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Abstract - Controlling flame shapes and emissions is a major objective

for all combustion engineers. Considering the complexity of reacting flows,

new optimization methods are required: this paper explores the application

of control theory for partial differential equations to combustion. Both flame

temperature and pollutant levels are optimized in a laminar Bunsen burner

computed with complex chemistry using a recursive semi-deterministic global

optimization algorithm. In order to keep computational time low, the opti-

mization procedure is coupled with mesh adaptation and incomplete gradient

techniques.
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1 Introduction

Control of temperature and species in flames is an important challenge for
industrial and environmental issues. Many studies exist on numerical sim-
ulation of pollutant formation in flames [1, 2, 3, 4, 5]. This paper aims to
apply control theory for PDEs [6] to flames.

We focus on a simple laminar Bunsen flame simulated with detailed chem-
istry [7]. We concentrate on the reduction of the Zeldovich-NO, also called
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thermal NO. This is one of the major NO source in a Bunsen flame. We also
study the control of temperature distribution in flames which is of impor-
tance in combustion engine design. Finally, we pay attention to the control
of flame length at a given fuel rate in the flow. These formulations are alter-
native approaches to consider pollutant control in flames [5] and also have
natural applications in the design of combustion chambers.

As the considered functionals are not necessarily convex, we use a re-
cursive semi-deterministic global optimization algorithm. This algorithm al-
lows to escape from local minima at a lower cost than genetic algorithms
[12, 13, 14].

To keep computational time low we test here if it’s possible to use ap-
proximate state and sensitivity evaluations [8] during optimization. In that
sense, different discretizations are used for the computation of the state and
gradient and an unstructured mesh adaptation strategy is applied to adapt
the mesh to the solution during optimization process [9, 10, 11]. Once the op-
timization is achieved, the final design is a posteriori validated by an accurate
calculation.

Section 2 presents the physical Bunsen flame modeling and the equations
to be minimized. In section 3 and 4, we give a short introduction to the
optimization and incomplete gradient methods used in this paper. Finally
results are presented and interpreted in section 5.

2 Bunsen flame model

We introduce three non dimensional numbers χH2
, χN2

and χO2
, correspond-

ing to the molar fractions in the premixed mixture of species H2, N2 and
O2, linked by χH2

+ χO2
+ χN2

= 1.
The Bunsen flame corresponds to the following oxidation reactions (see

[1] for the details of the governing equations):

2 H2+O2 → 2 H2O

The hydrogen mechanism can be described using nineteen elementary reac-
tions and nine species H2, O2, H, O, OH, HO2, H2O, H2O2, N2. The NO
specie is added to the mechanism in order to simulate the formation of the
Zeldovich-NO.

The domain of study Ω is presented in Figure 1. We would like to reduce
the NO flux of the flame through the section Γ defined at z = 1.5cm.

2.1 Parameters

Optimization control parameters are (see Figure 2):
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• The inflow velocity of the premixed mixture v1 taken as

v1(v1, p1, p2) = v1(1 − exp(
−|r0 − r|

r1

)) + S(p1, p2)

with r0 = 0.2, r1 = 0.05 and S(p1, p2) = p1r
1.2 sin(p2r) sin(r − r0). p1

and p2 are two free parameters designed to control the flow profile (see
below for the definition of the control space).

• The co-flow velocity v2 of the form

v2(v2) = v2(1 − exp(
−|r0 + r3 − r|

r1

)) with r3 = 0.05

• The equivalence ratio: φ =
χH2

2χO2

.

• The dilution factor: α =
χN2

χO2

.

Here r denotes the radial coordinate.
The control space Θ is included in IR6. The vector of control parameters

is x = (v1, p1, p2, v2, φ, α) ∈ Θ = [50, 200]×[−120, 120]×[−50, 50]×[50, 200]×
[4, 10] × [0, 10]. It should be noted that a constraint on the fuel rate in the
flow implies a compatibility relation between p1, p2 and v1.

2.2 Cost functions

In order to reduce the NO flux through Γ and at the same time achieve a
target temperature profile, we consider the following cost function:

J1(x) = γ1

∫

Γ
ρyNO v · n + γ2

∫

Γ
(T − Ttarget)

2 (1)

where ρ is the density, yNO the mass fraction, v the velocity, T the tempera-
ture and Ttarget a target temperature profile. γ1, γ2 are given positive scalars
and n the normal unit vector to Γ.

Our second objective is to reduce the flame length at a given flow rate
using the following cost function:

J2(x) =
∫

r=0
yH2

with γ1

∫

z=0
ρyH2

v · n = const. (2)

yNO, yH2
and T are given by the solution of the axisymmetric Bunsen

laminar flame code described in [7]. This solver uses an extension to chemi-
cally reacting flows of a finite element method. The method uses streamline
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diffusion, least squares stabilization of the pressure gradient, a low-Mach
continuity equation and a shock capturing term designed to control species
mass fraction under-shoots near flame fronts.

Numerical experiences show that functions J1 and J2 are non convex
[11]. We would like therefore to use a low complexity global minimization
algorithm previously applied with success to various nonlinear industrial op-
timization problems [13, 14, 16].

