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Abstract A new class of energy-preservingnumerical schemes for stochastic Hamil-
tonian systems with non-canonical structure matrix (in theStratonovich sense) is pro-
posed. These numerical integrators are of mean-square order one and also preserve
quadratic Casimir functions. In the deterministic setting, our schemes reduce to meth-
ods proposed in [9] and [6].

1 Introduction

We consider numerical discretisations of stochastic perturbations of Poisson systems
of the form

dyt =B(yt)∇ H(yt)
(

dt+c◦dWt

)
. (1.1)

The above stochastic differential system is understood in the Stratonovich setting
and the symbol◦ stands for the Stratonovich product. Here,c≥0 measures the size
of the perturbation andWt is a one-dimensional Wiener process. Moreover, we as-
sume thatB(y)∈R

d×d is a smooth skew-symmetric matrix-valued function and the
HamiltonianH(y) is a sufficiently smooth scalar function ofy∈R

d such that an ex-
act solution of our problem exists for all time. This system describes a Hamiltonian
motion perturbed by a multiplicative white noise which in some sense respects the
geometric structure of the phase space: the randomness in the Hamiltonian vector
field consists in a random force in the direction of the deterministic force and a ran-
dom modification of the deterministic velocities that do notmodify the structure of
the phase space.
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Stochastic canonical Hamiltonian systems (see for example[17] and references
therein) of the form

dyt =J−1∇ H(yt)
(

dt+c◦dWt

)
, (1.2)

with J :=

(
0 Id

−Id 0

)
, whereId denotes an identity matrix, can be put into the form

(1.1) by taking the constant matrixB(y)=J−1. A typical example where the matrix
in (1.1) is non-constant is given by a randomly perturbed rigid body problem [14,13,
1], see also Section 4.2. That is, the motion of a rigid body inR

3 subject to a white
noise perturbation.

An application of the chain rule for Stratonovich differential equations shows us
immediately that the HamiltonianH(y) is a conserved quantity [18,19,20,21,26],
that is

H(yt)=H(y0)≡Const,

for all positive timet along almost all realisations of the exact solution of (1.1). Here,
y0 denotes the initial value of the problem (1.1).

Recently, many efforts have been made to construct and analyse symplectic nu-
merical schemes for stochastic Hamiltonian problems [17,28,3,27,22,4,15]. In gen-
eral, these schemes do not preserve exactly the HamiltonianfunctionH(y). Our main
interest in the present paper is thus the design of numericalintegrators that exactly
preserve the HamiltonianH(y). Let us mention, that there is a lot of ongoing research
activities in energy-preserving numerical integrators for deterministic problems, and
various methods have been proposed in the literature, see [8,25,5,9,6]. However,
in the stochastic setting, we are only aware of the numericalschemes proposed in
[21] and in [7] for stochastic canonical Hamiltonian problems. Furthermore, [10]
proposes a stochastic discrete gradient scheme which sharesimilarities with the nu-
merical methods that we propose here (see below for more details). Closely related
to the thematic addressed in these papers, are the semianalytic numerical algorithms
proposed in [23]: these splitting-step methods guarantee that the numerical solutions
remain in a domain.

The present article is devoted to a stochastic extension of the (deterministic) meth-
ods introduced in [9] and in [6]. As we will show, our new numerical schemes exactly
preserve the energyH(y), quadratic Casimir functions and are of mean-square order
of convergence one. Moreover, they reduce to the method proposed in [21] and to one
of the method proposed in [10] in the following canonical case

dyt =

(
0−1
1 0

)
∇ H(yt)

(
dt+c◦dWt

)
, (1.3)

whereyt ∈R
2, c is a real non-negative parameter,Wt is a one-dimensional standard

Wiener process andH(y) is a quadratic function ofy. Let us also note that, again if
H(y) is a quadratic function, our numerical method reduces to thestochastic midpoint
scheme from [17].

