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a b s t r a c t

We consider the gravity-driven motion of a heavy two-dimensional rigid body freely

falling in a viscous fluid. We introduce a quasi-static linear model of the forces and

torques induced by the possible changes in the body velocity, or by the occurrence of a

nonzero incidence angle or a spanwise rotation of the body. The coefficients involved in

this model are accurately computed over a full range of Reynolds number by

numerically resolving the Navier–Stokes equations, considering three elementary

situations where the motion of the body is prescribed. The falling body is found to

exhibit three distinct eigenmodes which are always damped in the case of a thin plate

with uniform mass loading or a circular cylinder, but may be amplified for other

geometries, such as in the case of a square cylinder.

1. Introduction

The fall of tree leaves, seeds or paper cards in air has ever been a subject of great fascination. Depending on their

geometry and mass but also on the initial conditions of their release, such bodies can follow a straight vertical path, flutter

about the vertical or tumble along an inclined path, a motion also known as autorotation (Lugt, 1983). The rational study of

these complex motions in the framework of fluid dynamics principles probably goes back to Maxwell (1854) and involved

other great names such as Helmholtz, Kelvin and Kirchhoff (see Lamb, 1945). Since then, the description, understanding

and prediction of these various types of path and of the transitions between them has remained a subject of constant

interest. Most of the modern experimental studies on this subject have been carried out with three-dimensional bodies

such as disks of various thicknesses (Willmarth et al., 1964; Field et al., 1997; Fernandes et al., 2007) and spheres

(Horowitz and Williamson, 2010). Nevertheless some experiments specifically focused on nearly two-dimensional bodies

such as plastic or metal strips (Belmonte et al., 1998; Mahadevan et al., 1999; Andersen et al., 2005b). As they significantly

reduce the computational cost, such two-dimensional geometries have also been recently the subject of several numerical

investigations, mostly at high Reynolds number (Jones and Shelley, 2005; Andersen et al., 2005a; Jin and Xu, 2008;

Kolomenskiy and Schneider, 2010). In parallel, a series of analytical two-dimensional models based on the force/torque

balance on the body emerged (Tanabe and Kaneko, 1994; Mahadevan, 1996; Belmonte et al., 1998; Pesavento and Wang,

2004; Andersen et al., 2005a). These models were mostly designed to predict path transitions in highly nonlinear regimes,

especially that between fluttering and tumbling. This is why they mostly differ in the way they take into account the

nonlinearities involved in the aerodynamic drag, lift and torque. The very first transition between the vertical path and the

fluttering regime has received less attention and corresponding models only start to emerge (Ern et al., 2009). Although
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the typical flow Reynolds number in the latter case is significantly lower than those associated with subsequent

transitions, the thick boundary layer and wake that interact with the body make the modelling of the fluid force and

torque pretty difficult. In particular, high-Reynolds-number concepts and results from potential flow theory hardly apply.

The present investigation is a step forward in the understanding of this first transition and aims at providing a rational

approach to the coupled fluid–body stability problem. For this purpose we derive in Section 2 a general linear model of

forces and torques induced by small-amplitude body motions to which we apply classical methods of linear stability

theory. In Section 3 we show that the six coefficients entering the model can be accurately determined by numerically

resolving the Navier–Stokes equations to obtain the flow field around the body with suitable prescribed conditions at

infinity. We present the results of the complete approach for various body shapes in Section 4. The results of the model are

compared in Section 5 with those obtained with a more general global stability approach developed in a companion paper.

Section 6 summarizes the results and discuss their implications regarding the nature of the transition to fluttering.

2. Quasi-static model : description and discussion

2.1. Notations and definitions

In what follows we consider a 2D body with a mass m (actually a mass per unit span), a moment of inertia I¼cIm d2 and

a volume (actually a cross sectional area) V. The coefficient cI depends upon the geometry and mass repartition of the

body.1

The body is bounded by a contour S and the unit normal n points into the fluid. As shown in Fig. 1(a), we introduce

three reference frames. The first of these, (O, x0, y0, z), is associated with the laboratory reference frame (assumed inertial)

with ÿx0 denoting the direction of gravity g. The reference frame (G, xb, yb, z) is attached to the body, assuming that the

direction xb defines a symmetry plane. Finally (G, xa, ya, z) denotes the aerodynamic (or Frenet) reference frame defined so

that xa is aligned with the instantaneous velocity of the body U, i.e. U¼ Uxa.

