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In Magnaudet (2011) an inertial contribution was overlooked during the derivation
of (3.6). Indeed, when generalizing (E.5), which is valid for an irrotational

velocity field Ũ = ∇Φ̃, to (E.6) which holds for any velocity Ũ , an extra term∫
V

(Ũ−∇Φ̃)·(∇UU+T
∇UU)·Û dV arises on the right-hand side of the latter and hence

on that of (E.8). Therefore the right-hand side of (3.6) actually involves an additional

contribution −2
∫

V
(Ũ − ∇Φ̃) · SU · Û dV , where SU = 1/2(∇UU+T

∇UU) denotes the
strain-rate tensor associated with the undisturbed flow field. This contribution to the
force and torque results from the distortion by the underlying strain rate of the vortical

velocity disturbance Ũ − ∇Φ̃ generated either by the dynamic boundary condition at
the body surface SB (and possibly on the wall SW), or/and by the vorticity ωU of
the undisturbed flow within the core of the fluid. This extra term gives in turn rise

to an additional contribution −2
∫

V
(Ũ0 − ∇Φ̃0) · S0 · Û dV on the right-hand side of

(3.13)–(3.15). This term was not present in the inviscid expressions established by
Miloh (2003) because his derivation was restricted to situations in which the velocity
disturbance is irrotational throughout the flow domain. This extra term does not alter
the conclusions brought in the present paper for inviscid two-dimensional flows, nor
those corresponding to the short-time limit of inviscid three-dimensional flows. In the
limit Re → ∞ considered in the example of § 4.3, the disturbance is still irrotational
outside the boundary layers that develop around the bubble and along the wall,
respectively. The leading order in the vortical velocity disturbance is of O(Re

−1/2)

around the bubble, both in the e‖ and e⊥ directions. Near the wall, it is of O(κ2)

(respectively O(κ2
Re

−1/2)) in the e‖ (respectively e⊥) direction. Since the thickness of

both boundary layers is of O(Re
−1/2) and Û · e⊥ grows linearly with the distance to

the wall, the extra term −α
∫

V
{(Ũ0 − ∇Φ̃0) · e⊥(Û · e‖) +(Ũ0 − ∇Φ̃0) · e‖(Û · e⊥)} dV

yields an O(αRe
−1) net contribution provided by the bubble boundary layer and only

an O(ακ2
Re

−1) correction provided by the wall boundary layer. Hence the inviscid
predictions (4.26) and (4.33) are unchanged and there is an O(αRe

−1) correction
to the viscous drag and lift, similar in magnitude to that resulting from the term

−
∫

V
φ̂ω0 · (ω̃ + ω̃B)0 dV . Owing to the weak inhomogeneity assumption invoked in

§§ 3.2 and 4.3, the dimensionless shear rate α must be much smaller than unity for
(4.26) and (4.33) to hold. Hence, in this context, the above corrections to the drag
are much smaller than the leading, O(Re

−1), contribution provided by the surface term



Re
−1

∫
SB

{(Û − e‖) × ω} · n dS. Note that the above Re
−1 prefactor is missing on the

right-hand side of (4.16) and (4.19).
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