The new class of numerical schemes is presented in Section 2 and the main prop-
erties of the methods are proved in Section 3. Finally, numerical experiments demon-
strate the efficiency of our approach in Section 4 and possible extensions of this work
are highlighted in the conclusion.
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To close this introduction, let us mention several straightforward extensions of
problems of the form (1.1) or (1.2) that one could discretisewith similar techniques.
Everything that is done in the present paper for one-dimensional white noise can
easily be extended to the following case

dyt =B(yt)∇ H(yt )
(

dt+
m

∑
j=1

c j ◦dW j
t

)
,

where for all j, c j ≥0. One can also handle problems of the form

dyt =B(yt)∇ H(yt)dt+
m

∑
j=1

G j ∇ H(yt)◦dW j
t ,

with several skew-symmetric matricesG j of a special kind, see [7] for more details on
the canonical Hamiltonian caseB(y)=J−1, and derive energy-preserving numerical
schemes for these problems too. Closely related to the previous class of problems are
the randomised Hamiltonian systems from [2, Chap. V.4], [20] and [12, Sect. 3.1]

dyt =J−1∇ H0(yt)dt+
m

∑
j=1

J−1∇ H j(yt)◦dW j
t ,

for which one can also derive numerical methods that preserve the first integralH0 of
the above problem. We recall, thatH is a first integral if one has{H,H0}={H,H1}=
...={H,Hm}=0 with the Poisson bracket{·,·} associated to the above problem. An
extension of the proposed numerical integrators for the exact preservation of other
(or multiple) first integrals is however not obvious.

2 Energy-preserving schemes

The proposed numerical scheme for the discretisation of (1.1) reads

yn+1=yn+B
(yn+yn+1

2

)∫ 1

0
∇ H(yn+τ (yn+1−yn))dτ

(
h+c∆Wn

)
, (2.1)

whereh denotes the time step and∆Wn are Wiener increments.
One immediately sees that the above numerical scheme reduces to that of order

two proposed in [6] in the deterministic context (c=0). In fact, scheme (2.1) cor-
responds to that of [6] with a random step. Moreover, one notes that, if the matrix
B(y)=B is constant (e.g., if (1.1) is a canonical Hamiltonian problem, see [21,17])
the method reduces to

yn+1=yn+B
∫ 1

0
∇ H(yn+τ (yn+1−yn))dτ

(
h+c∆Wn

)
. (2.2)

This is a natural extension of the second order scheme from [9] (see also the averaged
vector field method from [25]) to the stochastic setting. We remark that another pos-
sibility would be to use the (deterministic) scheme proposed by Gonzalez [8] which
would result to the symmetric discrete gradient method from[7]. Additionally, as al-
ready noted in the introduction, when applied to (1.3), the numerical integrator (2.2)
reduces to the scheme proposed in [21], see Section 4 for moredetails.
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Remark 2.1 Since the proposed numerical methods are implicit with respect to both
the drift and diffusion terms, some difficulties (essentialy due to the unboundedness
of ∆Wn) may happen when implementing the schemes. As proposed by [17], one way
to address this issue is to consider truncated random variables instead of the Wiener
increments∆Wn :=

√
hξ , with ξ an N (0,1)-distributed random variable. Indeed,

setting Ah :=
√

2k|ln(h)| (for an integer k≥0), one defines the truncated random
variable [17]

ζh=





ξ , if |ξ |≤Ah,

Ah, if ξ >Ah,

−Ah, if ξ <−Ah.

Moreover, one has the following approximation property, see Lemma 2.1 from [17],

0≤E[ξ 2−ζ 2
h ]=(1+2

√
2k|ln(h)|)hk.

This is what we do in the present paper using the notation∆Ŵn :=
√

hζh for the
truncated random Wiener processes and taking k=2 in the definition of Ah. With
this choice of truncated random variables, one can show thatthe stochastic midpoint
scheme has order one [17, Th. 2.6] (this fact will be used in Theorem 3.1 below).

