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ABSTRACT

A numerical method for model parameters identification is presented for a river model based on
a finite volume discretization of the bidimensional shallow water equations. We use variational
data assimilation to combine optimally physical information from the model and observation
data of the physical system in order to identify the value of model inputs that correspond to
a numerical simulation which is consistent with reality. Two numerical examples demonstrate
the efficiency of the method for the identification of the inlet discharge and the bed elevation.
An application to real data on the Pearl River for the identification of boundary conditions is
presented.

1. INTRODUCTION

The numerical simulation of river flows requires a precise modelling of the underlying
physics. The bidimensional shallow water equations can describe accurately many free
surface hydraulic configurations. However, in order to carry out a realistic simulation
of a particular system, the numerical model requires information related to the physical
domain. Model inputs such as bed elevation, roughness coefficients, initial and boundary
conditions determine the state of the flow and should therefore be determined accurately.
Unfortunately, they are usually not well known. Variational data assimilation makes it
possible to optimally combine information from the model and observations of the flow
in order to identify model parameters that minimize the discrepancy between simulation
results and physical measurements. Here, observations of water elevation and velocities
are considered.

The method is applied to the identification of boundary conditions and bed elevation
in academic test cases and a case with real data. The bidimensional conservative shallow
water equations and their discretization using a finite volume scheme are presented in
Section 2, the variational data assimilation procedure is described in Section 3. Numerical
results on the identification of inlet discharge and bed topography with two academic test
cases are presented in Section 3 as well as an application to real data on the Pearl River

for the identification of boundary water level. The conclusion is drawn in Section 5.
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2. SHALLOW WATER MODEL

2.1. Shallow Water equations. We use the bidimensional shallow water equations in
a conservation formulation. The state variables are the water depth h and the local
discharge q = hu, where u is the depth-averaged velocity vector. On a computational
domain  and for a computational time interval [0, 7], the shallow water equations can
be written as

Oh + div(q) = 0 in 2x]0,T]

dq + div(:q®q) + 39Vh*+ ghVz + g h'l(/’SHQ q =0 inQx]0,7] (1)

h(0) = ho,  al0) = o
where ¢ is the magnitude of the gravity, z, the bed elevation, n the Manning coefficient,
ho and qq are the initial conditions for the state variables. In the following, the variable
¢ = +/gh will denote the local wave celerity.

To complete this set of equations, one must define boundary conditions. Let I' be the
boundary of the domain €2, it can be split up in the following way: I' =T, UT", UT, UT",.
On boundary I';, we prescribe a discharge ¢ and a homogeneous Neumann condition on
the water depth. Boundary I',, corresponds to a wall, we prescribe a slip condition on the
velocity and a homogeneous Neumann condition on the water depth. A water elevation z

is prescribed on boundary I', and homogeneous Neumann condition for all state variables
are prescribed on boundary I';:

onTy:  (q-m) (1) =—qt), G (t) =0 Vielo,T], (2)
on T, : u-n|. (t) =0, 8n|F() 0 vVt e]o,T], (3)
onT.: hy(t) = z(t) — =), 22 (1)=0 Vtelo,T], (4)
onT,: e =0, 53.(6) =0 vVt e€lo,T]. (5)

The condition (4) on I, is valid only for sub-critical flows, i.e. if the local Froude number
Fr = ”—‘:” is strictly less than 1. Otherwise, one should prescribe condition (5).

2.2. Finite Volume solver. The bidimensional shallow water equations described above
are solved numerically on an unstructured mesh using the finite volume method. The
system (1) can be written in a general form as

oU + divF(U) = SU) . (6)

where U = (h,q)” is the vector of conservative variables, F(U) = (G(U),H(U))" the
flux vector and S(U) the source term
L2 1 L dy 0
GU) = | zaet39h” | HU) = | gag, |, SU)= ( n?lall, ) :
hqqu hqy gh2 _ghvzb — 9773 q

The computational domain §2 is discretized using triangular or quadrangular cells. We
define the mean value of the state variable U on an arbitrary cell K; by

