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Abstract A new class of energy-preserving numerical schemes fohasic Hamil-
tonian systems with non-canonical structure matrix (inStratonovich sense) is pro-
posed. These numerical integrators are of mean-square andeand also preserve
guadratic Casimir functions. In the deterministic settimgr schemes reduce to meth-
ods proposed ir [9] and][6].

1 Introduction

We consider numerical discretisations of stochastic peations of Poisson systems
of the form

dyt:B(yt)DH(yt)(dt+cocj\M). (1.1)

The above stochastic differential system is understoodhénStratonovich setting
and the symbob stands for the Stratonovich product. Here; 0 measures the size
of the perturbation ant{ is a one-dimensional Wiener process. Moreover, we as-
sume thaB(y) c R9*4 is a smooth skew-symmetric matrix-valued function and the
HamiltonianH (y) is a sufficiently smooth scalar function p&RY such that an ex-
act solution of our problem exists for all time. This systeesctibes a Hamiltonian
motion perturbed by a multiplicative white noise which ims® sense respects the
geometric structure of the phase space: the randomness idahiltonian vector
field consists in a random force in the direction of the deteistic force and a ran-
dom maodification of the deterministic velocities that do maidify the structure of
the phase space.
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Stochastic canonical Hamiltonian systems (see for exafi@leand references
therein) of the form

dytzrlmH(yt)(ducOovw), (1.2)

0 Id
—1d 0
(L.2) by taking the constant matrB(y) =J~1. A typical example where the matrix
in (I.2) is non-constant is given by a randomly perturbeidifigpdy problem([14, 13,
1], see also Sectidn 4.2. That is, the motion of a rigid bodiirsubject to a white
noise perturbation.

An application of the chain rule for Stratonovich differ@hequations shows us
immediately that the HamiltoniaH (y) is a conserved quantity [18./19)20]21, 26],
that is

with J:= ( ) whereld denotes an identity matrix, can be put into the form

H(yt)=H(yo) =Const
for all positive timet along almost all realisations of the exact solutior ofl(1Here,
Yo denotes the initial value of the problem {1.1).

Recently, many efforts have been made to construct and smajymplectic nu-
merical schemes for stochastic Hamiltonian problemk [8/3 27,24, 4, 15]. In gen-
eral, these schemes do not preserve exactly the HamiltfunationH (y). Our main
interest in the present paper is thus the design of numernitairators that exactly
preserve the Hamiltoniad (y). Let us mention, that there is a lot of ongoing research
activities in energy-preserving numerical integratorsdeterministic problems, and
various methods have been proposed in the literature, $88/F} 9,6]. However,
in the stochastic setting, we are only aware of the numesiclaémes proposed in
[21] and in [7] for stochastic canonical Hamiltonian prabke Furthermore/[10]
proposes a stochastic discrete gradient scheme which sinaiterities with the nu-
merical methods that we propose here (see below for mordgjet@losely related
to the thematic addressed in these papers, are the sentianaiyerical algorithms
proposed in[[23]: these splitting-step methods guaraht&ethe numerical solutions
remain in a domain.

The present article is devoted to a stochastic extensidreqtieterministic) meth-
ods introduced ir [9] and in [6]. As we will show, our new nuicaf schemes exactly
preserve the energy(y), quadratic Casimir functions and are of mean-square order
of convergence one. Moreover, they reduce to the methodpeabin[[21] and to one
of the method proposed in [10] in the following canonicaleas

oy = (201> OH (yt) (ct -+ CodWp), (1.3)

wherey; €R?, ¢ is a real non-negative parameté¢, is a one-dimensional standard
Wiener process and (y) is a quadratic function of. Let us also note that, again if
H (y) is a quadratic function, our numerical method reduces tstitehastic midpoint
scheme from[17].