3 Properties of the energy-preserving schemes

The methods of the previous section have been designed to preserve exactly the
HamiltonianH(y). It turns out that they enjoy further interesting properties. The
proofs of the geometric properties of the numerical integrators follow easily from
the one given in [6].

3.1 Exact energy preservation

Proposition 3.1 If B(y) is skew-symmetric for all y, then the numerical method(2.1)
exactly preserves the energy, i.e., H(yn)=Const for all n.

Proof From the fundamental theorem of calculus we have

H(yn+1)−H(yn)=

∫ 1

0
∇ H(yn+τ (yn+1−yn))

T (yn+1−yn)dτ .

From the definition of the method (2.1) we thus get for the difference above

(∫ 1

0
∇ H(yn+τ (yn+1−yn))dτ

)T
B
(yn+yn+1

2

)∫ 1

0
∇ H(yn+τ (yn+1−yn))dτ

(
h+c∆Ŵn

)
,

which vanishes by the skew-symmetry of the matrixB(y).
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3.2 Conservation of quadratic Casimir’s

A function C(y) is called a Casimir function of the stochastic differentialequation
(1.1) if ∇ C(y)TB(y)=0 for all y. Along solutions of (1.1) we haveC(yt)=Const, be-
cause dC(yt)= ∇ C(yt)

TB(yt)∇ H(yt)
(
dt+c◦dWt

)
=0. This property is independent

of the HamiltonianH(y).

Proposition 3.2 Let C(y)=yTAy (with a symmetric constant matrix A) be a Casimir
function of the problem(1.1). The energy-preserving method(2.1) exactly preserves
this Casimir.

Proof Using again the fundamental theorem of calculus we have

C(yn+1)−C(yn)=

∫ 1

0
∇ C(yn+τ (yn+1−yn))

T (yn+1−yn)dτ .

Since the integrand is a polynomial of degree 1 inτ , an application of the midpoint
quadrature rule gives the exact result. For the differenceC(yn+1)−C(yn), using the
definition of the numerical scheme, we thus obtain

∇ C(yn+
1
2
(yn+1−yn))

T B
(yn+yn+1

2

)∫ 1

0
∇ H(yn+τ (yn+1−yn))dτ

(
h+c∆Ŵn

)
,

which vanishes due to the fact thatC(y) is a Casimir.

3.3 Quadratic Hamiltonian functions

In this subsection, we show that the numerical integrator (2.1) is equivalent to the
stochastic midpoint rule [17] in the case of quadratic Hamiltonian functions. Indeed,
let us consider the following Hamiltonian functionH(y)= 1

2yTDy+eTy with a con-
stant symmetric matrixD and a constant vectore. In this case, the numerical method
(2.1) reads

yn+1=yn+B
(yn+yn+1

2

)∫ 1

0

(
(yn+τ (yn+1−yn))

TD+eT)dτ
(

h+c∆Ŵn

)

=yn+B
(yn+yn+1

2

)(1
2
(yn+1+yn)

TD+eT)(h+c∆Ŵn

)
,

which is the stochastic midpoint rule applied to problem (1.1) with the above
quadratic Hamiltonian function.

3.4 Order of the methods

The goal of this subsection is to prove that the scheme (2.1) has mean-square order
1 (see Theorems 3.1 and 3.2 below). To do so, we first prove in Lemma 3.2 esti-
mates on the remainder of an asymptotic expansion of our scheme (2.1), in order to
compare it with the stochastic midpoint method from [17]. This order property of the
energy-preserving scheme (2.1) is not directly linked to the geometric structure of
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the scheme. Hence, we simply denote byf (y)=B(y)∇ H(y) the Poisson vector field.
We also setg(y)= ∇ H(y). For the sake of simplicity of the presentation, we firstly
restrict ourselves to the case where the HamiltonianH(y) and the structure matrix
B(y) are smooth functions ofy with globally bounded derivatives up to order 3 for
B and 4 for the functionH. Thanks to the energy preservation of the scheme (see
Proposition 3.1), this is indeed not a restriction for the applications we have in mind
(see Section 4), as we explain in Remarks 3.4 and 3.5.