In what follows y denotes the inclination of the body with respect to the vertical (i.e. the angle between x0 and xb), a
the angle of incidence between the axis of the body and its trajectory (i.e. that between xa and xb), and g is the slope of the

trajectory with respect to the vertical. These angles obey the relation y¼ aþg. Finally, the rotation of the body with

respect to the inertial reference frame is X¼oz, with o¼ _y.

The conventions used here strongly resemble those employed in flight mechanics (e.g. McCormick, 1995). However,

there is a few significant differences. First, the slope g is defined with respect to the vertical direction while in the

aeronautical context it generally refers to the horizontal direction which is assumed to be the normal flight condition.

Second, when considering a slender body, a becomes the angle between the minor axis and the velocity, so that a zero

incidence means that the body major axis is perpendicular to the flow while for a wing, zero incidence generally means

that the chord is aligned with the flow.

The body motion is governed by Newton’s equations:

m
dU

dt
¼ ðmÿrfVÞgþF, ð1Þ

I _o ¼M: ð2Þ

The terms on the right-hand side are the buoyancy-corrected gravity and the aerodynamic force and torque whose

mathematical expression as function of the flow parameters will be discussed later. When expressed in the aerodynamic

axes, the acceleration and the aerodynamic force take the form

dU

dt
¼ _UxaþU _gya; F¼ÿDxaÿLya, ð3Þ

where D and L are by definition the drag and lift.

Following the classical convention in aerodynamics, we introduce the drag, lift and torque coefficient Cd,Cl and Cm
so that

D¼ 1=2rfCddU
2
; L¼ 1=2rfCldU

2
; M¼ 1=4rfCmd

2U2,

where d is the body diameter and rf the density of the fluid.

Note that we did not split the fluid force and torque into added-mass (i.e. irrotational) and vortical contributions, so

that both series of effects are in principle contained in the coefficients we just introduced. Nevertheless, since we focus on

the ‘‘heavy’’ limit where accelerations are assumed small added-mass effects are expected to be negligibly small in the

present context. The situation would be dramatically different if we were considering ‘‘light’’ bodies, especially rising gas

bubbles. In such a case, the generalized Kirchhoff equations where added-mass contributions are made explicit would

provide a much better starting point (Ern et al., 2009).

1 Plate with uniform loading cI ¼ 1/12; with elliptic loading cI ¼ 1/16; loaded at both extremities cI ¼ 1/4. Square cylinder: cI ¼ 1/6; circular

cylinder: cI ¼ 1/8.



2.2. The base solution: steady vertical fall

As the body is assumed to exhibit a geometrical symmetry, the equations of motion obviously admit a solution

corresponding to a steady vertical fall with zero incidence. This situation corresponds to U¼U0xa ¼ÿU0xb ¼ÿU0x0. In this

case the force balance reduces to

D0 ¼ ðmÿrVÞg, ð4Þ

where D0 is the steady drag corresponding to the velocity U0. The above relation can also be made nondimensional in the

form

2Ar2 ¼ Re2CdðReÞ, ð5Þ

where Ar¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm�ÿV=d2Þgd
3

q

=n is the so-called Archimedes number, Re¼U0d=n is the Reynolds number and m� ¼m=rfd
2

expresses the body-to-fluid mass ratio.

2.3. Small-amplitude deviations around the base solution: the quasi-static model

We now consider small-amplitude deviations around the mean vertical path described above. We assume the angles

a,y and g to be small, and consider that the velocity of the body is U ¼ (U0 þ u) xa with u5U0.

To close the model, we need to express the drag, lift, and torque in terms of the unknown u,g,a,o. Our line of reasoning

here is to model the forces and the torque with quasi-static expressions obtained by considering elementary deviations

from the equilibrium state. For this purpose it is appropriate to remark that when the velocity U of the body is constant,

the forces exerted on it are equivalent to those exerted on a fixed body placed within a uniform stream Ui ¼ ÿU.