3 Semi-deterministic recursive optimization

method

Many deterministic minimization algorithms, which perform the minimiza-
tion of a function J : Θ → IR, can be seen as discretizations of the following
dynamical system [15, 16] where x denotes the vector of control parameters
belonging to an admissible space Θ. x0 ∈ Θ is the initial condition. ζ is a
fictitious parameter. xζ(ζ) = dx(ζ)

dζ
. M is a local metric transformation and

d a direction in Θ.
{

M(ζ)xζ = −d(x(ζ))
x(ζ = 0) = x0

(3)

For example if d = ∇J , the gradient of J , and M = Id, the identity operator,
we recover the classical steepest descent method while with d = ∇J and
M = ∇2J the Hessian of J , we recover the Newton method [17].

We made the following assumptions [16]: J ∈ C1(Θ, IR) and coercive.
The minimum of J is denoted by Jm. In cases where Jm is unknown, we set
Jm to a lower value (for example Jm = 0 for a non-negative function J) and
look for the best solution for a given complexity and computational effort.
This is the approach adopted here where we set Jm = 0 and we predefine the
effort we would like to make in the optimization algorithm.

Global optimization with system (3) is valid if the following system has
a solution:











M(ζ)xζ(ζ) = −d(x(ζ))
x(0) = x0

J(x(Zx0
)) = Jm with finite Zx0

∈ IR
(4)

This boundary value problem is over-determined (i.e. two conditions and
only one derivative). The previous over-determination is an explanation of
why we should not solve global optimization problems with methods which
are particular discretizations of initial value problem for first order differential

4



equations. We could use variants of classical methods after adding a second
order derivative [15]:











ηxζζ(ζ) + M(ζ)xζ(ζ) = −d(x(ζ)),
x(0) = x0, ẋ(0) = ẋ0,
J(x(Zx0

)) = Jm

(5)

where xζζ(ζ) = d2x(ζ)
dζ2 .

The over determination can be removed, for instance, by considering x0 =
v for (3) (resp. ẋ(0) = v for (5)) as a new variable to be found by the
minimization of h(v) = J(xv(Zv)) − Jm, where xv(Zv) is the solution of (3)
(resp. (5)) found at ζ = Zv starting from v.

The algorithm A1(v1, v2) reads:

• (v1, v2) ∈ Θ × Θ given

• Find v ∈ argminw∈O(v2)h(w) where O(v2) = {t−−→v1v2, t ∈ IR} ∩ Θ

• return v

The line search minimization might fail. For instance, a secant method
degenerates on plateau and critical points. In this case, we add an exter-
nal level to the algorithm A1, keeping v1 unchanged, and looking for v2 by
minimizing a new functional w → h(A1(v1, w)).

This leads to the following two-level algorithm A2(v1, v2):

• (v1, v2) ∈ Θ × Θ given

• Find v′ ∈ argminw∈O(v2)h(A1(v1, w)) where O(v2) = {t−−→v1v2, t ∈ IR}∩Θ

• return v′

The choice of initial conditions in this algorithm contains the non-deterministic
feature of the algorithm. The construction can be pursued building recur-
sively hi(vi

2) = minvi

2
∈Θ hi−1(Ai−1(v1, v

i
2)), with h1(v) = h(v) where i denotes

the external level. Mathematical background for this approach and valida-
tion on academic test cases and solution of nonlinear PDEs are available
[16, 13, 14].

In practice, this algorithm succeeds if the trajectory passes close enough
to the infimum (i.e. in Bε(xm) where ε defines the accuracy in the capture
of the infimum). Hence, in the algorithm above xw(Zw) is replaced by the
best solution found over [0, Zw].
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4 Multi-level sensitivity analysis

Combustion computations are CPU consuming. We gather here some in-
gredients used to reduce the computational complexity of the optimization
problem.

We would like to use incomplete state calculation for sensitivity evalua-
tions together with one accurate state evaluation at each design step. This
means that during optimization we mostly achieve suboptimal sensitivity
analysis and linesearch [8]. This is possible because the semi-deterministic
algorithm above requires less accuracy in the definition of sensitivities [13].

Another ingredient is the use of multi-level nonconformal unstructured
meshes with interpolation operators between the different levels [9] for sen-
sitivity analysis. Hence, gradient computations are made on rather coarse
meshes.

It is impossible to use an uniform fine mesh over the domain to avoid this
difficulty as the cost of the calculation will make the optimization impossible
to achieve. The minimal mesh size needed will produce a uniform fine mesh
of 106 nodes, while the meshes here have between 1000 and 5000 nodes for
the different level of refinements (see Figure 7).

Therefore, to monitor the accuracy of state calculations and the func-
tional, at each iteration of optimization a full unstructured solution-based
mesh adaptation is performed [9, 10, 11] to keep the mesh and solution com-
patible (see section 4.1 for a brief description).

Experience shows that if the flame leaves the area of refined mesh the flow

calculation, and consequently the optimization, will fail.

Using these ingredients, the cost for optimization is only 30 percent of
the overall flame calculations.