The new class of numerical schemes is presented in S&¢tiod tha main prop-
erties of the methods are proved in Secfibn 3. Finally, nicakexperiments demon-
strate the efficiency of our approach in Secfibn 4 and passikiensions of this work
are highlighted in the conclusion.
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To close this introduction, let us mention several strdgitard extensions of
problems of the forn{{111) ok (1l.2) that one could discretifté similar techniques.
Everything that is done in the present paper for one-dinoer@siwhite noise can
easily be extended to the following case

m :
dyt :B(yt>DH(yt)(dt+ 2 Ci od\MJ),
=1
where for allj, c; > 0. One can also handle problems of the form
m . .
dy: =B(yt)OH (yt)dt+ y GIOH (y) oWy,
=1

with several skew-symmetric matricé$ of a special kind, se&|[7] for more details on
the canonical Hamiltonian ca&y)=J"1, and derive energy-preserving numerical
schemes for these problems too. Closely related to thequedass of problems are

the randomised Hamiltonian systems from [2, Chap. Vi4]] 2@l [12, Sect. 3.1]

m .
dys =3~ OHo(ye)dt+ 5 I710H; (ye) oW,
=1

for which one can also derive numerical methods that pregbe/first integraHg of
the above problem. We recall, tHatis a first integral if one ha§H,Ho} ={H,H;} =
...={H,Hm} =0 with the Poisson brackét, -} associated to the above problem. An
extension of the proposed numerical integrators for thetepeeservation of other
(or multiple) first integrals is however not obvious.

2 Energy-preserving schemes

The proposed numerical scheme for the discretisatioln @j (&ads

+ 1
Yn+1ZYn+B(yr172yn+l)/o OH (yn+ T(Yn+1_yn))dT(h+CAWn)7 (2.1)

whereh denotes the time step add\}, are Wiener increments.

One immediately sees that the above numerical scheme retutieat of order
two proposed in[[6] in the deterministic context=0). In fact, schemeg (2.1) cor-
responds to that of [6] with a random step. Moreover, oneqtitat, if the matrix
B(y) =B is constant (e.g., if(1l1) is a canonical Hamiltonian peob] see[[21,17])
the method reduces to

1
yn+1:yn+B/O DH(yn+r(yn+1fyn))dr(h+cAWn). (2.2)

This is a natural extension of the second order scheme frp(ag@ also the averaged
vector field method from [25]) to the stochastic setting. \Wmark that another pos-
sibility would be to use the (deterministic) scheme propdsg Gonzalez [8] which
would result to the symmetric discrete gradient method ffgjnAdditionally, as al-
ready noted in the introduction, when applied[fol(1.3), tamarical integratoi(2]2)
reduces to the scheme proposedin [21], see Sddtion 4 fordetads.
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Remark 2.1 Since the proposed numerical methods are implicit witheesto both
the drift and diffusion terms, some difficulties (essentéhle to the unboundedness
of AW,) may happen when implementing the schemes. As proposed]bgrie way
to address this issue is to consider truncated random végtgimstead of the Wiener
incrementsAW, :=v/hé, with & an .#'(0,1)-distributed random variable. Indeed,
setting A:=+/2k|In(h)| (for an integer k>0), one defines the truncated random
variable [17]

&, I [E[<An,
=4 A if E>A,
A, if E<—An

Moreover, one has the following approximation propertg kemma 2.1 from [17],

0<E[§%~ZF]=(1+2v/2k[In(h)|)h*
This is what we do in the present paper using the notafivh :=v/h, for the
truncated random Wiener processes and takirgkin the definition of 4. With

this choice of truncated random variables, one can showttiestochastic midpoint
scheme has order ong 17, Th. 2.6] (this fact will be used iadfani 3.1 below).

3 Properties of the energy-preserving schemes
The methods of the previous section have been designed serpesexactly the
HamiltonianH (y). It turns out that they enjoy further interesting propestig¢he

proofs of the geometric properties of the numerical integsafollow easily from
the one given in [6].

3.1 Exact energy preservation

Proposition 3.1 If B(y) is skew-symmetric for all y, then the numerical met(f@d)
exactly preserves the energy, i.e (i) = Const for all n.

Proof From the fundamental theorem of calculus we have

H(Ynt1) —H(yn) = /OlDH (Yn+ T(Yn+l*yn))T (Yn+1—Yn)dr.