We consider three elementary situations. The first of these (Fig. 2a) corresponds to the case where the body velocity is

increased by a small amount u with respect to the equilibrium value U0, while the body remains at zero incidence. In this

case, one expects the drag to increase by an extra quantity D0 �D,uu with D,u ¼ @D=@U. The second elementary situation

(Fig. 2b) corresponds to that where the body is held at a nonzero incidence in an incoming flow U0. In that case, a lift force

and a torque, both proportional to a, are expected to occur. Finally the third situation (Fig. 2c) corresponds to the case

where the body slowly rotates at a steady rate o within the flow. Here again a lift and a torque, both proportionnal to o,

g
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Fig. 1. Schematic view of the problem and notations. (a) the three system of axes; (b) projection of the force and velocity onto the aerodynamical and

body’s system of axes.
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Fig. 2. The three elementary situations considered for computing the six coefficients of the model. (a) D0 and D,u; (b) Cl,a and M,a; (c) Cl,o and M,o .



are expected to occur. We thus introduce the following force/torque linear model

D¼D0þD,uu, L¼ L,aaþL,oo, M¼M,aaþM,oo: ð6Þ

Inserting these expressions into (1) and (2) yields a set of four linear differential equations for the unknowns ðu,a,g,oÞ,

namely

m _u ¼ÿD,uu, ð7Þ

mU0 _g ¼ÿD0gÿL,aaÿL,oo, ð8Þ

I _o ¼M,aaþM,oo ð9Þ

o¼ _aþ _g ð ¼ _yÞ: ð10Þ

It may be noticed that these equations share strong similarities with those used in flight mechanics textbooks when

considering the dynamical stability of an airplane in the longitudinal plane (e.g. McCormick, 1995). An important

difference, however, is that in our case the first equation and the other three are uncoupled, while in flight dynamics all

four equations are fully coupled.

2.4. Discussion

The model contains six coefficients that need to be fitted (including the mean drag D0). In Section 3, we shall show how

these coefficients can be computed accurately from the Navier–Stokes equations considering ‘‘quasi-static’’ body motions.

Prior to this, a few comments about these coefficients are in order. The term D,u is the so-called ‘‘marginal drag’’ which

measures the drag increase due to an increase in the body velocity. This coefficient is obviously positive. In the Stokes

limit, when the drag is proportional to the velocity, one has D,u ¼ D0/U0; on the other hand, in the high-Reynolds number

case, when the drag increases quadratically with the velocity, one has D,u¼2D0/U0. In the general case

D0=U0oD,uo2D0=U0.

The coefficient L,a expresses the lift force generated by a constant incidence angle and is central in the aerodynamical

context. We anticipate that La40, the tilting of the body making pressure forces redirect in the ya direction, at least for

thin bodies. The coefficient M,a is associated with the torque exerted at the body geometrical center in presence of a

nonzero incidence. In the present context the coefficient M,a will turn out to be negative, indicating that the torque has a

stabilizing effect. This contrasts with the case of slender wings where this torque is known to be destabilizing.

The coefficient L,o corresponds to the lift exerted on a body rotating at steady rate, i.e. to the well-known Magnus

effect. Inviscid theory predicts L,oo0, so that a body rotating in the positive direction feels a lift force in the ÿya direction.

The inviscid theory is also of little use here, but the property L,oo0 is still found to hold. Finally, the coefficient M,o

corresponds to the torque exerted on a body rotating at steady rate. Such a torque is due to viscous friction and can be a

priori expected to be negative in most situations.

2.5. Eigenmode solutions in the large-mass limit

We now seek the solutions of the model in eigenmode form and first consider the equation for u which obviously

admits an exponentially decaying solution u¼ ûelBTV t , where the eigenvalue is

lBTV ¼ÿ
1

m
D,u: ð11Þ

In nondimensional form , this eigenvalue may be expressed as

l�BTV ¼
d

U0
l¼ÿ

Cd�

2m�
with Cd� ¼ 2CdþRe

@Cd

@Re
: ð12Þ

The physical significance of this mode is clear: if the body velocity departs from the equilibrium value U0, the variation of

the drag tends to bring it back to U0. This is why we call this mode the ‘‘back-to-terminal-velocity’’ mode (BTV).