Let us recall the following

Lemma 3.1 For all p∈ [1,+∞), there exists a positive constant Cp>0 such that for
all n∈N and all h∈(0,1), we have

(
E
(
|∆Wn|p

))1/p
≤Cph1/2 and

(
E
(
|∆Ŵn|p

))1/p
≤Cph1/2.

Proof Since∆Wn is a real normal random variable with densitye−x2/2h/
√

2πh, we
have for some positive constantCp>0,

E[|∆Wn|p]≤Cph
p
2 .

Since|∆Ŵn|≤|∆Wn| almost surely, we infer thatE[|∆Ŵn|p]≤Cph
p
2 .

We are now able to prove the following

Lemma 3.2 The numerical solutions provided by the numerical method(2.1) have
the following asymptotic expansion1:

yn+1−yn=a(yn)(h+c∆Ŵn)+b(yn)(h+c∆Ŵn)
2+c(yn)(h+c∆Ŵn)

3+Rn, (3.1)

with a(yn)=(B∇ H)(yn), b(yn)=(B∇ H)′(yn)(B∇ H)(yn)/2, and c(yn) are indepen-
dent of yn+1, and Rn depends on yn+1 and satisfies the following estimates

E[‖Rn‖]=O(h2) and (E[‖Rn‖2])
1
2 =O(h2). (3.2)

Remark 3.3 Note that, in view of the hypotheses on the functions B and H, the func-
tions a,b and c above are bounded almost surely along the numerical solution by a
constant which does not depend on h∈(0,1). In particular, for all p≥1, their mo-
ments of order p are finite and bounded by a constant which doesnot depend on
h.

Proof We proceed by successive Taylor expansions ofyn+1−yn in order to justify the
expansion (3.1), and in particular to show thatRn is of the form(h+c∆Ŵn)

4rn, where
rn depends onyn+1 and all the moments ofrn are bounded by a constant which does
not depend onh. The estimates (3.2) then follow by applying the Cauchy-Schwartz
inequality. In this proof,R will denote a random variable which may vary from one
line to the other and with finite moments of orderp for all p≥1 bounded by a constant

1 Note that, in view of Lemma 3.1, one can see that the terms in the expansion (3.1) are not properly
ordered and some of them could be included in the remainder. However, we keep this writing for the ex-
pansion because it is more compact and it helps understanding the computational process of the expansion.
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which does not depend onh∈(0,1). We will use repeatedly the fact that ifR and
S are two such random variables with appropriate dimensions,then so areRSand
(h+c∆Ŵn)R.

Let us start with the expansion of order 1. SinceB andg are smooth functions,
we have

B(yn+
yn+1−yn

2
)=B(yn)+

1
2

∫ 1

0
B′(yn+

s
2
(yn+1−yn))(yn+1−yn)ds,

and
∫ 1

0
g(yn+τ (yn+1−yn))dτ =g(yn)+

∫ 1

0

∫ τ

0
g′(yn+s(yn+1−yn))(yn+1−yn)dsdτ .

Using the definition of the scheme (2.1) and plugging the expression ofyn+1−yn in
the right hand side of the relations above, we obtain

B(yn+
yn+1−yn

2
)=B(yn)+(h+c∆Ŵn)R,

and ∫ 1

0
g(yn+τ (yn+1−yn))dτ =g(yn)+(h+c∆Ŵn)R.

Taking the product of the two expansions above yields

yn+1−yn=(h+c∆Ŵn)B(yn)g(yn)+(h+c∆Ŵn)
2R. (3.3)

We can now repeat this procedure to obtain the expansion of order 2. We first write
by Taylor expansions and use of the definition of the scheme (2.1),

B(yn+
yn+1−yn

2
)=B(yn)+

1
2

B′(yn)(yn+1−yn)+(h+c∆Ŵn)
2R,

and
∫ 1

0
g(yn+τ (yn+1−yn))dτ =g(yn)+

1
2

g′(yn)(yn+1−yn)+(h+c∆Ŵn)
2R.

