.fr

2 LaBRI, Univ. Bordeaux & CNRS, France, mz@labri.fr

Abstract. We provide a Kleene Theorem for (Rabin) probabilistic au-
tomata over finite words. Probabilistic automata generalize deterministic
finite automata and assign to a word an acceptance probability. We pro-
vide probabilistic expressions with probabilistic choice, guarded choice,
concatenation, and a star operator. We prove that probabilistic expres-
sions and probabilistic automata are expressively equivalent. Our result
actually extends to two-way probabilistic automata with pebbles and
corresponding expressions.

1 Introduction

Kleene’s Theorem states the equivalence of rational and recognizable languages
in the free monoids. Naturally, this fundamental result has been generalized to
various settings and in particular to quantitative extensions of classical languages,
called formal power series [24,23,4].

The present paper aims at a probabilistic counterpart of Kleene’s Theorem.
There are actually a variety of models for probabilistic systems, comprising Segala
systems, generative systems, stratified systems, Markov chains, etc. (see [29,25]
for overviews). Those models may involve non-determinism and generate some
behavior according to probability distributions over states. Alternatively, they
may make a probabilistic decision depending on the input letter, like (reactive)
probabilistic automata [20]. The latter go back to Rabin [21] and are an object
of ongoing research considering decision problems such as emptiness, language
equivalence [24,28,9,10,18], and the value 1 problem [17].

Our starting point of view is that expressions and automata shall represent
quantitative properties of words. In particular, rather than at bisimulation
equivalence, we are looking at language equivalence in terms of formal power
series (i.e., mappings from strings to elements from the real-valued interval [0, 1]).
This actually has an immediate impact on the choice of both the automaton
model and the syntax of expressions that are supposed to characterize it. On
the automata side, a probabilistic decision should depend on the given input.
Therefore, we consider probabilistic automata. On the specification side, we
would like to adopt concepts from rational expressions. In this paper, we actually
provide a simple fragment of classical weighted rational expressions over the

⋆

Supported by anr 2010 blan 0202 01 frec, LIA InForMel.

nonnegative real numbers, including a star operator and concatenation. The star
operator has to be handled with care, though. It comes with a subtle restriction
to make sure that an expression associates with every word a probability. In this
way, we obtain a class of probabilistic expressions that have the same expressive
power as probabilistic automata. Translations forth and back are effective so that
decidability results for automata directly carry over to expressions.

Actually, we prove a more general result. Expressions are extended in such a
way that they capture two-way probabilistic automata [14,22] and automata with
pebbles (similar to two-way word automata and tree-walking automata). Our
expressions can then be considered as a probabilistic generalization of XPath
[19,27]. Note that (non-probabilistic) two-way automata are in fact an appropriate
machine model for compiling XPath queries [5]. The concept presented in this
paper may therefore constitute a first step towards probabilistic database query
languages: an expression is considered as a query, and an equivalent automaton can
be used as a tool for evaluating queries efficiently (see [16] for recent developments
on weighted query evaluation).

Related Work. It has to be noted that there have been numerous approaches
to characterizing probabilistic systems in terms of algebraic expressions and
process calculi [29,7,12,11]. A unifying framework is due to Silva et al. [26],
who consider probabilistic systems in a general coalgebraic setting. This allows
them to derive algebraic expressions and a corresponding Kleene Theorem, as
well as full axiomatizations for many of those (and even for weighted automata
over arbitrary semirings). Their and above-mentioned works are mainly aiming
at axiomatization of probabilistic-system behaviors in terms of bisimulation
equivalence, so their focus is on system models including non-determinism and
generative probability distributions. In this paper, we consider probabilistic
automata, which are a more appropriate machine model for our purpose, i.e., for
evaluating queries. Moreover, while the syntax of process-algebraic expressions is
tailored to modeling probabilistic systems and uses action prefixing, fixed points,
and process variables, we provide expressions with concatenation and a proper
Kleene star. Thus, our expressions are closer to language-theoretic operations
and more convenient to use in query languages. So far, there have been only few
attempts to define quantitative query languages. In [15], Flesca et al. introduce
a weighted XPath. Their approach, however, does not extend to probabilistic
automata. Note that the fact that we also consider two-way devices distinguishes
our work from all above-mentioned references. To the best of our knowledge, we
present the first Kleene-Schützenberger correspondence for probabilistic two-way
automata.

Outline. In Section 2, after some motivating example, we recall the definition of
(reactive) probabilistic automata, introduce our probabilistic regular expressions,
and present a corresponding Kleene Theorem. A part of the proof of this theorem
is postponed to Section 4, where a more general result is shown for two-way
probabilistic automata and corresponding generalized expressions (which are
introduced in Section 3): automata and expressions are expressively equivalent
and can be transformed effectively into each other.

2

1 32

a, 1

2

a, 1

3

b, 1

a, 1

6

a, 1
b, 1

Fig. 1. A probabilistic automaton equivalent to
[

1

6
a(a+ b) + 1

2
a
]

∗

· (1
3
a+ b)

2 Probabilistic Automata and Expressions

Preliminaries. We fix a finite alphabet A. We restrict our attention to nonempty
words over A, i.e., sequences w = a0 · · · an−1 ∈ A

+ with n ≥ 1 and ai ∈ A for
every i. The length n of w is denoted |w|, and pos(w) = {0, . . . , |w|} is the set of
positions of w. The last position of index n is added to facilitate the definition
of runs in two-way automata. To be able to deal with infinite sums over the
non-negative real numbers, we extend R≥0 to R

∞
≥0 = R≥0 ∪ {∞}. In other words,

we consider the continuous semiring (R∞
≥0,+, · , 0, 1) where ∞ is assigned to any

infinite sum that does not converge.

2.1 Probabilistic Automata

We consider classical probabilistic finite automata (PFA) [21,20]. A PFA over
alphabet A is a tuple A = (Q, ι,Acc,P) where Q is the finite set of states,
ι ∈ Q is the initial state, and Acc ⊆ Q is the set of final states. Moreover,
P : Q×A×Q→ [0, 1] is a function that assigns a probability to each transition.
PFA are reactive automata, whose probabilistic choice depends on the current
input letter. Thus, we require that

∑

q′∈Q P(q, a, q′) ≤ 1 for all (q, a) ∈ Q × A.
We will moreover assume that a final state has no outgoing transitions with
positive probability: P(q, a, q′) > 0 implies q /∈ Acc. An example PFA is depicted
in Fig. 1 where 1 is the initial state and 3 is the only final state. Transitions with
probability 0 are omitted.

An accepting run of A over w = a0 · · · an−1 ∈ A
+ is a sequence of transitions

ρ = δ1 · · · δn such that δi = (qi−1, ai−1, qi) with q0 = ι and qn ∈ Acc. Given a
run ρ, we set P(ρ) =

∏n
i=1 P(δi). The semantics of the PFA A is the mapping

(series) JAK : A+ → [0, 1] given by JAK(w) =
∑

ρ P(ρ), where the sum ranges over
all accepting runs ρ over w. For instance, given the automaton of Fig. 1, we have
JAK(aab) = 1

4 + 1
6 = 5

12 .