1
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where |K;| denotes the surface of the cell. By integrating Eq. (6) over K;, using the
divergence theorem, we obtain

N;
/atUdQ + /Ti;lG(TijU) ds = /S(U) dQ | (8)

where N; denotes the number of faces of the cell K; (3 or 4), E;; is the cell interface (see
Fig. 1) and T;; is the 3 x 3 rotation matrix of angle #;;. The usual flux term derived from
the divergence theorem has been replaced by integrals over the cell edges thanks to the
rotational invariance property of the shallow water equations (see [Toro, 2001, p. 65]).
Hence, the bidimensional problem actually consists in a sum of one-dimensional Riemann
problems that can be solved numerically using a Riemann solver. One can write the
following semi-discrete scheme

d 1 S~

Ui + ‘KA;TU G(UL,Ug) = S; (9)
where é(U ,Ur) is an approximation of the flux through the cell interface E;;. Sub-
scripts L and R denote cells respectively to the left and to the right of the interface.
To compute numerically the discrete flux G(Ur,Ug), we use the HLLC approximate
Riemann solver [Toro, 2001]. This first order scheme handles correctly the transition
between sub-critical and super-critical flows, unlike most other first order scheme (see
[Zoppou and Roberts, 2003]). The discretization of the bed slope is actually included in

the flux term. A forward Euler scheme is used for time discretization. As a result, the
min(dr, r)

max([ull +o) Where

following stability condition on the time step At must be satisfied: At <
dr, g is the distance between the cell center and the center of interface.

3. VARIATIONAL DATA ASSIMILATION

The state of the flow is solution of the equation system (1) combined with the set of
boundary conditions (2-5). Hence, it is determined by the initial conditions (Cauchy
problem), by the model parameters (2, and n) and the boundary conditions. The values
of these model inputs form the control vector ¢ = (hg, qo, 25,1, G, Z5) " -

In order to carry out a simulation of a real flow, it is necessary to have a good knowledge
of these model inputs. Unfortunately, they are incompletely known in practice, and

Figure 1: Two adjacent finite volumes
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when an approximation is available, it is often subject to large uncertainties. However,
some observations of the flow state may be available, such as water elevations or velocity
measurements. These should be in accordance with the simulation results. Therefore, the
problem to be addressed consists in identifying the control vector ¢ consistent with both
the simulation results and the hydraulic reality represented by observation data.

Data assimilation methods make it possible to combine optimally observation data with
numerical model in order to improve the simulation results. Variational data assimila-
tion [Le Dimet and Talagrand, 1986] is based on optimal control theory [Lions, 1971] and
consists in identifying the control vector that minimizes a cost function.

3.1. Cost function. In order to compare the simulation results and the observations of
the flow, we introduce a functional

o) = [ (lewn) =n= ) + caat) = a®()|) de (10)

where c is the control vector, h®® and ¢® are observations of the flow, Cj, and Cy are
operators that map the state variables to the observations. This cost function mea-
sures the discrepancy between the computed state variables and available observations.
Its minimization is carried out using a descent algorithm that requires the computation
of the gradient of the cost function, 7.e. the vector of its partial derivatives with re-
spect to each control variable. We use the quasi-Newton algorithm M1QN3 written by
[Gilbert and Lemaréchal, 1989].

3.2. Adjoint model. An efficient computation of the gradient is necessary to carry out
an efficient minimization. However, the cost function is not explicitly dependant of the
control vector. Indeed, it is an explicit function of the state variable (h,q) which depends
implicitly on ¢ through the shallow water equations. Therefore, the gradient of the cost
function cannot be computed directly. A direct computation of the gradient using a
tangent linear model would require extensive computations. Conversely, the use of an
adjoint model makes it possible to compute exactly all components of the gradient with
a single backward integration in time of an adjoint model

[ Oh(t) —u- (u-V)q+ ghdiv(@) — gq- Vz
+ 29 dlha - § = CT(Cuh(t) — h=(t)) vt €]0, T