We now consider the other three coupled degrees of freedom. Again we look for eigenmode solutions in the form

½a,g,o� ¼ ½â,ĝ,ô�elt . Introducing these expressions in the model yields a 3� 3 system which has nontrivial solutions only if

its determinant is zero. This leads to the characteristic equation

mIU0l
3
þ½IðD0ÿL,aÞÿmU0M,o�l

2
þ½ðL,aÿD0ÞM,oÿðL,oþmU0ÞM,a�lÿD0M,a ¼ 0: ð13Þ

The next step consists in making (13) dimensionless, considering the limit m*b1, and expanding the three roots in

powers of mn. It is found that one of these roots is real and negative and reads at leading order

lBV ¼ÿ
D0

mU0
þOðmÿ2Þ or in dimensionless form l�BV ¼ÿ

Cd

2
m�ÿ1þOðm�ÿ2Þ ð14Þ

It is noteworthy that this eigenvalue can be retrieved directly from (8) by neglecting the terms proportional to L,a and L,o.

Indeed, performing a more rigorous asymptotic analysis of this solution confirms that, compared to the ĝ component, the â



and ô components are negligible at leading order. This solution thus corresponds to a motion in which the trajectory

comes back to the vertical while the body axis remains aligned with its path. We call this mode ‘‘Back-to-Vertical’’ (BV).

If M,aa0, the two remaining eigenvalues are complex conjugates, indicating an oscillating mode with low frequency

(thus noted LF), and have to be expanded in powers of mÿ1/2. The first two terms provide the leading contribution to the

imaginary and real parts, respectively, and read

lLF ¼ 7

ffiffiffiffiffiffiffiffi

M,a

I

r

þ
L,a

2mU0
þ

M,o

2I

� �

þOðmÿ3=2Þ ð15Þ

or in dimensionless form

l
�
LF ¼ 7 i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jCm,aj=4CI

p

m�ÿ1=2þðCl,a=4þCm,o=8CIÞm
�ÿ1þOðm�ÿ3=2Þ: ð16Þ

Again the leading-order expression of this eigenvalue can be retrieved directly from (9) by neglecting rotation effects

and assuming that a� y (hence g� 0). Therefore this mode corresponds to an oscillation of the body inclination along a

nearly vertical path.

A particular case that requires a specific treatment is that of the circular cylinder. In this case, the incidence angle a is

not a relevant parameter, as the steady problem is invariant by any rotation of angle a, implying that L,a and M,a are zero.

Considering the characteristic polynomial, it turns out that one of the eigenvalues is zero and is associated with the

invariance with respect to a. The other two eigenvalues are real and negative. One of them is still given at leading order by

(14). The last one is

lSP ¼
M,o

I
þOðmÿ2Þ or in dimensionless form l�SP ¼

Cm,o

4CI
m�ÿ1þOðm�ÿ2Þ

This eigenvalue corresponds to a ‘‘spinning mode’’ with the cylinder spinning about its axis at a rotation rate o which is

slowly decaying owing to viscous friction.

3. Computation of the coefficients

We now turn to the computation of the coefficients D0,D,u,L,a,L,o,M,a and M,o as function of the fluid flow around

the body.

Let [V, P] be the velocity and pressure fields in this flow. When expressed in the body reference frame which both

translates and rotates with respect to the Galilean reference frame, the Navier–Stokes equations take the form

= � V¼ 0, ð17Þ

@V

@t
þaf ¼ÿðV �=ÞVÿ

1

rf

=Pþn=2
V ð18Þ

with

af ¼
dU

dt
þX4Uþ

dX

dt
4rþX4ðX4rÞþ2X4V

� �

:

where the first two terms in af correspond to the acceleration of the body center of inertia expressed in the rotating axes

while the other three terms correspond to the so-called Euler entrainment acceleration, centrifugal acceleration and

Coriolis acceleration, respectively.