2.2 Probabilistic Expressions

While PFAs are a machine model, we are aiming at denotational probabilistic
regular expressions with the same expressiveness as PFAs. We start with the
definition of classical weighted expressions (WEs) given by the syntax

E ::= s | a | E + E | E · E | E∗

3

with s ∈ R
∞
≥0 and a ∈ A. In the following, we often simply write EF instead of

E ·F . Also, we let E0 def

= 1 and Em+1 = EEm for m ≥ 0. The semantics of a WE

E is a mapping JEK : A+ → R
∞
≥0 which is defined inductively by

JsK(w) =

{

s if w = ε

0 otherwise
JaK(w) =

{

1 if w = a

0 otherwise

JE1 + E2K(w) = JE1K(w) + JE2K(w) JE∗K(w) =
∑

m∈N
JEmK(w)

JE1 · E2K(w) =
∑

w=uv

JE1K(u) · JE2K(v) .

In the following, we consider expressions modulo the following trivial identities:

0 + E ≡ E + 0 ≡ E E · 0 ≡ 0 · E ≡ 0 E · 1 ≡ 1 · E ≡ E 0∗ ≡ 1

We introduce below probabilistic regular expressions (PREs) as a fragment
of WEs. We have to restrict WEs since otherwise values greater than 1 could be
obtained. For instance, the WE (a + ab)(ba + a) should not be a PRE since it
evaluates to 2 on the word aba. The restriction will be both on sum and star.
Since we aim at PREs which are equivalent to PFAs, let us examine first which
type of WEs are obtained from PFAs. A transition δ = (q, a, q′) with probability
P(δ) = s could be denoted by the expression sa. Applying classical algorithms
to build a regular expression from finite-state automata, we then obtain, for
the automaton in Fig. 1, the expression

[

1
6a(a+ b) + 1

2a
]∗
· (13a+ b). Now, the

expression
[

1
6a(a+ b)+

1
2a

]∗
· (a+ b), obtained by changing the subexpression 1

3a
into a, should be disallowed, because it corresponds to an automaton violating
condition

∑

q′∈QP(q, a, q
′) ≤ 1. On the other hand,

[

1
6a(a+ b) + 1

2a
]∗
· (13a+

1
2b)

would be acceptable: we obtain a corresponding PFA from the automaton depicted
in Fig. 1 by setting P(1, b, 3) = 1

2 .

Definition 1. Probabilistic regular expressions (PREs) is the fragment of WEs

built inductively as follows:
(Atoms) s ∈ [0, 1] and a ∈ A are PREs.

(+a) If (Ea)a∈A are PREs, then
∑

a∈A a · Ea is a PRE.
(+s) If E and F are PREs and s ∈ [0, 1], then s · E + (1− s) · F is a PRE.
(·) If E and F are PREs, then E · F is a PRE.
(∗) If E + F is a PRE, then E∗ · F is a PRE.

(ACD) Every WE that is obtained from a PRE by applying commutativity of
+, associativity of + or ·, or distributivity of · over + is a PRE.

There are two guarded sums. The first one (+a) is deterministic and guarded
by the next letter to be read. The second one (+s) is probabilistic. Also, the
star operation contains an implicit choice which is either to iterate again the
expression or to exit the loop. This choice also has to be guarded which is the
reason for the precondition E + F ∈ PRE in the rule (∗). The guard could be
deterministic as in (ab)∗b or probabilistic as in (13 (aa + bb))∗ 2

3 (a + b). Finally,
with the above restrictions, we lose the classical ACD identities, hence we enforce

4

these properties explicitely with the ACD-rules which allow to rewrite a PRE in
order to apply the star rule as needed.

Since PREs form a fragment of WEs, the semantics is inherited. From The-
orem 1 below, PREs are equivalent to PFAs. We deduce that the semantics of
E ∈ PRE takes values in [0, 1], so that one can interpret JEK(w) as a probability.

Example 1. A simple PRE is (13a)
∗· 23b, which assigns to a word amb the probability

(13)
m · 23 , and 0 to words not in a∗b. Moreover, E =

[

1
6a(a+ b) + 1

2a
]∗
· (13a+ b)

is indeed a PRE for the automaton from Fig. 1. To show that E is a PRE, we
use some semantical equivalences such as sa ≡ as or 5

6 ≡
1
2 + 1

3 . The expression
a(16 (a+b)+

5
6)+b uses two deterministic sums (first and third) and a probabilistic

sum. Using the above semantical equivalences and ACD-rules, we deduce that
1
6a(a+ b) + 1

2a+
1
3a+ b is a PRE and it remains to apply the star rule to get E.

In order to construct a PRE which is equivalent to a PFA, we need to be able
to concatenate a PRE after an arbitrary term of another PRE. This is possible
thanks to the following result.

Proposition 1. If E + F and G are PREs, then E + F ·G is also a PRE.

For a PFA, we can always find an equivalent PRE, and vice versa. This first
theorem, which is non-trivial even in the one-way setting, is generalized in the
next sections allowing two-way moves and pebbles.

Theorem 1. PFAs and PREs are effectively equivalent.

Proof. We only prove the translation from automata to expressions. The other
direction will be proved in a more general setting in Section 3.

Let A = (Q, ι,Acc,P) be a PFA. For each q ∈ Q \ Acc we construct a PRE

Eq =
∑

q′∈Acc
Eq,q′ where JEq,q′K(w) computes the sum of the probabilities of

nonempty runs over w starting from state q, ending in state q′. Hence, we will
obtain the PRE Eι, which computes exactly the behavior of A.

We follow usual procedures to translate automata into expressions. For q′ ∈ Q
and X ⊆ Q \Acc, we define fXq′ = 0 if q′ ∈ X and 1 otherwise. For q ∈ Q \Acc

and X ⊆ Q \Acc, we construct by induction on X a PRE EXq =
∑

q′∈QE
X
q,q′f

X
q′

where EXq,q′ is a PRE such that JEXq,q′K(w) is the sum of the probabilities of
nonempty runs over w starting from state q, ending in state q′ and using only

intermediary states in X. Hence, we have Eq = E
Q\X
q and Eq,q′ = E

Q\X
q,q′ .

The base of the induction is when X = ∅. For each state q ∈ Q \ Acc and
letter a ∈ A, by definition of PFAs we have

∑

q′∈Q P(q, a, q′) ≤ 1. Hence, using
rules (+a) and (+s) we obtain the PRE

E∅
q =

∑

a∈A
a ·

∑

q′∈Q
P(q, a, q′) =

∑

q′∈Q
E∅
q,q′f

∅
q′

where the last equality is obtained using ACD-rules and f∅q′ = 1.
For the induction step, let X ∪ {r} ⊆ Q \ Acc with r /∈ X. By induction,

we assume that PREs EXq have been constructed for all q ∈ Q \ Acc, and we

5

construct E
X∪{r}
q . We have EXr =

∑

q′∈QE
X
r,q′f

X
q′ ∈ PRE and fXr = 1 since

r /∈ X. Using rule (∗), we get GXr =
(

EXr,r
)∗
·
(
∑

q′∈Q\{r}E
X
r,q′f

X
q′

)

∈ PRE . Now,

EXq =
∑

q′∈QE
X
q,q′f

X
q′ ∈ PRE and fXr = 1. Using Proposition 1, we can plug GXr

after EXq,r and we obtain the PRE

EX∪{r}
q = EXq,r ·G

X
r +

∑

q′∈Q\{r}
EXq,q′f

X
q′

=
∑

q′∈Q\{r}

(

EXq,q′ + EXq,r
(

EXr,r
)∗
EXr,q′

)

fXq′ (ACD-rules)

=
∑

q′∈Q
E
X∪{r}
q,q′ f

X∪{r}
q′

using f
X∪{r}
r = 0 and f

X∪{r}
q′ = fXq′ if q′ ∈ Q \ {r}. ⊓⊔

With Theorem 1, decidability of the equivalence problem for PFAs carries
over to PREs (provided the probabilities in an expression are rational numbers),
whereas their threshold problem is undecidable.