4.1 Mesh adaptation

This paragraph is devoted to a short description of the mesh adaptation by
metric control we use with Delaunay meshes.

Given a positive definite matrix M(x) we define a variable metric by
‖x − y‖2 = (x − y)T M(x)(x − y) . M-circles, i.e. circles with respect to the
variable metric, are ellipses in the Euclidean space. A given triangulation is
said to satisfy the M-Delaunay criteria if for all inner edges the quadrangle
made by the its two adjacent triangles are such that the fourth vertex is
outside the M-circle passing by the 3 other vertices.

It can be shown that the Delaunay mesh is the nearest to a quasi-
equilateral mesh, in the sense that the smallest angle in the triangulation
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is maximized. So, if the local metric is Euclidian, the mesh elements are
isotropic. But, anisotropy is introduced by way of the local metric [9].

The definition of the metric is based on the Hessian of the state variables
of the problem. Indeed, for a P 1 Lagrange discretization of a variable u, the
interpolation error is bounded by:

E = |u − Πhu|0 ≤ ch2|D2u|0, (6)

where h is the element size, Πhu the P 1 interpolation of u and D2u its Hessian
matrix. This matrix is symmetric and one generates a Riemanian metric
making this matrix positive definite with eigenvalues bounded by below and
above (this will define the largest and smallest edge in the mesh) [19].

Now, if we generate, by a Delaunay procedure, an equilateral mesh with
edges of length of 1 in the metric M/(cE), the interpolation error E is equi-
distributed over the edges of length ai if

1

cE
aT

i Mai = 1 (7)

5 Numerical results

The optimizations presented here have been performed with the two levels
algorithm A2 presented above. The effect of each level can be seen in Figure
3: a first plateau is reached and the algorithm allows to reach a second
plateau with a global reduction of 90 % of the functional.

Optimization results for functional J1 are presented in Figure 4. We can
see that the target temperature is almost achieved and that the NO flux
is drastically reduced. Initial and final temperature and NO mass fraction
distributions are shown in Figure 5.

Optimization results for functional J2 are shown in Figure 6. We present
the maximum and minimum flame lengths which can be obtained with the
current parameterization. There is a difference of 30 % in flame length be-
tween both configurations. The injection profiles obtained by maximizing and
minimizing the flame length at a given flow rate are quite counter-intuitive
(see Figure 8) as the maximum injection along the symmetry line leads to a
minimum flame length.

The explanation for this result is twofold:
a) The dihydrogen species has a small characteristic Schmidt number of

order 0.2, indicating fast diffusion/mixing with the ambient air [18]. Injecting
the fuel near the centerline produces fast combustion in this region and quick
decrease of the H2 mass fraction,
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b) Peripheric injection of fuel generates larger values of the minimized
flame length which is based on the centerline mass fraction. Indeed, the H2
species is convected before it diffuses towards the centerline of the jet which
is reached further downstream.

Further studies would be required to clarify the effect of the flame length
(2) definition on the optimized injection profile. However, this optimization
clearly shows the correlation between flame length and pollutant production.

6 Conclusions

A new global optimization algorithm based on a recursive search of initial
conditions of classical optimization methods has been applied to the control
of pollution, temperature and flame length in a Bunsen flame simulated with
complex chemistry. This optimization technique combined with an incom-
plete gradient technique allows to perform low-cost global optimization. It
has been shown that controlling the fuel rate in the flow and the main and
co-flow inflow velocity profiles is enough to achieve the targeted tempera-
ture, NO flux and flame shapes. The approach is currently used in order
to improve the design of combustion chambers at Cerfacs for Snecma and
Turbomeca companies accounting for environmental issues.
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Γ

Ω

Figure 1: Bunsen flame: the NO flux is evaluated through Γ = {z = 1.5cm}
into the computational domain Ω.

(a)

(c)(d)
(b)

Figure 2: Illustration of the parameterizations: (a) is the premixed mixture
H2, O2, N2 injected with velocity v1 shown on (b), the co-flow velocity v2

(c) and the flame length (d).
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Figure 3: NO reduction: Functional J1 evolution vs. accumulation of op-
timization iterations. The two-level algorithm allows to escape from local
minima. Each iteration reports the best element found by the core mini-
mization algorithm (the inner level).
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Figure 4: Left : initial (top), target (center) and optimized (bottom) tempera-
ture profiles (K) along z = 1.5cm (x-axis in cm). Right : NO flux (gcm−1s−2)
through z = 1.5cm before (top) and after (bottom) optimization.
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a b a b

Figure 5: Optimized (a) and initial (b) temperature (left) and NO mass
fraction (right) distributions.

a b a b

Figure 6: Temperature contours (left) and NO mass fraction contours (right)
for minimal (a) and maximal (b) flame length. There is a clear correlation
between flame length and NO production.
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Figure 7: A typical solution-based adapted mesh (left) and the coarse level
mesh used for sensitivity evaluation (right).
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Figure 8: The injection velocity (cms−1) profiles are quite counter-intuitive
(x-axis in cm). The continuous profile minimizes the flame length of and the
dash profile maximizes it.
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