The relative velocity is zero on the body surface while the absolute velocity vanishes at infinity, so that

VþðUþX4rÞ ¼ 0 as jrj-1 ð19Þ

V¼ 0 on S: ð20Þ

The force and torque exerted on the body are projected onto the body axes in the form

Fx ¼

Z

S

R � n dS

� �

� xb, Fy ¼

Z

S

R � n dS

� �

� yb, M¼

Z

S

r4ðR � nÞ dS

� �

� z, ð21Þ

where R¼ÿPIdþrf nð=Vþ t=VÞ denotes the stress tensor (Id being the identity tensor).

As long as the body moves at constant speed U and does not rotate, the problem (18) and (19) is equivalent to that of

the flow past a fixed body placed in the uniform stream of velocity Ui¼ÿU. We first make use of this property by

considering the situation where the body falls vertically at zero incidence with the mean velocity U0. The corresponding

velocity and pressure fields, say V0(x,y) and P0(x,y), are the solution of the above Navier–Stokes problem with the left-hand

side of (18) set to zero and the boundary condition at infinity V0-Ui ¼U0xb. The mean drag D0 is deduced from this

solution through the first of (21).



To compute the other coefficients of the model, we consider three elementary situations, sketched in Fig. 2, which are

all small deviations from this reference state. In all three cases the flow field [V,P] is expanded in the form

½V,P� ¼ ½V0ðx,yÞ,P0ðx,yÞ�þ½vðx,y,tÞ,pðx,y,tÞ�,

where perturbations are assumed of small amplitude compared to the base flow. The flow [v(x,y,t),p(x,y,t)] is governed by

the linearized Navier–Stokes equations

= � v¼ 0, ð22Þ

@tðvþuþoz4rÞþoz4ð2V0þU0Þ ¼ÿðv �=ÞV0ÿðV0 �=Þvÿ
1

rf

=pþn=2
v ð23Þ

The first elementary situation (Fig. 2a) corresponds to the case where the velocity of the body slightly differs from the

equilibrium velocity: Ui ¼ (U0þu)xb with u5U0. In this case, the flow disturbance can be expected to be steady and

proportional to the velocity perturbation u: say, [v,p]¼u[v(u) ,p(u)]. Clearly, the flow field [v(u),p(u)] is the solution of the

linearized system (22) and (23) where the time derivative and rotation terms are dropped, and the boundary condition at

infinity is selected as v(u)¼xb. Once this problem is solved, the marginal drag D,u is computed by injecting the stress tensor

corresponding to [v(u),p(u)] into the first of (21).

The second elementary situation (Fig. 2b) corresponds to the case where the body has a small, constant incidence a
with respect to its path. In the body axes, this is equivalent to considering an incident flow Ui ¼ÿU0xa �U0xbÿU0ayb. The
corresponding flow correction can be expected linear with respect to a, say: ½v,p� ¼ a½vðaÞ,pðaÞ�. Now, the flow field ½vðaÞ,pðaÞ�

is the solution of the linearized Navier Stokes Eqs. (22) and (23) where the time derivative and rotation terms are still

dropped and the boundary condition at infinity is selected as vðaÞ ¼ÿyb. Once this problem is solved, the corresponding

torque computed through the last of (21) directly provides the coefficient M,a of the model. The corresponding lateral

force, say FðaÞy , is obtained through the second of (21). The lift force is deduced from the axial and lateral forces through

L¼ FycosaÿFxsina; at the order a of our expansion this yields L,a ¼ FðaÞy ÿD0.

The final elementary situation to consider (Fig. 2c) corresponds to the case where the body is slowly rotating at a steady

rate o51, within a uniform flow of constant direction. Thus, the incidence angle is increasing in time like a¼ot. This

situation is a bit more subtle, as the corresponding flow is not a steady solution of the linearized equations anymore.