Corollary 1.

1. The equivalence problem for PREs is decidable: given PREs E and F , does
JEK = JF K hold?

2. The threshold problem for PREs is undecidable: given an alphabet A, a PRE

E over A and 0 < s < 1, is there a word w ∈ A+ such that JEK(w) ≥ s?

Note that PFAs cannot recognize all series recognized by usual Rabin automata,
i.e., PFAs without the blocking assumption over accepting states. For example,
the map g : A+ → [0, 1], defined by g(an) = 1 if n > 0 and g(w) = 0 for all other
words w, is not recognizable by a PFA (note that a∗a is not a PRE). However, g is
recognized by a Rabin automaton with a single state. To deal with this issue, we
can add a fresh symbol ⊳ at the end of a word. For a function f : A+ → [0, 1], we
define f⊳ : (A ∪ {⊳})+ → [0, 1] by f⊳(w⊳) = f(w) if w ∈ A+, and 0 otherwise.
For example, the series g⊳ is defined by a(a∗⊳), which is a PRE since a+⊳ ∈ PRE.
More generally, we can prove the following:

Proposition 2. Let f : A+ → [0, 1]. The function f⊳ is recognizable by a PFA

(or equivalently by a PRE) iff f is recognizable by a Rabin automaton.

3 Adding Two-Way Navigation and Pebbles

In this section, we extend probabilistic automata and expressions such that they
allow us to navigate in a given word and place pebbles that can be recovered later.
Before we extend PFAs and PREs accordingly, let us give a motivating example.

Example 2. Using pebbles in probabilistic expressions or automata is a natural
and powerful way to deal with nesting in LTL formulas. Indeed, temporal logics
implicitly use a free variable to denote the position where a formula has to be

6

evaluated. We will mark this position with a pebble, say x, in expressions Eϕ(x)
or automata Aϕ(x) associated with LTL formulas ϕ.

Consider an LTL formula Fϕ, for Finally ϕ. Given a word w and a position i
in w, we are interested in the probability P(Fϕ,w, i) that ϕ holds in w at position i.
For instance, for ϕ = 1

3a, we should obtain P(Fϕ, abba, 0) = 1
3 +

2
3 (0+

2
3 (0+

2
3 (

1
3 +

0))): either ϕ is satisfied immediately with probability 1
3 , or it is not (probability

2
3) so that (product) it has to be satisfied later. More generally, we have

P(Fϕ,w, i) = P(ϕ,w, i) + P(¬ϕ,w, i)× P(Fϕ,w, i+ 1)

=
∑

k≥i

P(ϕ,w, k)×
∏

i≤j<k

P(¬ϕ,w, j) .

For every LTL formula ϕ, we are aiming at an equivalent expression Eϕ(x)
which evaluates to P(ϕ,w, i) over word w when pebble x marks position i. For
this, we use a new construct, y!Eϕ(y), which marks the current position with
pebble y, and computes ϕ on the whole word (from beginning to end) with
this position marked (this is a non-progressing construct). Let us illustrate this
inductive construction for LTL formulas. For Finally ϕ, we set

EFϕ(x) = ⊲?→∗x?
((

y!E¬ϕ(y)
)

→
)∗(

y!Eϕ(y)
)

→∗
⊳? .

The expression starts at the beginning of the word (⊲?), and moves to the right
(→∗) until it discovers the marked position (x?). Then, for each n ≥ 0, it iterates
n times the computation of ¬ϕ with the current position marked by y (y!E¬ϕ(y)),
moving to the right (→) between two computations. Finally, it computes ϕ with
y!Eϕ(y) before moving to the last position of the word (→∗

⊳?).
Similarly, for Globally ϕ (Gϕ), we have P(Gϕ,w, i) =

∏

j≥i P(ϕ,w, j), leading
to the simpler expression

EGϕ(x) = ⊲?→∗x?
((

y!Eϕ(y)
)

→
)∗
⊳? .

The last test (⊳?) is useful to enforce the preceding star operation to capture
the whole suffix of the word from the position marked by x.

Finally, based on the equivalence ϕUψ ≡ (¬ψ ∧ ϕ)Uψ, the expression for
the Until modality is

EϕUψ(x) = ⊲?→∗x?
((

y!(E¬ψ(y)←
∗Eϕ(y))

)

→
)∗(

y!Eψ(y)
)

→∗
⊳? .

In terms of automata, let us assume that, for every formula ϕ, there is an
automaton Aϕ with two designated terminal states, OK and KO, such that runs
ending in OK (and at the end of the word) compute expression Eϕ and those
ending in KO compute expression E¬ϕ. These automata are 2-way, and can drop
and lift pebbles on word positions. Dropping a pebble resets the control at the
beginning. Lifting a pebble can be performed anywhere and resets the control to
the position of the last dropped pebble (which then gets removed). The figure
below depicts automata for the modalities Finally and Globally.

7

⊳?

Aϕ(y)
OK

KO

→

x? →

drop

⊳?lift

⊳?lift

→
⊳?

Aϕ(y)
OK

KO

→

x? →

drop ⊳?lift

3.1 Probabilistic Pebble Automata

Our extended automata navigate (just like extended expressions defined below)
inside a word in both directions, denoted → and ←. Motivated by Example 2,
we moreover equip automata with p ∈ N pebbles, 1, . . . , p. Naturally, two-way
automata can check if the current position carries some particular letter or
pebble, or if it is a border (i.e., the first or last) position of the input word.
Thus, they make their probabilistic choice depending on the type of the current
position, which is a set containing the letter and pebbles that can be found at
the current position. Formally, a p-type is a set t ⊆ A ∪ {⊲,⊳} ∪ {1, . . . , p} such
that (i) ⊳ ∈ t implies t = {⊳}, and (ii) ⊳ /∈ t implies |t ∩ A| = 1. In other
words, t indicates the current letter from A, unless the control is beyond the
word (⊳ ∈ t). Moreover, it reveals if the current position is the first (⊲ ∈ t), or
the last one (⊳ ∈ t), or neither of them (t ∩ {⊲,⊳} = ∅). Let Tp be the set of
p-types, and let T =

⋃

p∈N
Tp denote the set of types. The current state and type

of a configuration will give rise to a probability function, which triggers a move
of the automaton, taken from the set M = {→,←, drop, lift, stay}.

Let us formally define pebble probabilistic automata, which generalize PFAs.