0G(1) + (u- V) + (Va)u+ Vi — g5l ()
— G ju@wg = Cq(Cqa(t) —a™(t)) Vtelo,T|

h(T)=0, q(T)=0, h|Ft: 0, Znor,=0,

| Qoo =0, @ 7 =0, (h+2(u-n)(q-n))|, =

The partial derivatives of the cost function are simple functions of the adjoint state vari-
ables h and q. For example
9j = 9j

p' = O q9)=-30) 5o (e) = - [ di(ontacn) d,
J

7 0 ~ 2 2
sele) =, gt = (@ (@~ (m?)),,

S
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3.3. Automatic Differentiation. In practice, there are three main methods to obtain
an implementation of the adjoint model. The continuous adjoint model (11) can be
discretized using an appropriate numerical scheme which is then implemented. One can
also write the adjoint of the direct numerical scheme and implement it. A better way
consists in starting directly from the implementation of the direct model, and writing
the adjoint of the code. A large part of this extensive task can be automated using
algorithmic differentiation [Griewank, 2000]. Here, we use the automatic differentiation
tool Tapenade [Hacoét and Pascual, 2004].

4. NUMERICAL RESULTS

In order to validate the data assimilation method, we carry out twin experiments. Using
a defined set of parameters ¢, some observations are created from the state variable
generated by the direct model. They are called (h®,u®). The goal is to identify the
value of ¢, from an a priori hypothesis ¢” with data assimilation.

4.1. Validation case: identification of input discharge. Here, we consider the iden-
tification of the inlet discharge ¢, which is a boundary condition in the shallow water
equations (1). The domain is a 100 x 8 meters rectangle with an irregular topography
defined by: z,(z,y) = % — 505 T % sin (%) cos (@) The domain is discretized by a
regular mesh made up of 100 x 10 cells. The upstream boundary corresponds to the edge
x = 0. The Manning coefficient is set to n = 0.025 and a constant discharge ¢ = 5 m?/s
drives the flow to a steady state, which is used as an initial condition (h{”,g;) for the
reference flow. A flood is simulated by increasing substantially the discharge at the in-
let over a short period of time. From the aforementioned steady state, we carry out
5

a simulation of 80s with a time step At = 1555 and a reference discharge defined by:

79(t) =5+ 2(t — 10) exp ( — 155(t — 15)*)L4=105. The corresponding hydrograph is rep-
resented with circles in Fig. 2 (a). We can see the propagation of the wave on Fig. 2 (b),
where a cut of the free surface in the plane defined by y = 1.6 m is plotted for several
simulation steps. The water is flowing in the direction of increasing x. Observations h® of
the water depth are measured at each time step in a unique observation point located at
(T, Ym). As an initial guess for the discharge, we choose the constant value ¢° = 5 m?/s.
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Figure 2: Boundary condition identification: configuration
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All other inputs are left unchanged. We introduce the following cost function

T

@) = 5 [ [ it) =0 dr (12)
where h(Z,, ym;t) denotes the water depth at the point (x,,y,,) at time . The value
of the cost function as well as the norm of its gradient are plotted against the number
of iterations of the minimization procedure in Fig. 2(c). The identified discharge is
represented with a continuous line in Fig. 2(a). We can see that in 35 iterations, the
value of the cost function has been divided by 10% and that the identified boundary
condition perfectely match the reference value.

4.2. Validation case: identification of topography. Variational data assimilation
is now applied to the identification of topography, ie. the value of the parameter z, in
equations (1). We consider a rectangular domain with dimensions 30 x 4 meters and
a reference topography defined by 2 (z,y) = 0.9 exp(— 3(z — 10)*) exp(— (y — 1)%) +
0.7 exp (— %(x — 20)2) exp (— 2(y— 3)2). The domain is discretized by a regular rectangular
mesh made of 90 x 20 cells. The inflow boundary is located at x = 0, the outflow at
x = 30. The boundaries defined by y = 0 and y = 4 are walls. Thus, the water flows
in the direction of increasing x. The Manning coefficient is set to n = 0.025, the water
elevation at the outlet is Z, = 1.4 m and a constant discharge ¢ = 8 m?/s drives the flow to
a steady state after about 80s of simulation. Figure 3 (a) shows the reference topography
2, and the elevation of the free surface in this configuration. For a simulation period of
T = 20 s, observations of water depth observations h** and velocity u® are recorded for
every cell of the mesh and for every time step.