However, the solution may be expanded in the form ½v,p� ¼ot½vðaÞ,pðaÞ�þo½vðoÞ,pðoÞ�, where ½vðaÞ,pðaÞ� is the already

computed flow structure corresponding to constant incidence, and ½vðoÞ,pðoÞ� is an additional contribution accounting for

rotation. Obviously this approximation is only valid at short time. Injecting this ansatz into (23) yields a linear system

which allows computation of ½vðoÞ,pðoÞ�. The latter is then used to compute the parameters L,o and M,o of the model

through the last two of (21). Note that in the case of a circular cylinder, an alternative method is to consider the steady

flow about the body in the inertial frame. Both methods have been used and obviously provide similar results.

The numerical method used to compute the base flow and its corrections in the three elementary situations described

above is essentially similar to that employed by Assemat et al. (submitted). Briefly, the spatial discretization makes use of the

finite element method as implemented in the FreeFemþþ software. An unstructured body-fitted grid covering a large fluid

domain is employed. The boundary conditions at infinity are imposed at the inlet and lateral boundary of the domain, while a

Fig. 3. Structure of the flow, illustrated by iso-contours of the vorticity, around a flat plate at Re¼30: base flow (a); correction due to a variation of

velocity v(u) (b); correction due to a nonzero incidence vðaÞ; correction due to a nonzero rotation vðxÞ (d).



weaker condition requiring only the vanishing of the normal derivatives of the velocity components is imposed on the

downstream boundary to allow the wake to develop freely. Thanks to the geometrical symmetry of the bodies considered here,

it is sufficient to solve the flow field within half-domain, provided suitable symmetry conditions are imposed on the symmetry

axis. The base flow, [V0,P0] is computed using a Newton iteration method to reach the solution of the steady nonlinear Navier–

Stokes equations, while each of the three elementary corrections is directly computed as a solution of the corresponding linear

problem. All inversions of linear systems are carried out using the library UMFPACK implemented in the software FreeFemþþ.

As an illustration, Fig. 3 displays the vorticity field in the base flow and its corrections for the three elementary problems

considered above in the case of a thin plate with Re¼30. Because of the obvious symmetry about the vertical direction, only

half of the domain is represented. The base flow (3a) exhibits a strong shear layer (with negative vorticity in the y40 half-

plane), originating from the edge of the plate. The u-correction (3b) has the same global structure, indicating that increasing the

body velocity mainly results in an increase of the base vorticity without any qualitative change in its spatial distribution. The

correction due to incidence (3c) displays a banded structure with negative (dark) values along the axis and positive (clear)

values on each side of the wake. When adding this perturbation to the base-flow, the effect is to shift the shear layer of negative

vorticity originating from the edge at x¼0, y¼0.5 towards the yo0 direction. Similarly, the shear layer of positive vorticity

originating from the edge at x¼0, y¼ÿ0.5 (not shown in Fig. 3a) is also shifted towards the y40 direction. The overall result

can be interpreted as a wake developing in the direction of the incoming flow, not aligned with the symmetry plane of the

body. The correction due to rotation (3d) mainly affects the vorticity distribution close to the body.

4. Results for various body shapes

We now present and comment on the values of the coefficients involved in the model and the computed eigenvalues.

We consider three basic geometries, namely a thin plate, a rod with square section and a cylinder with circular section.
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coefficient Cm,a (thin lines) due to incidence; (c) Lift coefficient Cl,o (thick lines) and torque coefficient Cm,o (thin lines) due to rotation; (d) Coefficient

giving the real part of the eigenvalue l�LF of the low-frequency quasi-static mode (here the curve identified with the symbol � corresponds to a thin plate

loaded at both extremities).



Fig. 4(a) shows the drag coefficients Cd,0 and marginal drag coefficients C*
d ¼ 2Cd,0þRe@Cd=@Re. As expected in this

intermediate range of Re where the drag evolves like Um with 1omo2, Cd* lies between Cd0 and 2Cd0.