Inserting the expansion (3.3) of order 1 into the expressions above and taking the
product, we obtain the expansion of order 2:

yn+1−yn=(h+c∆Ŵn)B(yn)g(yn)

+
(h+c∆Ŵn)

2

2

(
B′(yn)(B(yn)g(yn))g(yn)+B(yn)g

′(yn)(B(yn)g(yn))︸ ︷︷ ︸
=(Bg)′(yn)(Bg)(yn)

)

+(h+c∆Ŵn)
3R.

Another step of this procedure, expandingB(yn+(yn+1−yn)/2) and
∫ 1

0 g(yn+
τ (yn+1−yn))dτ aroundyn up to order 3 thanks to the smoothness ofB andg= ∇ H,
using the definition of the scheme in the terms of order 3 and the Taylor expansion
of order 2 in the other terms and then taking the product, yields the expansion (3.1)
with an explicit expression ofc(yn) which does not depend onyn+1 or ∆Ŵn and with
Rn=(h+c∆Ŵn)

4R. The estimates (3.2) follow by the Cauchy-Schwartz inequality.
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We can now compare the method (2.1) with the well-known stochastic midpoint
method to ensure that

Theorem 3.1 Assume that the Hamiltonian H(y) and the structure matrix B(y) are
smooth functions of y with globally bounded derivatives up to order3 for B and4 for
the function H. Then the energy-preserving scheme(2.1) has mean-square order of
convergence1.

Proof Recall thatf =B∇ H. Using the same expansion method as the one we used in
the proof of Lemma 3.2, we find that the stochastic midpoint method defined by

ỹn+1− ỹn= f ((ỹn+ ỹn+1)/2)(h+c∆Ŵn), (3.4)

has an asymptotic expansion similar to the one proposed in [16]

ỹn+1− ỹn=(h+c∆Ŵn)a(ỹn)+(h+c∆Ŵn)
2b(ỹn)+(h+c∆Ŵn)

3c̃(ỹn)+R̃n, (3.5)

with the same functionsa andb as that of the expansion (3.1) of the scheme (2.1),
with a function c̃ which does not depend on ˜yn+1 and a functionR̃n of the form
(h+c∆Ŵn)

4R, whereR is a function depending on ˜yn+1 through∆Ŵn and with finite
moments bounded by a constant which does not depend onh∈(0,1). In view of the
smoothness hypotheses onB andH and hence onf and of the boundedness hypothe-
ses on these functions and their derivatives, the random variablesa(ỹn), b(ỹn) and
c̃(ỹn) are almost surely bounded by a constant which does not dependonh. Using the
Cauchy-Schwarz inequality as in the proof of Lemma 3.2, yields

E[
∥∥R̃n

∥∥]=O(h2) and (E[
∥∥R̃n

∥∥2
])

1
2 =O(h2).

Considering the difference between the solutionyn+1 provided by the energy-
preserving scheme (2.1) and the solution ˜yn+1 provided by the midpoint scheme (3.4)
starting from the same pointyn= ỹn, we obtain using (3.1) and (3.5)

yn+1− ỹn+1=
(
c(yn)− c̃(yn)

)
(h+c∆Ŵn)

3+(Rn−R̃n). (3.6)

SinceRn (see Lemma 3.2) and̃Rn are of the form(h+c∆Ŵn)
4R, we have

∥∥E[Rn−R̃n]
∥∥≤E[

∥∥Rn−R̃n
∥∥]=O(h2). (3.7)

Moreover using the independence of the truncated Wiener increment∆Ŵn with yn,
we have

E
[
(c(yn)− c̃(yn))(h+c∆Ŵn)