The aim of the experiment is to retrieve the value of the reference topography zl’ff the
initial hypothesis of a flat bed 2z, = 0. To that purpose, the data assimilation scheme is
used with the following cost function to be minimized:

ja(z) _ 1 [ B(t) = B @)[|2 + || u(t) — u®@)[|7) dt (13)
2 0

where || - ||, denotes the L? norm on the whole domain. The value of the cost function
and the norm of its gradient, both normalized by their initial values, are plotted against
the number of iterations of the minimization process in Fig. 3 (b). One can notice that
convergence has been achieved, and that the original shape of the topography has been
well retrieved.

4.3. Real case: the Pearl River. In the previous sections, two academic twin ex-
periments demonstrate the good performance of variational data assimilation to identify
control parameters using sufficient observations. Now, the method is applied to a real
case: the downstream reaches of the Pearl River, Southern China. In the study area (see
Fig. 4), the flow is mainly driven by the tidal force. Synchronous measurements of water
level and discharge are partly or fully available with a one hour time interval for the six
open boundaries (denoted BC; to BCy) as well as for three cross-sections denoted A, B
and C. Both discharge and water level observations are available at boundaries BCy, BCs,
BCj and cross sections A, B and C, yet only water level has been measured at boundaries
B(C) and BCy. The domain is discretized using an hybrid triangular/quadrilateral mesh,
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Figure 3: Topography identification

consisting of 1684 cells and 1784 nodes. According to the available data, we consider the
following data assimilation experiment: given coarse estimates of the initial and boundary
conditions, we seek to identify the water level at boundaries BC,, BCy and BCjy as well
as a better initial state using the observed water level hydrograph h®® at the stations A,
B and C'. To that purpose, we defined the corresponding cost function to be minimized

. 1 (T
Js G ho o) = © / S i, g 1) — h ()t (14)
2 Jo i=1

where Z, is the water level at the control boundaries
BC,, BCy and BCg, hg and qg denote the initial
state variables and h;(t) (i = 1,2,3) denotes the wa-
ter depth at the three observation stations along each
cross section at time ¢. As coarse estimates for wa-
ter level at the boundaries BC;, BCs, and BCy, we
choose a constant value z, = —0.5 m instead of the ob-
servation data. Variational data assimilation is then
carried out over a period of 36 hours. The decrease
of the cost function is rapid in the first three mini-
mization iterations, then slows down with small oscil-
lating gradients (see Fig. 5(a)). The water elevation
at boundary BCj is identified successfully, while the
identified water level for BC, and BCy differs signifi-
cantly from the observations (see Fig. 5 (b)). From the
study of the gradient of the cost function, it has been
found that its value is one order of magnitude larger
at B(Cg than at BC| or BCs. It means that these two
control variables are much less sensitive to the obser-
vations at the gauging stations A, B and C' than BC.
This should be put in parallel with the distance of the
measurement locations to the boundaries. Figure 5 (c) shows that when using the iden-
tified boundary conditions for a direct simulation, the state variable perfectly match the
measurements of water elevations at the three gauging stations.

Figure 4: The Pearl river
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Figure 5: Pearl river numerical results

5. CONCLUSION

We have presented variational data assimilation for a river model based on a finite
volume discretization of the bidimensional shallow water equations. Academic test cases
based on twin experiments demonstrate the ability of the method to successfully identify
model parameters in various configurations. The inlet discharge in a channel can be iden-
tified when an observation of water elevation is available in a single point of the domain.
The identification of bed topography is also possible when a dense set of observations of
water elevation and velocities is considered. In a configuration with real data on the Pearl
River, the method has proved to be able to identify water elevation boundary conditions
from sparse measurements of the water level on three cross-sections.
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