Definition 2. A pebble probabilistic automaton (PPA) over A is a tuple A =
(p,Q, ι,Acc,P) where p ∈ N is the number of pebbles, Q is a finite set of states,
ι ∈ Q is the initial state, and Acc ⊆ Q \ {ι} is the set of final states. Moreover,
P : Q× Tp ×M×Q→ [0, 1] is a transition probability function such that:

– For all δ = (q, t, d, q′), if P(δ) > 0 then q /∈ Acc and ⊲ ∈ t implies d 6= ←
and ⊳ ∈ t implies d /∈ {→, drop}.

– For all q ∈ Q \Acc and all types t ∈ Tp, we have
∑

(d,q′)∈M×Q

P(q, t, d, q′) ≤ 1.

Next, we define the behavior of PPAs. Fix a word w = a0 · · · an−1 and a
PPA A with p pebbles. A configuration of A over w is a triple κ = (q, i, π) with
q ∈ Q, i ∈ pos(w) = {0, . . . , n}, and π ∈ {0, . . . , n− 1}≤p, where X≤p is the set
of words over X of length at most p. Intuitively, q is the current state, i is the
current position, and π represents a stack recording the k = |π| ≤ p positions of
the currently dropped pebbles: π = i1 · · · ik means that pebble ℓ ∈ {1, . . . , k} is
currently at position iℓ and pebbles k+1, . . . , p are currently not dropped. Pebbles
are dropped and lifted using a stack policy: if π = i1 · · · ik, only pebble k + 1 can
be dropped (provided k+1 ≤ p), and only pebble k can be lifted (provided k ≥ 1).

8

Let κ = (q, i, π) be a configuration with π = i1 · · · ik. We call κ initial if q = ι,
i = 0, and π = ε. It is said to be final if q ∈ Acc, i = n, and π = ε. Moreover, the
type of κ is denoted by type(κ) and defined as {ai | i < n} ∪ {⊲ | i = 0} ∪ {⊳ |
i = n} ∪

{

ℓ ∈ {1, . . . , k} | iℓ = i
}

.
Given δ = (q, t, d, q′) ∈ Q×Tp ×M×Q as well as configurations κ = (q, i, π)

and κ′ = (q′, i′, π′), we write κ
δ
−→ κ′ if t = type(κ) and the following hold:

1. if d =→ then i′ = i+ 1 and π′ = π
2. if d =← then i′ = i− 1 and π′ = π
3. if d = stay then i′ = i and π′ = π
4. if d = drop then i′ = 0 and π′ = πi and i < n
5. if d = lift then π′i′ = π .

In other words, drop saves the current position on the stack of pebbles (π′ = πi
in 4) and resets the head to the first position (i′ = 0 in 4). Moreover, π′i′ = π
in 5 means that lift pops the last dropped pebble and resets the control to the
position where this pebble was dropped.

A run of A over w is a finite sequence ρ = (κ0, δ1, κ1, . . . , δh, κh) (h ≥ 0) of
configurations and transitions such that, for all 0 < m ≤ h, we have P(δm) > 0
and κm−1

δm−−→ κm. We say that ρ is accepting if κ0 is an initial configuration
and κh is final. The probability of this run is the product of the probabilities of
the transitions all along the run: P(ρ) =

∏h
m=1 P(δm). Now, let JAK(w) be the

sum
∑

ρ P(ρ), where ρ ranges over the accepting runs of A over w. Note that the
number of accepting runs over a given word may be infinite so that, a priori, JAK
is a mapping A+ → R

∞
≥0. However, one can show the following:

Proposition 3. For every PPA A and every w ∈ A+, we have JAK(w) ∈ [0, 1].

Proof. Let us define, for every w ∈ A+, a probability space (Ωw,Ew,Pw). The
set Ωw of outcomes is the set of maximal runs of A over w, starting in the initial
configuration (for technical reasons, we have to include infinite ones). Moreover,
the set E

w of events is the smallest σ-algebra containing, for all finite runs ρ,
the cylinder set Cyl(ρ)

def

= {ρ′ | ρ′ is a maximal run with prefix ρ}. With this,
there is a unique probability measure P

w for Ωw and E
w, which is given by

P
w(Cyl(ρ)) = 1 · P(δ1) · . . . · P(δh) for all finite runs ρ = (κ0, δ1, κ1, . . . , δh, κh).

As the set AR(w) of accepting runs over w is countable, it is measurable in the
probability space, and its probability is P

w(AR(w)) =
∑

ρ∈AR(w) P
w(Cyl(ρ)).

Note that the latter equals JAK(w) and that Cyl(ρ) = {ρ} for all ρ ∈ AR(w). ⊓⊔

The proof above establishes a strong connection between PPAs and Markov
chains. This connection also provides an algorithm for evaluating a PPA wrt.
a given word, which reduces to computing the probability of reaching a final
configuration in the synchronized Markov chain (see, for example, [3]).

Example 3. Consider the PPA A (2-way, without pebbles) depicted on the left of
Fig. 2 (where 0 < s < 1) over alphabet A = {a}. The synchronized Markov chain
of A wrt. a word of length n is depicted on the right of the same figure. This
Markov chain represents a random walk over a straight line of bounded length.

9

{a},→, s

{a,⊲},→, s

{a},←, (1− s)

{⊳}, stay, 1
0 1 n− 2 n− 1 n

s

1− s

. . .

s

1− s

s 1

Fig. 2. Markov chain obtained by synchronizing A with a word of length n

3.2 Probabilistic Pebble Expressions

Now, we define probabilistic expressions that capture the expressive power of
PPAs. Just like PPAs, expressions are equipped with some pebbles from an infinite
supply P = {1, 2, . . .} (though every expression will only employ a finite number
thereof). Also, expressions should be able to move left or right and to check if
pebbles are dropped on the current position. Hence, we adopt an XPath-like
syntax: we explicitly distinguish progression in the word (with ← or →) from
tests ϕ ∈ Tests checking the current type. We define test formulas inductively by

ϕ ::= a? | x? | ⊲? | ⊳? | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ

where a ∈ A and x ∈ P. In particular, formulas ⊲? and ⊳? allow an expression
to test whether it is at the first or last position of the word. Moreover, x? is true
if pebble x is on the current position. Formulas ϕ ∈ Tests are interpreted over a
type t ∈ T in a straightforward manner: for θ ∈ A ∪ {⊲,⊳} ∪ P , we write t |= θ?
if θ ∈ t. The semantics of boolean connectives is defined as expected.

We start with unrestricted weighted pebble expressions (WPEs) defined by

E ::= s | ϕ | ← | → | E + E | E · E | E∗ | x!E

with s ∈ R
∞
≥0, ϕ ∈ Tests and x ∈ P . The interpretation of s, sum, concatenation,

and star does not change wrt. WEs. The new atomic expressions ← and →
perform a step to the left or to the right. The expressions ϕ and x!E, on the
other hand, perform non-progressing computations (similar to s). The atomic
WE a is obtained by checking first if the current letter is a and then moving right,
hence the abbreviation a

def

= a?→. The new construct x!E is read “compute E
with x assigned to the current position”. The computation of E “rescans” the
whole word, from position 0 to position |w|.

The set of free pebbles of an expression E ∈WPE is defined in the obvious
way; in particular, we set Free(x?) = {x} and Free(x!E) = Free(E) \ {x}.