3]=E[c(yn)− c̃(yn)]E[(h+c∆Ŵn)
3]=O(h2),

sinceE[(h+c∆Ŵn)
3]=h3+3c2h2. We infer, that

E[yn+1− ỹn+1]=O(h2). (3.8)

Moreover, using the triangle inequality in the right hand side of (3.6), the Cauchy-
Schwartz inequality and the estimation (3.7), we obtain

(E[‖yn+1− ỹn+1‖2])
1
2 ≤(E[‖c(yn)− c̃(yn)‖4])

1
4

︸ ︷︷ ︸
<+∞

(E[(h+c∆Ŵn)
12])

1
4

︸ ︷︷ ︸
=O(h3/2)

+(E[
∥∥Rn−R̃n

∥∥2
])

1
2

︸ ︷︷ ︸
=O(h2)

,
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which implies

(E[‖yn+1− ỹn+1‖2])
1
2 =O(h

3
2 ). (3.9)

The stochastic midpoint method is known to have mean-squareorder 1 in the present
context (see Theorem 2.6 in [17]). Since the local difference between this scheme and
the energy-preserving method (2.1) satisfies estimates (3.8) and (3.9), Lemma 2.1 of
[16] with p1=2 andp2=3/2 ensures that the method (2.1) also has mean-square
order 1.

We can now relax the hypotheses on the boundedness of the functionsH(y) and
B(y) and their derivatives in the theorem above. First, the boundedness ofH is not
mandatory (see Remark 3.4 below). Second, the boundedness of f =B∇ H andB and
their derivatives up to order 3 need not be global: local boundedness is sufficient to get
a mean-square order 1 thanks to the energy preservation property (Proposition 3.1)
of the scheme (2.1) (see Remark 3.5 below).

Remark 3.4 The results above extend to several cases where f=B∇ H is smooth,
sub-linear and all its derivatives are globally bounded. Infact, neither the results
above nor the results of [16] do require the boundedness of the function H (they only
need the boundedness of g= ∇ H and its derivatives).

Remark 3.5 Since the method(2.1)exactly preserves the energy by Proposition 3.1,
one can find, for problems such as those presented in Section 4, for all initial datum
y0, a convex subset of the phase space containing almost surelythe numerical tra-
jectories starting from y0 on which the vector field f and the function B as well as
their derivatives up to order3 are bounded. Hence, the estimates in the proofs above
extend to these cases straightforwardly. For example,

– for the harmonic oscillator starting at y0=(x0,p0)∈R
2 (see Section 4.1), such

a convex set is the ball centered at the origin of the phase space with radius
(y2

0+p2
0)/2. Since f is smooth on this compact set, it is bounded on it and so are

its derivatives up to order3.
– for the mathematical pendulum (see Section 4.3), such a convex set for an initial

datum y0=(q0,p0) is for example{q∈R}×{p∈R | |p|≤
√

p2
0+4}. Even if

this set is not compact, the continuity and the q-periodicity of f and its derivatives
ensure that f as well as its derivatives up to order3 are bounded on such a convex
set.

– for the stochastic rigid body (see Section 4.2), for an initial datum(y0
[1],y

0
[2],y

0
[3])∈

R
3, a compact convex set on which the functions f , B and their derivatives

are bounded is the convex hull of the ellipsoid of equation H(y[1],y[2],y[3])=
H(y0

[1],y
0
[2],y

0
[3]).

– for the Lotka-Volterra system (see Section 4.4), any numerical solution can be
included in a rectangle which is the product of two compact intervals. Hence the
functions B and f as well as their derivatives up to order3 are bounded on such
a compact (and convex) set.

We can summarise the results above in the
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Theorem 3.2 Assume that the function H and the matrix B are of classC 4, resp.C 3,
onR

d and that any energy-level H(y)=Constis included in a convex set on which
the functions B and∇ H as well as all their derivatives up to order3 are bounded.
Then the scheme(2.1)applied to the stochastic problem(1.1)has mean-square order
1.