Fig. 4(b) displays the results for the lift and torque coefficients due to incidence, i.e. Cl,a and Cm,a as function of the

Reynolds number for Reo100. While these coefficients are obviously zero for a circular cylinder, the torque coefficient

Cm,a is negative for the other two geometries, indicating that the torque acts to tilt the body back to normal incidence. In

the vocabulary of flight dynamics, this means that all bodies are statically stable with respect to a variation of the angle of

incidence. Note that potential flow theory predicts Cm,a ¼ 4ðmxxÿmyyÞ=rfd
2 wheremxx and myy are the added-masses of the

body along its principal directions. This quantity is zero in the case of a square cylinder and reaches a value of 4p in the

limit of an infinitely thin plate. Present low-to-moderate Re results obtained by considering a static incidence significantly

differ from this prediction. In the case of a thin plate, the lift coefficient Cl,a is positive whatever the Reynolds number. For

this particular shape, the positive lift is mainly due to the pressure forces normal to the plate which provide a force

component perpendicular to the body axis. On the other hand, it can be noticed that in the case of a square rod, the lift-

due-to-incidence is negative for Rer68 and positive for higher Reynolds numbers. This point was already noticed by

Sohankar et al. (1998) who argued that the pressure and viscous shear contributions to the lift have opposite signs for this

geometry.

Fig. 4(c) displays the values of the lift and torque coefficients due to rotation, i.e. Cl,o and Cm,o. The lift coefficient Cl,o is

negative whatever the body shape. This is consistent with the classical explanation of the Magnus effect according to

which a positive body rotation accelerates (resp. decelerates) the flow and hence decreases (resp. increases) the pressure

on its lower (resp. upper) part, thus resulting in a net downward force. Again, potential flow theory predicts Cm,o ¼ 4p for a

circular cylinder, which is far from the values found within the range of Reynolds numbers considered here. The torque

coefficient Cm,o is always negative in the case of a thin plate, indicating that viscous friction opposes the rotation. On the

other hand, this contribution is found to be positive in the case of a square cylinder for ReZ44.

Finally, the most important prediction of the model is synthesized in Fig. 4(d) which displays the normalized real part

of the eigenvalue lLF of the low-frequency oscillating mode for the case of a thin plate (with two different distributions of

mass) and a square rod. In the case of a plate with uniform mass loading, the model predicts that the system is stable

whatever the Reynolds number in the range considered. Hence it turns out that the present model is unable to explain how

fluttering, which is commonly observed in experiments involving heavy plates, could emerge from the rectilinear motion

through a Hopf bifurcation. Implications of this result will be discussed in Section 6. As indicated in (16), the real part of

the eigenvalue contains two terms: the lift-due-to-incidence, which is destabilizing, and the torque-due-to-rotation, which

is stabilizing. The overall negative sign indicates that the second term dominates for a thin plate with a uniform loading. In

contrast, a different mass loading may modify this balance. As a matter of fact, in the extreme case where the mass is

entirely located at the tips of the plate (which corresponds to cI ¼ 1/4), the amplification rate crosses zero at Re� 12 and

remains weakly positive beyond this value (this situation is indicated with diamonds in Fig. 4(d)).

The case of a square rod with uniform mass loading yields very different results. Then the amplification rate crosses

zero for Re� 48 and reaches significant positive values for higher Re. It is noteworthy that in this case, both terms involved

in the amplification rate change sign as the Reynolds number is increased. Hence, at the threshold value Re� 48, the lift-

due-to-incidence is stabilizing while the torque-due-to-rotation is destabilizing.

5. Comparison with results of a global stability study

In a companion paper (Assemat et al., submitted), we carry out a global stability analysis of the coupled fluid/body

system. Here we compare the results obtained through this more general approach with the predictions of the present

model (see Table 1). For the purpose of validation of the model, we consider the above three geometries with a

Table 1

Comparison of eigenvalues obtained with the present model with those provided by the global stability code of Assemat et al. (submitted) for various

bodies in the case m*¼1000, Re¼50.