From the definition of the method (2.1) we thus get for theedéhce above

1 T + 1 —~
(/ DH(yn+T(yn+1fyn))dr) B(y” 2yn+1)/ DH(yn+r(yn+1fyn))dr(h+cAWn),
0 0

which vanishes by the skew-symmetry of the maBiy).
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3.2 Conservation of quadratic Casimir's

A function C(y) is called a Casimir function of the stochastic differengéguation
(@.2) if OC(y) "B(y) =0 for all y. Along solutions of[(T11) we hav@(y;) = Const be-
cause &(y;)=0C(yt) "B(y:)OH (y) (dt+codWt) =0. This property is independent
of the HamiltoniarH (y).

Proposition 3.2 Let C(y) =y' Ay (with a symmetric constant matrix A) be a Casimir
function of the problenfl. ). The energy-preserving meth@l1) exactly preserves
this Casimir.

Proof Using again the fundamental theorem of calculus we have

C(Yn+1)—C(yn) = /Ol Dc(ynﬁLT(YnH*Yn))T (Yn+1—Yn)dT.

Since the integrand is a polynomial of degree T jmn application of the midpoint
quadrature rule gives the exact result. For the differ&@(gg1) —C(yn), using the
definition of the numerical scheme, we thus obtain

1 + 1 ~
OC(yn+ E(ynJrl_Yn))T B(Lz)/rwl) /0 OH (Yn+T(Ynr1—Yn))dT (h+ CAWn) )

which vanishes due to the fact ti@dy) is a Casimir.

3.3 Quadratic Hamiltonian functions

In this subsection, we show that the numerical integrafdf) (& equivalent to the
stochastic midpoint rulé [17] in the case of quadratic H&mikn functions. Indeed,
let us consider the following Hamiltonian functidf(y) = %yTDywL ey with a con-
stant symmetric matri®o and a constant vecter In this case, the numerical method

(2.1) reads
Yn+Ynt1

1 N
Yn+l:yn+B<T) /0 ((YnJFT(YnJrl*Yn))TDﬁLeT) dT(thCAWn)

:yn+B(L2y"“) (%(yn+1+yn)TD+eT) (h+cA\Tvn),

which is the stochastic midpoint rule applied to probldmll(lwith the above
guadratic Hamiltonian function.

3.4 Order of the methods

The goal of this subsection is to prove that the schémé (24 )ntean-square order
1 (see Theorenis 3.1 ahd 3.2 below). To do so, we first prove mna{3.2 esti-
mates on the remainder of an asymptotic expansion of ounselfg.1), in order to
compare it with the stochastic midpoint method froml [17]isTérder property of the
energy-preserving schemle_(2.1) is not directly linked ® gleometric structure of
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the scheme. Hence, we simply denotefljy) =B(y)OH (y) the Poisson vector field.
We also set(y)=0H(y). For the sake of simplicity of the presentation, we firstly
restrict ourselves to the case where the Hamiltomidy) and the structure matrix
B(y) are smooth functions of with globally bounded derivatives up to order 3 for
B and 4 for the functiorH. Thanks to the energy preservation of the scheme (see
Propositio 3.11), this is indeed not a restriction for thplaations we have in mind
(see Sectiohl4), as we explain in Remark$ 3.4[and 3.5.

Let us recall the following

Lemma 3.1 For all pe[1,4+), there exists a positive constang €0 such that for
allneN and all he (0,1), we have

(E(IAWnI p))l/p gcphl/z and (E(|AWn| p)) 1/p < Cphl/Z.

Proof SinceAW, is a real normal random variable with densﬁV‘Z/Zh/\/Znh, we
have for some positive constady >0,

E[|AW,|?] <Cph?.
Since|AWh| < |AW,| almost surely, we infer that[|AWh|P] <Cph?.

We are now able to prove the following

Lemma 3.2 The numerical solutions provided by the numerical met{fd) have
the following asymptotic expansﬂ)n

Ynrl—Yn= a(Yn)(h+CAWn) + b(yn)(h+CAWn)2+C(yn)(h+ CAwn)3+ Ri, (3.1)

with a(yn) = (BOH)(yn), b(yn)=(BOH)'(yn)(BOH)(yn)/2, and dyy) are indepen-
dent of . 1, and R, depends onyy; 1 and satisfies the following estimates

E[Rf]=0(?) and  (E[|Ri[])?=0(n). 3.2)

Remark 3.3 Note that, in view of the hypotheses on the functions B antéHfuinc-

tions ab and c above are bounded almost surely along the numeritafiso by a

constant which does not depend oa (0,1). In particular, for all p> 1, their mo-

ments of order p are finite and bounded by a constant which doeslepend on
h.