The semantics JEK of an expression E assigns a value from R
∞
≥0 to each

tuple (w, σ, i, j) where w = a0a1 · · · ∈ A+, i, j ∈ pos(w) and σ : Free(E) →
{0, . . . , |w| − 1}. It computes the weight of going from i to j with the pebble
assignment σ. Formally, the semantics is given in Table 1. Hereby, we let type(i) ∈
T denote the set {ai | i 6= |w|} ∪ {⊲ | i = 0} ∪ {⊳ | i = |w|} ∪ σ−1(i). Moreover,
σ[x 7→ i] stands for the assignment coinciding with σ except on x, which is

10

JsK(w, σ, i, j) =

{

s if j = i

0 otherwise
JϕK(w, σ, i, j) =

{

1 if j = i and type(i) |= ϕ

0 otherwise

J→K(w, σ, i, j) =

{

1 if j = i+ 1

0 otherwise
J←K(w, σ, i, j) =

{

1 if j = i− 1

0 otherwise

JE1 + E2K = JE1K + JE2K JE∗K(w, σ, i, j) =
∑

m∈N
JEmK(w, σ, i, j)

JE1 · E2K(w, σ, i, j) =
∑

k∈pos(w)

JE1K(w, σ, i, k)× JE2K(w, σ, k, j)

Jx!EK(w, σ, i, j) =

{

JEK(w, σ[x 7→ i], 0, |w|) if j = i < |w|

0 otherwise

Table 1. Semantics of WPEs

mapped to i. If Free(E) = ∅, then we let JEK(w) = JEK(w, 0, |w|) (omitting σ, as
it is irrelevant).

One can easily check that concatenation, also called Cauchy product, is
associative, i.e., J(E1 · E2) · E3K = JE1 · (E2 · E3)K. Hence, one can define Em

by induction: E0 = 1 and Em+1 = E · Em. Moreover, + is associative and
commutative, concatenation distributes over +, and x! distributes over +.

As for expressions without pebbles, we need to restrict the sum and star
operations to get the probabilistic fragment. Doing so, we lose commutativity,
associativity and distributivity hence we enforce these properties explicitly. The
proof of Proposition 1 cannot be extended to cope with x!E, hence we strengthen
the rule for concatenation.

Definition 3. Probabilistic pebble expressions (PPEs) is the fragment of WPEs

built inductively as follows:
(Atoms) s ∈ [0, 1], ϕ ∈ Tests, ← and → are PPEs.

(+ϕ) If E and F are PPEs and ϕ ∈ Tests, then ϕ · E + (¬ϕ) · F is a PPE.
(+s) If E and F are PPEs and s ∈ [0, 1], then s · E + (1− s) · F is a PPE.
(·) If E + F is a PPE and G is a PPE, then E + F ·G is a PPE.
(∗) If E + F is a PPE, then E∗ · F is a PPE.
(x!) If E is a PPE, then x!E is a PPE.

(ACD) PPEs are closed under the following associativity, commutativity and
distributivity rules (ACD-rules):

A+ E + (F +G) ∈ PPE ←→ (E + F) +G ∈ PPE

C+ E + F ∈ PPE ←→ F + E ∈ PPE

A· E · (F ·G) ∈ PPE ←→ (E · F) ·G ∈ PPE

D· E · (F +G) ∈ PPE ←→ E · F + E ·G ∈ PPE

D· (E + F) ·G ∈ PPE ←→ E ·G+ F ·G ∈ PPE

Dx! x!(E + F) ∈ PPE ←→ x!E + x!F ∈ PPE

11

The semantics of PPEs is inherited from WPEs and we will show later that
when E ∈ PPE then JEK(w, σ, i, j) actually always belongs to [0, 1].

Example 4. We continue Example 3. An equivalent PPE to denote the random
walk is given by

E = (¬⊳?(s→+ (1− s)¬⊲?←))∗ ⊳? .

Moreover, let F = ¬⊳?(s→ + (1 − s)¬⊲?←) so that E = F ∗
⊳?. Notice that

E is indeed an expression in PPE because F + ⊳? ∈ PPE. Let w be a word of
length m ≥ 2. We can easily see that, for all i, j ∈ pos(w) and all n ≥ |j − i|, the
expression Fn computes a positive value on (w, i, j). Therefore, the expression F ∗

computes an infinite sum on (w, i, j). In the present case (0 < s < 1), the series
∑

n≥0JF
nK(w, i, j) converges: with α = 1−s

s
, one can show that JEK(w, 0, |w|) =

1/(1 + α+ . . .+ α|w|), and JF ∗K(w, i, j) ∈ [0, 1].

We define now the multiset Terms(E) of terms of an expression E ∈ WPE.
This will be crucial for the translation from expressions to automata in the
next section. Intuitively, if we suppose that summation is pushed up as much
as possible by means of ACD-rules, then the multiset of terms consists of all
expressions that occur in this big outermost sum. Formally, the definition is by
induction over E ∈ WPE. When E is an atom, we let Terms(E) = {{E}} be the
singleton multiset containing only the atom itself. Moreover,

Terms(E + F) = Terms(E) ⊎ Terms(F)

Terms(E · F) = {{E′ · F ′ | E′ ∈ Terms(E), F ′ ∈ Terms(F)}}

Terms(E∗) = {{E∗}}

Terms(x!E) = {{x!E′ | E′ ∈ Terms(E)}} .

Note that, if an expression F can be obtained from an expression E through
ACD-rules, then we have Terms(E) = Terms(F). The converse also holds as can
be seen from the following proposition which can be easily proved by structural
induction on the expression.

Proposition 4. Let E ∈WPE with Terms(E) = {{Ei | i ∈ I}}. Using ACD-rules,
we can rewrite E into

∑

i∈I Ei. In particular, we have JEK =
∑

i∈IJEiK. Hence,
we identify E and

∑

i∈I Ei.

4 The Probabilistic Kleene Theorem

We prove in this section that PPAs are effectively equivalent to PPEs. We start
with the construction of PPAs from PPEs. The problematic cases are concatenation
and iteration due to the precondition E + F ∈ PPE. To deal with these cases, we
construct from PPE E a PPA A which simultaneously recognizes all terms of E.

Theorem 2. From any expression E ∈ PPE we can effectively construct an
equivalent PPA A = (p,Q, ι,Acc,P). More precisely, if Terms(E) = {{Ei | i ∈ I}},
the set of accepting states of A is Acc = {fi | i ∈ I} and for all i ∈ I the
expression Ei is equivalent to the PPA A[fi] = (p,Q, ι, {fi},P).

12

Proof. The construction is by structural induction on the expression E ∈ PPE

which may have free pebbles. As usual, the assignment of free pebbles will
be encoded in the alphabet of the word read by the automaton A ∈ PPA,
hence (w, σ) will be interpreted as a word over A × 2Free(E) in the automata.
Then, equivalence A ≈ E means that, for all words w ∈ A+, assignments
σ : Free(E)→ pos(w)\{|w|}, and positions i, j ∈ pos(w), the value JEK(w, σ, i, j)
is the sum of the probabilities of the runs of A over (w, σ) starting in the initial
state in position i, ending in an accepting state in position j.

The cases s ∈ [0, 1], ϕ ∈ Tests, →, and ← are clear. For each atom, the
resulting automaton has only two states (it uses stay transitions for s and ϕ).