4 Numerical experiments

In this section, we perform some numerical experiments in order to illustrate the
convergence order and various geometric properties of the proposed numerical in-
tegrators. We will compare the energy-preserving scheme (2.1) with the following
numerical integrators:

– the classical Euler-Maruyama scheme of mean-square order 1/2 (applied to the
converted Ito stochastic differential equation), see for example [11];

– the classical Milstein scheme of mean-square order 1 (applied to the converted
Ito stochastic differential equation), see for example [11];

– the Euler-Heun scheme of mean-square order 1 introduced in [24]. When applied
to Stratonovich differential equations

dyt =a(yt)dt+σ(yt)◦dWt ,

this numerical integrator reads

yaux
n =yn+ha(yn)+σ(yn)∆Ŵn

yn+1=yn+ha(yn)+
1
2

(
σ(yaux

n )+σ(yn)
)
∆Ŵn;

– the midpoint scheme of mean-square order 1 from [17]. When applied to
Stratonovich differential equations

dyt =a(yt)dt+σ(yt)◦dWt ,

this numerical method reads

yn+1=yn+ha(
yn+yn+1

2
)+σ(

yn+yn+1

2
)∆Ŵn;

– the stochastic discrete gradient of mean-square order 1 from [10]. When applied
to Stratonovich differential equations, with a conserved quantityI(y), of the form

dyt =S(yt)∇ I(yt)dt+T(yt)∇ I(yt )◦dWt ,

with two skew symmetric matricesS(y) andT(y), this numerical method reads

yn+1=yn+hS(yn)∇ I(yn,yn+1)+T(
yn+yn+1

2
)∇ I(yn,yn+1)∆Ŵn.

In our case (1.1), we will takeI(y)=H(y) and the natural choicesS(y)=T(y)=
B(y) (or S(y)=T(y)=J−1 for stochastic canonical Hamiltonian systems). Fur-
thermore,

∇ I(y,ȳ)=
1
2

(
∇ 1I(y,ȳ)+ ∇ 1I(ȳ,y)

)
,
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is a symmetric discrete gradient (see [10] for more details)with

∇ 1I(y,ȳ) :=




I(ȳ[1],y[2],...,y[d])−I(y[1],y[2],...,y[d])
ȳ[1]−y[1]

I(ȳ[1],ȳ[2],...,y[d])−I(ȳ[1],y[2],...,y[d])
ȳ[2]−y[2]

...

I(ȳ[1],ȳ[2],...,ȳ[d])−I(ȳ[1],ȳ[2],...,ȳ[d−1],y[d])
ȳ[d]−y[d]




,

wherey=(y[1],...,y[d])
T andȳ=(ȳ[1],...,ȳ[d])

T .

4.1 The stochastic harmonic oscillator with one dimensional Wiener process

Let us first consider the stochastic harmonic oscillator [21]

d

(
xt

pt

)
=

(
pt

−xt

)
(dt+c◦dWt),

wherec is a real non-negative parameter,xt ,pt are scalar stochastic processes andWt

is a one-dimensional Wiener process. The Hamiltonian thus readsH(p,x)= p2/2+
x2/2 and remains constant along the exact solution of the above problem. Noting
y=(p,x)T , one thus gets equation (1.3). For this case, the scheme (2.2) reduces to

(
xn+1

pn+1

)
=

1

1+ 1
4(h+c∆Ŵn)2

(
(1− 1

4(h+c∆Ŵn)
2)xn+(h+c∆Ŵn)pn

−(h+c∆Ŵn)xn+(1− 1
4(h+c∆Ŵn)

2)pn

)
,

which is precisely the method proposed in [21], the stochastic midpoint scheme from
[17], or the stochastic discrete gradient method from [10].One can remark that, for
this problem, one does not really need to use truncated random variables∆Ŵn since
the numerical method is well defined.