Proof We proceed by successive Taylor expansiong of —yy, in order to justify the
expansior((3]1), and in particular to show tRais of the form(h+cAW,)*r,, where

rn depends on,.1 and all the moments of, are bounded by a constant which does
not depend oi. The estimates (3.2) then follow by applying the Cauchyv&ute
inequality. In this proofR will denote a random variable which may vary from one
line to the other and with finite moments of orgeior all p> 1 bounded by a constant

1 Note that, in view of LemmB3l1, one can see that the termsdretipansion(3]1) are not properly
ordered and some of them could be included in the remaindevekkr, we keep this writing for the ex-
pansion because it is more compact and it helps understatidircomputational process of the expansion.
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which does not depend dme (0,1). We will use repeatedly the fact thatK and
S are two such random variables with appropriate dimensithesy so areRSand
(h-+CcAWA)R.

Let us start with the expansion of order 1. Silgandg are smooth functions,
we have

— 1 71 s
B L5) By + 5 | B+ 3 0ot —Y) Ons1 o).

and

1 1 ,1
/0 9(Yn+T(Yny1—Yn))dT=0(yn) + /0 /0 0 (Yn+S(Yn+1—Yn)) (Yntr1—Yn)dsdT.

Using the definition of the scheme(R.1) and plugging the @ssion ofy,. 1 —Yn in
the right hand side of the relations above, we obtain

Yn+1—Yn

o) =B(yn)+ (n+cAWL)R,

B(yn+

and
o1 R
/0 9(Yn+T(Ynt1—Yn))dT=9(yn) + (h+CcAWH)R.
Taking the product of the two expansions above yields
Yn+1—Yn=(h-+CAWh)B(Yn)g(¥n) + (+cAW)*R. (33)

We can now repeat this procedure to obtain the expansiordefr @. We first write
by Taylor expansions and use of the definition of the schéni®, (2

Ynt1—Yn
2

1_, N
B(yn+ )=B(yn)+5B'(Yn) (yns1—Yn) + (h+cAWK)’R,

and

1 1 ~
| 90n+ T0m1=n) AT = 0(3m)+ 5 () 92+ (1A TR

Inserting the expansiofi_(3.3) of order 1 into the expressiirove and taking the
product, we obtain the expansion of order 2:

Ynt1—Yn= (h+CAwn)B(yn)g(Yn)

YYAY
RSBV 5y, By 1) al9m)-+ BRI (30) (B g3m)))
=(Bg)’ (yn)(Bg)(yn)
+(h-+cAW,)°R.

Another step of this procedure, expandiBgy,+ (Ynr1—Yn)/2) and f()lg(yn+
T(Yn+1—Yn))dT aroundy, up to order 3 thanks to the smoothnes8andg=UH,
using the definition of the scheme in the terms of order 3 aadrtylor expansion
of order 2 in the other terms and then taking the productdgiéie expansiof (3.1)
with an explicit expression af(y,) which does not depend oR. 1 or AW, and with
Ry=(h+ cAWn)4R. The estimate$ (3.2) follow by the Cauchy-Schwartz ineityual
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We can now compare the methad (2.1) with the well-known sistib midpoint
method to ensure that

Theorem 3.1 Assume that the Hamiltonian(§) and the structure matrix &) are
smooth functions of y with globally bounded derivativesaiprtier 3 for B and4 for
the function H. Then the energy-preserving sch¢Zng) has mean-square order of
convergencé.