Now let E,E′ ∈ PPE be such that Terms(E) = {{Ei | i ∈ I}} and Terms(E′) =
{{E′

j | j ∈ J}}. By induction hypothesis, we have constructed two suitable PPAs

A = (p,Q, ι,Acc,P) and A′ = (p′, Q′, ι′,Acc′,P′) with Acc = {fi | i ∈ I} and
Acc′ = {f ′j | j ∈ J}. Without loss of generality, we assume that p = p′, Q∩Q′ = ∅
and that a final state may only be reached when no pebble is dropped (if necessary,
this may be enforced by keeping the number of dropped pebbles in the states).

Consider E′′ = ϕ·E+¬ϕ·E′. We have Terms(E′′) = {{ϕ·Ei | i ∈ I}}⊎{{¬ϕ·E
′
j |

j ∈ J}}. We construct a PPA A′′ = (p,Q ⊎ Q′ ⊎ {ι′′}, ι′′,Acc ⊎ Acc′,P′′). From
the new initial state ι′′, we add stay transitions with probability 1 going to ι for
all types t satisfying ϕ, and going to ι′ for all other types.

The construction for E′′ = s ·E+(1− s) ·E′ is similar. We have Terms(E′′) =
{{s ·Ei | i ∈ I}} ⊎ {{(1− s) ·E

′
j | j ∈ J}}. We add stay transitions with probability

s from ι′′ to ι and stay transitions with probability 1− s from ι to ι′.

For the concatenation, we assume that E = F +G and E′′ = F +G ·E′. We
have I = K ⊎ L with Terms(F) = {{Ei | i ∈ K}} and Terms(G) = {{Ei | i ∈ L}}.
Hence, we have Terms(E′′) = {{Ei | i ∈ K}} ⊎ {{Ei · E

′
j | (i, j) ∈ L × J}}. The

automaton A′′ for E′′ consists of one copy of A and a copy A′
i of A′ for every

i ∈ L. First, A′′ simulates A until it reaches some final state fi of A. Then, if
i ∈ L, a stay transition leads with probability 1 into the initial state of A′

i. The
final states of A′′ consist of {fi | i ∈ K} and a copy of Acc′ for each i ∈ L.

For the Kleene star we assume that E = F + G and E′′ = F ∗ · G. We
have I = K ⊎ L with Terms(F) = {{Ei | i ∈ K}} and Terms(G) = {{Ei | i ∈
L}}. Hence, we have Terms(E′′) = {{F ∗ · Ei | i ∈ L}}. We construct the PPA

A′′ = (p,Q, ι,Acc′′,P′′) with Acc′′ = {fi | i ∈ L} by adding stay transitions with
probability 1 from all states fi for i ∈ K back to the initial state ι.

Consider E′′ = x!E. We have Terms(E′′) = {{x!Ei | i ∈ I}}. We construct the
PPA A′′ = (p+1, Q⊎ {ι′′} ⊎Acc′′, ι′′,Acc′′,P′′) with Acc′′ a copy of Acc. To this
aim, we shift the numbers of pebbles of A to {2, . . . , p+ 1} keeping pebble 1 to
be the fresh one, used to mark the position of variable x. We start by dropping
pebble 1 with transitions of the form (ι′′, t, drop, ι), each with probability 1. At
the end of a computation of A, pebble 1 is lifted, again with probability 1, using
transitions (q, {⊳}, lift, q′′) where q′′ ∈ Acc′′ is the copy of q ∈ Acc.

Finally, if E′′ is obtainted from E via ACD-rules, we have Terms(E′′) =
Terms(E) so we can keep the same automaton: A′′ = A. ⊓⊔

13

Note that, even if we start from a PRE, the proof above does not yield a PFA

since it adds stay transitions. Hence, this proof has to be adapted to translate
PREs into PFAs. By Proposition 3, the semantics of automata only assumes values
in [0, 1]. This carries over to PPE.

Corollary 2. For every PPE E and every w ∈ A+, we have JEK(w) ∈ [0, 1].

We turn now to the construction of expressions (PPEs) which are equivalent to
automata (PPAs). We follow usual procedures for the translation from automata
to expressions, ensuring throughout the proof that we produce expressions in
PPE. To this aim, we strongly rely on ACD-rules.

Theorem 3. Let A = (p,Q, ι,Acc,P) be a PPA with p pebbles. We can effectively
construct a PPE Eι =

∑

q∈Acc
Eι,q such that JEι,qK(w, 0, |w|) is the sum of the

runs from the initial configuration (ι, 0, ε) to the final configuration (q, |w|, ε).

5 Conclusion

In this paper, we presented a probabilistic Kleene Theorem, first for classical
probabilistic automata and then for extended automata with two-way navigation
and pebbles. This constitutes a first step towards probabilistic XPath, so we aim
at extending our work to finite trees and probabilistic tree automata. We also
raise the question of whether our technique can be used to obtain ω-expressions
for probabilistic Büchi automata, which have attracted a lot of attention [2,1,8].
Just like classical finite automata, weighted automata over semirings enjoy char-
acterizations in terms of monadic second-order logic [13,6]. Continuing this line of
research, a recent paper establishes a logical characterization of probabilistic au-
tomata [30]. It would be interesting to study whether alternative characterizations
exist that use, for example, a transitive-closure operator [6].

References

1. C. Baier, N. Bertrand, and M. Größer. On decision problems for probabilistic Büchi
automata. In Proc. of FoSSaCS’08, volume 4962 of LNCS, pages 287–301. Springer,
2008.

2. C. Baier and M. Größer. Recognizing ω-regular languages with probabilistic
automata. In Proc. of LICS’05, pages 137–146. IEEE Computer Society, 2005.

3. C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
4. J. Berstel and Ch. Reutenauer. Noncommutative rational series with applications,

volume 137 of Encyclopedia of Mathematics & Its Applications. Cambridge, 2011.
5. M. Bojańczyk. Tree-walking automata. In Proc. of LATA’08, volume 5196 of LNCS,

pages 1–17. Springer, 2008.
6. B. Bollig, P. Gastin, B. Monmege, and M. Zeitoun. Pebble weighted automata

and transitive closure logics. In Proc. of ICALP’10, volume 6199 of LNCS, pages
587–598. Springer, 2010.

7. P. Buchholz and P. Kemper. Quantifying the dynamic behavior of process alge-
bras. In Process Algebra and Probabilistic Methods. Performance Modelling and
Verification, volume 2165 of LNCS, pages 184–199. Springer, 2001.

14

8. R. Chadha, A. P. Sistla, and M. Viswanathan. Power of randomization in automata
on infinite strings. Logical Methods in Computer Science, 7(3:22), 2011.

9. C. Cortes, M. Mohri, and A. Rastogi. Lp distance and equivalence of probabilistic
automata. Int. J. Found. Comput. Sci., 18(4):761–779, 2007.

10. C. Cortes, M. Mohri, A. Rastogi, and M. Riley. On the computation of the relative
entropy of probabilistic automata. Int. J. Found. Comput. Sci., 19(1):219–242,
2008.

11. Y. Deng and C. Palamidessi. Axiomatizations for probabilistic finite-state behaviors.
Theor. Comput. Sci., 373(1-2):92–114, 2007.