Body shape Mode Eigenvalue Large-m* prediction

Circular cylinder BTV ÿ0.001121 ÿ0.001125

BV ÿ0.0006912 ÿ0.0006986

Spin ÿ0.0006615 ÿ0.0006575

VK 0.01422 70.7437i –

Plate (uniform loading) BTV ÿ0.001368 ÿ0.001382

BV ÿ0.0008135 ÿ0.0008129

LF ÿ0.00061670.03984i ÿ0.00061370.03983i

VK 0.081770.5846i –

Square rod BTV ÿ0.001205 ÿ0.001281

BV ÿ0.0007906 ÿ0.0007897

LF 0.00004570.03003i 0.00004770.03009i

VK 0.0193170.6727i –



dimensionless mass m*¼1000 at the single Reynolds number Re¼50. Comparisons over a wider range of Re and m* are

presented in Assemat et al. (submitted). Table 1 shows that all the eigenvalues predicted by the global stability approach

are captured by the present model with a very good accuracy.

In addition, the global approach reveals the existence of a pair of unstable complex eigenvalues, with imaginary parts

much larger than those associated with the LF quasi-static mode. This pair of eigenvalues actually corresponds to the well-

known von Kármán (VK) vortex shedding mode which is unstable for Re¼50 for all three geometries considered here. In

the case of very heavy bodies, we expect that this von Kármán mode has almost no effect on the path of the body, and so

manifests itself in the same way as in the case of fixed bodies embedded in a uniform flow (these expectations are indeed

confirmed in Assemat et al., submitted).

6. Summary and discussion

The goal of this study was to investigate the motion of two-dimensional bodies falling freely under the effect of gravity

within a viscous fluid, in order to get new insight on the onset of the commonly observed fluttering motion. By restricting

ourselves to cases where deviations with respect to the vertical path are small, we derived a linear system of four coupled

differential equations that govern the velocity disturbance (with amplitude u and direction g), the body inclination y and

rotation rate o, respectively. The forces and the torque acting on the body were modelled through a quasi-static approach

by considering elementary situations in which the body falls with a fixed orientation, or rotates at a very slow rate. This

modelling approach is justified as far as the trajectory evolves on a long time scale with respect to that associated with the

flow, a condition fulfilled in the case of very heavy bodies. In addition to two eigenmodes which are always damped, this

approach reveals the existence of a low-frequency oscillating eigenmode which could be related to the fluttering motions

observed at larger values of the Reynolds number. However, for slender bodies such as a thin plate with a uniform mass

loading, this mode is found to be linearly stable throughout the range of Reynolds numbers we considered.

These findings indicate that, contrary to our initial expectations, the onset of fluttering cannot be explained as the result

of a supercritical Hopf bifurcation from the steady vertical path, at least in the high-mass limit in which our model is

justified. A possible explanation to this puzzle could be that, as soon as the von Kármán vortex shedding sets in, the base

flow around which our expansion is not observed any more. Thus, fluttering could actually occur through a secondary Hopf

bifurcation from a quasi-vertical path in which vortex shedding is already present and has reached its saturation

amplitude. This hypothesis could be tested by repeating the present analysis with a base flow taken as the mean flow,

obtained by a time average over one period of vortex shedding, rather than with the unstable base flow as considered here

(Sipp and Lebedev, 2007). Note that for ReZ100 the base flows as considered here become pretty not realistic

(in particular they display a recirculation region much larger than the body diameter, in contradiction with all

observations in this range). This is why we restricted the present analysis to lower Reynolds numbers.

Other hypotheses may be considered. For instance, the bifurcation to the fluttering mode could be strongly subcritical,

thus making any attempt to explain it by considering linear expansions around a vertical path hopeless. Or, the fluttering

motions may be of a different nature compared to the low-frequency oscillation modes evidenced here.

Finally, a positive result of the present study is the prediction of the existence of an unstable low-frequency oscillating

mode for thicker bodies or thin bodies with nonuniform mass distributions. For instance, for a square cylinder, the model

predicts that this low-frequency mode becomes unstable for Re� 48. Interestingly, this threshold value is very close to that

corresponding to the onset of the von Kármán vortex shedding mode. Rich dynamics resulting from the coupling of both

modes can thus be expected.

Direct numerical simulations of the free motion of two-dimensional bodies are in progress in our team, and should soon

provide answers to the questions raised above. Extensions of both the present model and the global stability approach to

the case of three-dimensional, axisymmetric bodies such as disks, cylinders of finite span or bubbles is also in progress.
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