Proof Recall thatf =B[H. Using the same expansion method as the one we used in
the proof of Lemm&3]2, we find that the stochastic midpointwe defined by

Ini1—In= f((In+9ns1)/2) (N+cAW), (3.4)
has an asymptotic expansion similar to the one proposédbin [1
§int1—n= (h-+CAWR)A(Tn) + (h+CAWR) *D(§n) + (h+CAWR)*E(§n) +Rn,  (3.5)

with the same functiona andb as that of the expansioh (8.1) of the schemel (2.1),
with a functionc¢ which does not depend oy.7 and a functionR, of the form
(h+cAWn)4R, whereR s a function depending oyy1 throughAW;, and with finite
moments bounded by a constant which does not depeticEd6,1). In view of the
smoothness hypothesesBmandH and hence orii and of the boundedness hypothe-
ses on these functions and their derivatives, the randorablasa(¥,), b(¥,) and
&(¥n) are almost surely bounded by a constant which does not dependJsing the
Cauchy-Schwarz inequality as in the proof of Lenima 3.2 dgel

El|Rf]=0(?) and  (E[||Ra|*)Z=0(M).

Considering the difference between the solutipgn; provided by the energy-
preserving schemg(2.1) and the solutygn; provided by the midpoint schenie (B.4)
starting from the same poigt =¥, we obtain usind(311) an@ (3.5)

Ynt1—nt1= (C(yn) —E(Yn)) (h+CAWR)*+ (R —Rn). (3.6)
SinceR, (see LemmAa3]2) arig, are of the formh-+cAW,)*R, we have
[[E[Ra— Rl [| SE[[|Ra—Ru[[] = &(h?). 3.7)

Moreover using the independence of the truncated WieneetinentAW, with Vs
we have

E[(S(¥n) —&(yn)) (h+CAWh)*] =E[c(yn) — E(yn)|E[(h+cAW)*| = 0/(h?),
sincelE[(h-+cAWs)3] = h3+3c?h2. We infer, that
E[yni1—Ynse1] = 0(h°). (3.8)

Moreover, using the triangle inequality in the right handesof [3.6), the Cauchy-
Schwartz inequality and the estimatidn {3.7), we obtain

(Ellyns1—ns1l121) 2 < (Efllcyn) —Eyn)|4]) # (B[(h+cAWR) 1) & + (E[[|Ra—Ral|*]) 2,

<Ho00 :ﬁ(h3/2) :{f(hz)
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which implies
. 1 3
(E[lYni1—Fnsal?])2 = O(h2). (3.9)

The stochastic midpoint method is known to have mean-squdes 1 in the present
context (see Theorem 2.6 [n]17]). Since the local diffeegmetween this scheme and
the energy-preserving methdd (2.1) satisfies estimaigs48d [3.9), Lemma 2.1 of
[16] with p;=2 andp,=3/2 ensures that the methdd (2.1) also has mean-square
order 1.

We can now relax the hypotheses on the boundedness of thigofusid (y) and
B(y) and their derivatives in the theorem above. First, the bedndss oH is not
mandatory (see Remdrk 8.4 below). Second, the boundedhéss&i1H andB and
their derivatives up to order 3 need not be global: local iegmess is sufficient to get
a mean-square order 1 thanks to the energy preservatiosnydProposition 3]11)
of the schemd (211) (see Remhrk] 3.5 below).

Remark 3.4 The results above extend to several cases whet@[{H is smooth,
sub-linear and all its derivatives are globally bounded.fact, neither the results
above nor the results of [16] do require the boundednessefuthction H (they only
need the boundedness of@IH and its derivatives).

Remark 3.5 Since the methof®.1) exactly preserves the energy by Proposifian 3.1,
one can find, for problems such as those presented in Sé€gtfondll initial datum

Yo, & convex subset of the phase space containing almost sheelyumerical tra-
jectories starting from yy on which the vector field f and the function B as well as
their derivatives up to ordeB are bounded. Hence, the estimates in the proofs above
extend to these cases straightforwardly. For example,

— for the harmonic oscillator starting atgy= (o, po) € R? (see Section 4.1), such
a convex set is the ball centered at the origin of the phaseepdth radius
(Y34 p3)/2. Since f is smooth on this compact set, it is bounded on it arades
its derivatives up to ordes.