12. Y. Deng, C. Palamidessi, and J. Pang. Compositional reasoning for probabilistic
finite-state behaviors. In Processes, Terms and Cycles: Steps on the Road to Infinity,
volume 3838 of LNCS, pages 309–337. Springer, 2005.

13. M. Droste and P. Gastin. Weighted automata and weighted logics. In M. Droste,
W. Kuich, and H. Vogler, editors, Handbook of Weighted Automata, EATCS Mono-
graphs in Theoretical Computer Science, chapter 5, pages 175–211. Springer, 2009.

14. C. Dwork and L. Stockmeyer. On the power of 2-way probabilistic finite state
automata. In Proc. of FoCS’89, pages 480–485. IEEE Computer Society, 1989.

15. S. Flesca, F. Furfaro, and S. Greco. Weighted path queries on semistructured
databases. Inform. and Comput., 204(5):679 – 696, 2006.

16. P. Gastin and B. Monmege. Adding pebbles to weighted automata. In Proc. of
CIAA’12, LNCS. Springer, 2012. To appear.

17. H. Gimbert and Y. Oualhadj. Probabilistic automata on finite words: Decidable
and undecidable problems. In Proc. of ICALP’10, volume 6199 of LNCS, pages
527–538. Springer, 2010.

18. S. Kiefer, A. S. Murawski, J. Ouaknine, B. Wachter, and J. Worrell. On the
complexity of the equivalence problem for probabilistic automata. In Proc. of
FoSSaCS’12, volume 7213 of LNCS, pages 467–481. Springer, 2012.

19. M. Marx. Conditional XPath. ACM Transactions on Database Systems, 30(4):929–
959, 2005.

20. A. Paz. Introduction to probabilistic automata (Computer science and applied
mathematics). Academic Press, 1971.

21. M. O. Rabin. Probabilistic automata. Inform. and Control, 6:230–245, 1963.
22. B. Ravikumar. On some variations of two-way probabilistic finite automata models.

Theor. Comput. Sci., 376:127–136, 2007.
23. J. Sakarovitch. Rational and recognizable power series. In M. Droste, W. Kuich,

and H. Vogler, editors, Handbook of Weighted Automata, EATCS Monographs in
Theoretical Computer Science, chapter 4, pages 103–172. Springer, 2009.

24. M. P. Schützenberger. On the definition of a family of automata. Inform. and
Control, 4:245–270, 1961.

25. R. Segala. Probability and nondeterminism in operational models of concurrency.
In Proc. of CONCUR’06, volume 4137 of LNCS, pages 64–78. Springer, 2006.

26. A. Silva, F. Bonchi, M. M. Bonsangue, and J. Rutten. Quantitative Kleene
coalgebras. Inf. Comput., 209(5):822–849, 2011.

27. B. ten Cate and L. Segoufin. XPath, transitive closure logic, and nested tree walking
automata. In Proc. of PODS’08, pages 251–260. ACM, 2008.

28. W.-G. Tzeng. A polynomial-time algorithm for the equivalence of probabilistic
automata. SIAM J. Comput., 21(2):216–227, 1992.

29. R. J. van Glabbeek, S. A. Smolka, and B. Steffen. Reactive, generative and stratified
models of probabilistic processes. Inform. and Comput., 121(1):59–80, 1995.

30. Th. Weidner. Probabilistic automata and probabilistic logic. In Proc. of MFCS’12,
LNCS. Springer, 2012. To appear.

15

Appendix

Proposition 1. Let E ∈ PRE with Terms(E) = {{Ei | i ∈ I}}. Let Fi ∈ PRE for
each i ∈ I. We have

E =
∑

i∈I

Ei · Fi ∈ PRE .

In particular, any sum of (some) terms of a PRE is also a PRE: if I ′ ⊆ I we
get

∑

i∈I′ Ei ∈ PRE by letting Fi = 1 for i ∈ I ′ and Fi = 0 otherwise.

Proof (of Proposition 1). We proceed by structural induction over E. This is
trivial for atoms and also for ACD-rules since they preserve the multiset of terms.
Let G,H ∈ PRE with Terms(G) = {{Gj | j ∈ J}} and Terms(H) = {{Hk | k ∈ K}}.

Consider E = sG+(1−s)H. Then, Terms(E) = {{sGj | j ∈ J}}⊎{{(1−s)Hk |
k ∈ K}}. Hence we have I = J ⊎K, Ei = sGi for i ∈ J and Ei = (1− s)Hi for
i ∈ K. By induction, we have G =

∑

i∈J Gi · Fi ∈ PRE and H =
∑

i∈K Hi · Fi ∈

PRE. Therefore, sG+ (1− s)H ∈ PRE. This expression can be rewritten into E
with ACD-rules.

The proof is similar for E =
∑

a∈A aEa.

Consider E = G ·H so that I = J ×K and E(j,k) = Gj ·Hk for (j, k) ∈ I.

By induction, for every j ∈ J , we get Hj =
∑

k∈K Hk · F(j,k) ∈ PRE. Again by

induction we obtain
∑

j∈J Gj ·Hj ∈ PRE. This expression can be rewritten into

E with ACD-rules.

Consider now E = G∗ ·H assuming G+H ∈ PRE instead of G,H ∈ PRE. We
have I = K and Ei = G∗ ·Hi for i ∈ I. Applying the induction hypothesis to the
expression G+H with Fj = 1 for j ∈ J , we obtain

∑

j∈J Gj +(
∑

k∈K Hk ·Fk) ∈
PRE. From the star rule we deduce that (

∑

j∈J Gj)
∗ · (

∑

k∈K Hk · Fk) ∈ PRE.

Using ACD-rules, this can be rewritten into E =
∑

i∈I G
∗ ·Hi · Fi. ⊓⊔

From Automata to Expressions.

Let A = (p,Q, ι,Acc,P) be a PPA with p pebbles. Without loss of generality,
we assume that the number of dropped pebbles is encoded in the states of A.
Hence, Q =

⊎p
k=0Q

(k) where a state in Q(k) means that p − k pebbles have
been dropped and k pebbles may still be dropped. The top level Q(p) of the
automaton contains the initial state ι ∈ Q(p) and the final states Acc ⊆ Q(p).
Moreover, a transition of level k may only test pebbles up to p− k: for q ∈ Q(k),
if P(q, t, d, q′) > 0 then t ∈ Tp−k.

We also assume that lift transitions are enabled only at the last position of
the input word, i.e., only when the type is t = {⊳}. For each state q ∈ Q(k)

(k < p) we let fq =
∑

q′∈Q(k+1) P(q, {⊳}, lift, q′) be the sum of the probabilities

of lift transitions starting from q. When q ∈ Q(p), we let fq = 1 if q ∈ Acc and
fq = 0 otherwise.

For each q ∈ Q(k) (k ≤ p) we construct a PPE Eq =
∑

q′∈Q(k) Eq,q′⊳?fq′

where Eq,q′ is a PPE which computes the sum of the probabilities of runs starting
from state q, ending in state q′ and visiting only states in Q(≤k) =

⊎

ℓ≤kQ
(ℓ).

16

This construction is by induction on k ∈ {0, . . . , p}. Within each level k ≤ p, we
follow usual procedures to translate automata into expressions.

