Vlasov on GPU (VOG Project)

Luca Marradi 1 Bedros Afeyan 2 Michel Mehrenberger 3, 4 Nicolas Crouseilles 5, 6 Christophe Steiner 3 Eric Sonnendrücker 7
4 CALVI - Scientific computation and visualization
IRMA - Institut de Recherche Mathématique Avancée, LSIIT - Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection, Inria Nancy - Grand Est, IECL - Institut Élie Cartan de Lorraine
5 IPSO - Invariant Preserving SOlvers
IRMAR - Institut de Recherche Mathématique de Rennes, Inria Rennes – Bretagne Atlantique
Abstract : This work concerns the numerical simulation of the Vlasov-Poisson set of equations using semi- Lagrangian methods on Graphical Processing Units (GPU). To accomplish this goal, modifications to traditional methods had to be implemented. First and foremost, a reformulation of semi-Lagrangian methods is performed, which enables us to rewrite the governing equations as a circulant matrix operating on the vector of unknowns. This product calculation can be performed efficiently using FFT routines. Second, to overcome the limitation of single precision inherent in GPU, a {\delta}f type method is adopted which only needs refinement in specialized areas of phase space but not throughout. Thus, a GPU Vlasov-Poisson solver can indeed perform high precision simulations (since it uses very high order reconstruction methods and a large number of grid points in phase space). We show results for rather academic test cases on Landau damping and also for physically relevant phenomena such as the bump on tail instability and the simulation of Kinetic Electrostatic Electron Nonlinear (KEEN) waves.
Liste complète des métadonnées

Contributeur : Michel Mehrenberger <>
Soumis le : samedi 23 novembre 2013 - 19:33:01
Dernière modification le : mercredi 16 mai 2018 - 11:23:03

Lien texte intégral



Luca Marradi, Bedros Afeyan, Michel Mehrenberger, Nicolas Crouseilles, Christophe Steiner, et al.. Vlasov on GPU (VOG Project). ESAIM: Proceedings, EDP Sciences, 2013, 43, p. 37-58. 〈10.1051/proc/201343003〉. 〈hal-00908498〉



Consultations de la notice