— for the mathematical pendulum (see Sedfioh 4.3), such aegaet for an initial

datum ¥ = (g, po) is for example{qe R} x {peR | |p|<,/p3+4}. Even if
this set is not compact, the continuity and the g-periogiaftf and its derivatives
ensure that f as well as its derivatives up to or8erre bounded on such a convex
set.

— for the stochastic rigid body (see Sectior4.2), for anéarhhiiatum(y?l] ,y?z] ,y%]) €

R3, a compact convex set on which the functions f, B and theivakives
are bounded is the convex hull of the ellipsoid of equatiolyly,Y;3) =
H (Y)Y Yy)-

— for the Lotka-Volterra system (see Secfiod 4.4), any nuraksolution can be
included in a rectangle which is the product of two compatrivals. Hence the
functions B and f as well as their derivatives up to or8erre bounded on such
a compact (and convex) set.

We can summarise the results above in the
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Theorem 3.2 Assume that the function H and the matrix B are of clé8sresp.%72,
onRY and that any energy-level () = Constis included in a convex set on which
the functions B andIH as well as all their derivatives up to ord@are bounded.
Then the schem@.1) applied to the stochastic problefh.]) has mean-square order
1

4 Numerical experiments

In this section, we perform some numerical experiments deoto illustrate the
convergence order and various geometric properties of tbpoged numerical in-
tegrators. We will compare the energy-preserving schéni§ (@th the following
numerical integrators:

— the classical Euler-Maruyama scheme of mean-square of@efapplied to the
converted Ito stochastic differential equation), see f@meple [11];

— the classical Milstein scheme of mean-square order 1 (@ghpdi the converted
Ito stochastic differential equation), see for example};[11

— the Euler-Heun scheme of mean-square order 1 introduc2d]n\Vhen applied
to Stratonovich differential equations

dy: =a(yt)dt+ o (y) odW,

this numerical integrator reads
YA =yn+ha(yn) + o (yn) AWh
1 ~
Ynr1=Yn+ ha(yn) + E (G(yﬂ”") + O'(yn))AWn;

— the midpoint scheme of mean-square order 1 from [17]. Whepliexp to
Stratonovich differential equations

dyt =a(y)dt+o(yr) odW\,
this numerical method reads

Yn+Yn+1 Yn+Yn+1
2 2

— the stochastic discrete gradient of mean-square ordemni [i6]. When applied
to Stratonovich differential equations, with a conservedrgity| (y), of the form

dyt =S(yt) Ol (Y )dt+T (yt) Ol (yr) o VM,

with two skew symmetric matricey) andT (y), this numerical method reads

Yn+VYn+1
2

In our case[(1]1), we will take(y) =H (y) and the natural choiceXy) =T (y) =
B(y) (or S(y)=T(y)=J"1 for stochastic canonical Hamiltonian systems). Fur-
thermore,

)Awn;

Yn+1=Yn+ha( )+a(

Y1 =Yn+hSYn) Ol (Yn,Yns1) +T( YOl (Yn7Yn+l)AVAVn-

dl(y,y) = % (Cul (y,y)+ 01l (1)),
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is a symmetric discrete gradient (seel[10] for more detaiit)

Ell (yvy):: . B

wherey=(Yjy,...,Yiq))" andy= (Y- -,¥a)"-

4.1 The stochastic harmonic oscillator with one dimendi@vianer process

Let us first consider the stochastic harmonic oscillatof [21

d(g) _ (p;t ) (dt +co),

wherec is a real non-negative parametgrp; are scalar stochastic processes\ahd
is a one-dimensional Wiener process. The Hamiltonian teadsH (p,x) = p?/2+
x?/2 and remains constant along the exact solution of the abaMgem. Noting
y=(p,x)T, one thus gets equatidn(lL.3). For this case, the scHeme¢2ixces to

(xM) B 1 ( (1— % (h+CcAWK)2)xa+ (h-+CAWA) Py >
—(h+cAWh) X0+ (1— 2 (h+CcAWR)?) pn )’

Pri1) 1+ 1(h+cAW,)?

which is precisely the method proposed.ini[21], the stodhastdpoint scheme from
[17], or the stochastic discrete gradient method from [0Bje can remark that, for
this problem, one does not really need to use truncated randdiablesAW, since
the numerical method is well defined.