When k < p some pebbles were already dropped hence the PPE Eq will
have free pebbles Free(Eq) ⊆ {1, . . . , p− k} and we encode with an assignment
σ : Free(Eq)→ pos(w) \ {|w|} the positions of the dropped pebbles. We denote
by πσ ∈ pos(w)p−k the corresponding stack recording the positions of pebbles.

For q ∈ Q(k) and X ⊆ Q(k) we let fXq =

{

⊳?fq if q ∈ X

1 otherwise.

For q ∈ Q(k) and X ⊆ Q(k), we construct by induction on X a PPE

EXq = ⊳?fq +
∑

q′∈Q(k)

EXq,q′f
X
q′

where EXq,q′ is a PPE such that JEXq,q′K(w, σ, i, j) is the sum of the probabilities
of nonempty runs starting from configuration (q, i, πσ), ending in configuration
(q′, j, πσ) and using only intermediary states in X ∪Q(≤k−1).

The base of the induction is when k = 0 and X = ∅. For each state q ∈ Q(0)

and type t ∈ Tp, by definition of PPAs we have
∑

(d,q′)∈M×Q P(q, t, d, q′) ≤ 1.

Now, since q ∈ Q(0), drop moves are disallowed. Moreover, we have assumed that
lift moves are only enabled for type t = {⊳}. Hence, when t 6= {⊳}, using rule
(+s) we deduce that

Fq,t =
∑

q′∈Q(0)

P(q, t, stay, q′) + P(q, t,←, q′) · ←+ P(q, t,→, q′) · →

is a PPE. For t = {⊳}, using rule (+s) and the definition of fq we deduce that

Fq,⊳ = fq +
∑

q′∈Q(0)

P(q, {⊳}, stay, q′) + P(q, {⊳},←, q′) · ←

is a PPE. Now, using the deterministic sum (+ϕ) we obtain the PPE

E∅
q =

∑

t∈Tp

t? · Fq,t = ⊳?fq +
∑

q′∈Q(0)

E∅
q,q′f

∅
q′

where the last equality is obtained using ACD-rules and f∅q′ = 1.

We turn now to the induction step on X. This step is the same for all layers
k ≤ p. So fix k ≤ p, X ⊆ Q(k) and r ∈ Q(k) \X. By induction, we assume that

PPEs EXq have been constructed for all q ∈ Q(k). We construct E
X∪{r}
q .

We have EXr = ⊳?fr +
∑

q′∈Q(k) EXr,q′f
X
q′ ∈ PPE and fXr = 1 since r /∈ X.

With rule (∗) we get

GXr =
(

EXr,r

)∗

·
(

⊳?fr +
∑

q′∈Q(k)\{r}

EXr,q′f
X
q′

)

∈ PPE .

17

Now, EXq = ⊳?fq +
∑

q′∈Q(k) EXq,q′f
X
q′ ∈ PPE and fXr = 1. Using rule (·) we can

plug GXr after EXq,r and we obtain the PPE

EX∪{r}
q = ⊳?fq + EXq,r ·G

X
r +

∑

q′∈Q(k)\{r}

EXq,q′f
X
q′

= ⊳?fq + EXq,r
(

EXr,r
)∗
⊳?fr +

∑

q′∈Q(k)\{r}

(

EXq,q′ + EXq,r
(

EXr,r
)∗
EXr,q′

)

fXq′

= ⊳?fq +
∑

q′∈Q(k)

E
X∪{r}
q,q′ f

X∪{r}
q′

where the last equality uses f
X∪{r}
r = ⊳?fr and f

X∪{r}
q′ = fXq′ if q′ ∈ Q(k) \ {r}.

It remains to deal with X = ∅ and 0 < k ≤ p. Compared to the case X = ∅
and k = 0 we also have to consider drop transitions which lead to the lower layer.
The next pebble to be dropped is x = p− k + 1. By induction, we have already

constructed expressions EQ
(k−1)

r for all states r ∈ Q(k−1) of the lower layer. To

lighten the notation, for r, r′ ∈ Q(k−1), we let Er = EQ
(k−1)

r and Er,r′ = EQ
(k−1)

r,r′ .
Using distributivity Dx! we get the PPE

x!Er = x!(⊳?fr) +
∑

r′∈Q(k−1)

x!(Er,r′⊳?fr′) .

The first term is equivalent to 0 since we consider only nonempty words. Using
the concatenation rule (·) we plug after each term x!(Er,r′⊳?fr′) the PPE 1 =
∑

q′∈Q(k)
P(r′,{⊳},lift,q′)

fr′
and we obtain using ACD-rules the PPE

Gr =
∑

q′∈Q(k)

∑

r′∈Q(k−1)

x!(Er,r′⊳?fr′)
P(r′, {⊳}, lift, q′)

fr′
.

Note that Free(Gr) ⊆ {1, . . . , p− k}. Now, we proceed as before. For each state
q ∈ Q(k) and type t ∈ Tp−k we have

∑

(d,q′)∈M×Q P(q, t, d, q′) ≤ 1. Hence, when

t 6= {⊳}, using rule (+s) we deduce that

Fq,t =
∑

q′∈Q(k)

P(q, t, stay, q′) + P(q, t,←, q′)←+ P(q, t,→, q′)→+
∑

r∈Q(k−1)

P(q, t, drop, r)Gr

=
∑

q′∈Q(k)

(

P(q, t, stay, q′) + P(q, t,←, q′)←+ P(q, t,→, q′)→

+
∑

r,r′∈Q(k−1)

P(q, t, drop, r)x!(Er,r′⊳?fr′)
P(r′, {⊳}, lift, q′)

fr′

)

is a PPE. For t = {⊳} the drop transition is not possible, hence we get as before
the PPE

Fq,⊳ = fq +
∑

q′∈Q(k)

P(q, {⊳}, stay, q′) + P(q, {⊳},←, q′)← .

18

Now, using the deterministic sum (+ϕ) we obain the PPE

E∅
q =

∑

t∈Tp−k

t? · Fq,t = ⊳?fq +
∑

q′∈Q(k)

E∅
q,q′f

∅
q′

where the last equality is obtained using ACD-rules and f∅q′ = 1. Note that

Free(E∅
q) ⊆ {1, . . . , p− k}.

For 0 < k ≤ p, the induction on X goes exactly as explained above. Again, for

q, q′ ∈ Q(k), we let Eq = EQ
(k)

q and Eq,q′ = EQ
(k)

q,q′ . Therefore, for all k ≤ p and

q ∈ Q(k) we have constructed a PPE Eq =
∑

q′∈Q(k) Eq,q′⊳?fq′ as announced at
the beginning of the proof.

Finally, the PPE Eι is equivalent to the automaton A: for each word w, the
value JEιK(w, 0, |w|) is the sum of the probabilities of all accepting runs starting
from the initial configuration (ι, 0, ε) and ending in a final configuration (q′, |w|, ε)
with q′ ∈ Acc.

19

	A Probabilistic Kleene Theorem
	Introduction
	Probabilistic Automata and Expressions
	Probabilistic Automata
	Probabilistic Expressions

	Adding Two-Way Navigation and Pebbles
	Probabilistic Pebble Automata
	Probabilistic Pebble Expressions

	The Probabilistic Kleene Theorem
	Conclusion