Figure[4.1 displays the numerical solutions in the phaseesghe computed en-
ergies and the numerical positiaralong one sample. For a better visibility in our
figures, not all points of the numerical solutions are digpth On the one hand, it
can be observed that the numerical solutions given by theygrpreserving scheme
remain on the initial energy circle so that this scheme hasg time stability. This
stability can also be observed in the figure to the right, whbe numerical posi-
tions of the energy-preserving method and Euler-Heun’sotkare displayed (the
other numerical schemes offer similar behaviour as that®Buler-Heun’s method,
the results are however not shown). On the other hand, onelisarve that Euler-
Maruyama’s method, Euler-Heun'’s method and Milstein’shrodtare not appropriate
for numerical simulations of the stochastic oscillatormeag time intervals.

Figure[4.2 displays the mean-square errors at the final step

(=l —wwl?) ",
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Fig. 4.1 Stochastic harmonic oscillator with parametggs=0.1, po=0.2,c=1. N=10° steps of length
h=10"2 for Euler-Maruyama-), energy-preserving scheme (solid line), Milsteif), @and Euler-Heun

©).

G
X

MS-errors

Fig. 4.2 Stochastic harmonic oscillator. Plot of the order of cogeace: mean-square errors at tigyg=
5.M =5000 samples used. The dashed lines have sloffearid 1.

of the numerical integrators with the same parametgg andc as in the previous
numerical experiment. Here, we take as the exact solygjaihe numerical one using
the Milstein scheme and a very small step digac=2 1% The expected values
are approximated by computing averages dMer 5000 samples. Convergence of
order one, as stated by Theoreml 3.2, is observed for the \epeegerving scheme.
Remark, that in this case, the Hamiltonian of the problemuesdyatic so that, by the
result of Subsectidn 3.3, the energy-preserving scheraenitipoint method and the
stochastic discrete gradient are the same numerical attagr

4.2 A stochastic rigid body problem with one dimensional héieprocess

The equations of motion of a stochastic rigid baddy [14] aréeaPoisson system with
CasimirC(y) = lyl|3:

dy[q) 0 —ysg Yy Yi/l1
dy |={ vz O —yu | |Yz/l2 ] (dt+codw),
dyg Yz Yy 0 / \yg/ls
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Fig. 4.3 Computed Casimirs along the numerical solutions of a s&iahegid body (left). The right plot
displays the mean-square order of the schemes: the regesehdion is computed using Milstein’s method
With hexact= 212 andM = 1000 samples were used for the expectations. The dashedve slopes/2
and 1.

wherey= (ym,y[z],y[g])T andl =(l4,l»,13) are the moments of inertia. The Hamilto-
nian

H(y):%(y[zl]/ll+y[22]/|2+y[23]/|3)7

is thus a conserved quantity and methiod](2.1) exactly presértogether with the
guadratic Casimir

Cly)= % (y[zl] Jr3/[22] er[zs])'

Figure[4.3 (left) displays the computed Casimirs along carape of the Euler-
Maruyama, the Euler-Heun, the Milstein, the stochasticrdie gradient and the
energy-preserving schemes. We ud¢d 300 steps of the integrators with step-
sizeh=10"2. It can be observed that the Casimir does not remain conatanty
the numerical solutions of the Euler-Maruyama, the Euletti| the Milstein and
the stochastic discrete gradient methods. Similar bebasiare observed for the
Hamiltonian (except for the stochastic discrete gradiegthrod, which of course pre-
serves this invariant). For the parameters in the problesrysedc=1, initial values
Yo=(0.8,0.6,0) and moments of inertie= (0.3450.653 1). The mean-square orders
of convergence at timig,q—= 1 of the methods are also presented. Remark that, in this
case too, the Hamiltonian of the problem is quadratic, sottfeenergy-preserving
scheme is the midpoint method.

4.3 The mathematical pendulum with two dimensional Wiemec@sses

Let us now consider a problem with a non-quadratic Hami#ionpfor example a
stochastic perturbation of a mathematical pendulum

d (g:) = <Si;(q‘>> (0t +Cy 0L+ Co0 W),

with two independent Wiener proces3&$ andW? and two real non-negative pa-
rameters, Cy.
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Fig. 4.4 Stochastic mathematical pendulum wjig=0.2,qo=1,c1 =1,c, =0.5. Energy along all the nu-
merical solutions (left). Zoom for the computed energy @& thidpoint and energy-preserving schemes
(middle). Numerical positions of the energy-preservingesoe and Euler-Heun’s method.

MS-errors

Fig. 4.5 Stochastic mathematical pendulum. Mean-square erroimetd,q=2: M=1000 samples used
and reference solution computed with the midpoint scherdeaastep Sizéleyact=2"12. The dashed lines
have slopes /2 and 1.

Figurd 4.4 (left plot) displays the enery{p,q) = % p?—cogq) along one sample
of the numerical solutions given by all the methods. The lomg interval is[0,500
and the numerical schemes use a steplsiz& . The energy does not remain con-
stant along numerical solutions given by the Euler-Marugathe Euler-Heun and
the Milstein methods. However, the numerical solution gilsg the midpoint scheme
remains almost constant over this long time interval as meskin this figure (mid-
dle plot). This behaviour is very interesting and could teom the symplecticity
of this method. The energy along the stochastic discretdigmamethod and the
energy-preserving scheme is of course preserved. A goaptiore stability of the
proposed scheme can be observed in this figure too (right plbere the numerical
positions of the energy-preserving method and Euler-Hemethod are displayed. A
good long time stability of the stochastic discrete gratizrd the midpoint methods
is also observed, the results are however not shown for erhasibility.

We also show the convergence order of all the numericaliategs in Figuré415.
Here, the reference solution is computed using the stochagtipoint scheme with
step sizeéhexac=2"12 andM = 1000 samples are used for the expectations. A mean-
square order of convergence one is observed for the eneeggiwing scheme.
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Fig. 4.6 Hamiltonian along the numerical solutions of a Lotka-\iokesystem (left plot). Loglog plot of
the mean-square errors at tirggg= 1 usingM = 1000 samples (right plot). The dashed lines have slopes
1/2 and 1.

4.4 Lotka-Volterra system
We finally consider a stochastic extension of the Lotka-&fo# systent [6], for which

0 dyyyp bdyyys
By)=| —dyyyz O —YzV3 |,
—bdyyyg Y2y O

and
H(y) =abyiy +Ypz —ayg +VvIny;z — piny.

For our numerical experiments, we choose the following pa&tarsa=—2,b=—1,
d=-0.5,v=1, u=2, and initial valuegp=(1.0,1.9,0.5). The constant in front of
the noise term is taken to lme=0.5. Figure 4.6 displays the Hamiltonian along one
sample of the numerical solutions given by all the numeiidaigrators. We used the
schemes with a step site=2-8 on the interval0,5]. As expected, the total energy
of our problem remains constant along the numerical soistgiven by the energy-
preserving schemg(2.1) and the stochastic discrete gitzctien [10] up to roundoff
errors. This factis not observed along numerical solutipven by the other schemes.
In the convergence plot, a rate of convergence in the meaaracgense of one is
observed for the energy-preserving method. For these ricahexperiments, the
reference solution was computed using the midpoint rulesastd psizdieyact= 2-12

5 Conclusion and prospects

In this paper, we have extended deterministic energy-priegpschemes froni_[6]
to the case of randomised Poisson systems. We have provethésa numerical
integrators are of mean-square order one, preserve thgyesed quadratic Casimirs
for problem [[1.11). A few questions remain open at the moment:

e What is the weak order of convergence of the proposed nualagbemes? We
suspect that the weak order of the proposed scheme is the a=mitihe weak
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order of the midpoint method from_[IL7]. This question will bddressed in a
forthcoming work.

Is it possible, as in the deterministic case, to raise theerood the energy-
preserving schemes? This seems a difficult task for the ragaare order. How-
ever, the techniques developedlin [1] may be used to constigic weak order
based on the energy-preserving schemk 2.1.

In the end of Sectiof]1l we addressed the question of devejamimerical

schemes that preserve more than one first integrals of thgpno This certainly
deserves further theoretical investigations.
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