Figure 4.1 displays the numerical solutions in the phase space, the computed en-
ergies and the numerical positionx along one sample. For a better visibility in our
figures, not all points of the numerical solutions are displayed. On the one hand, it
can be observed that the numerical solutions given by the energy-preserving scheme
remain on the initial energy circle so that this scheme has a long time stability. This
stability can also be observed in the figure to the right, where the numerical posi-
tions of the energy-preserving method and Euler-Heun’s method are displayed (the
other numerical schemes offer similar behaviour as that of the Euler-Heun’s method,
the results are however not shown). On the other hand, one canobserve that Euler-
Maruyama’s method, Euler-Heun’s method and Milstein’s method are not appropriate
for numerical simulations of the stochastic oscillator over long time intervals.

Figure 4.2 displays the mean-square errors at the final step

(
E
[
‖ytN −yN‖2])1/2

,
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Fig. 4.1 Stochastic harmonic oscillator with parametersx0=0.1,p0=0.2,c=1. N=105 steps of length
h=10−2 for Euler-Maruyama (+), energy-preserving scheme (solid line), Milstein (∗), and Euler-Heun
(�).
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Fig. 4.2 Stochastic harmonic oscillator. Plot of the order of convergence: mean-square errors at timetend=
5. M=5000 samples used. The dashed lines have slopes 1/2 and 1.

of the numerical integrators with the same parametersx0,p0 andc as in the previous
numerical experiment. Here, we take as the exact solutionytN the numerical one using
the Milstein scheme and a very small step sizehexact=2−14. The expected values
are approximated by computing averages overM=5000 samples. Convergence of
order one, as stated by Theorem 3.2, is observed for the energy-preserving scheme.
Remark, that in this case, the Hamiltonian of the problem is quadratic so that, by the
result of Subsection 3.3, the energy-preserving scheme, the midpoint method and the
stochastic discrete gradient are the same numerical integrator.

4.2 A stochastic rigid body problem with one dimensional Wiener process

The equations of motion of a stochastic rigid body [14] are a Lie-Poisson system with
CasimirC(y)=‖y‖2

2:




dy[1]
dy[2]
dy[3]


=




0 −y[3] y[2]
y[3] 0 −y[1]
−y[2] y[1] 0






y[1]/I1
y[2]/I2
y[3]/I3


(

dt+c◦dW
)
,
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Fig. 4.3 Computed Casimirs along the numerical solutions of a stochastic rigid body (left). The right plot
displays the mean-square order of the schemes: the reference solution is computed using Milstein’s method
with hexact=2−12 andM=1000 samples were used for the expectations. The dashed lines have slopes 1/2
and 1.

wherey=(y[1],y[2],y[3])
T andI =(I1,I2,I3) are the moments of inertia. The Hamilto-

nian

H(y)=
1
2

(
y2
[1]/I1+y2

[2]/I2+y2
[3]/I3

)
,

is thus a conserved quantity and method (2.1) exactly preserves it together with the
quadratic Casimir

C(y)=
1
2

(
y2
[1]+y2

[2]+y2
[3]

)
.

Figure 4.3 (left) displays the computed Casimirs along one sample of the Euler-
Maruyama, the Euler-Heun, the Milstein, the stochastic discrete gradient and the
energy-preserving schemes. We usedN=300 steps of the integrators with step-
size h=10−2. It can be observed that the Casimir does not remain constantalong
the numerical solutions of the Euler-Maruyama, the Euler-Heun, the Milstein and
the stochastic discrete gradient methods. Similar behaviours are observed for the
Hamiltonian (except for the stochastic discrete gradient method, which of course pre-
serves this invariant). For the parameters in the problem, we usedc=1, initial values
y0=(0.8,0.6,0)and moments of inertiaI =(0.345,0.653,1). The mean-square orders
of convergence at timetend=1 of the methods are also presented. Remark that, in this
case too, the Hamiltonian of the problem is quadratic, so that the energy-preserving
scheme is the midpoint method.

4.3 The mathematical pendulum with two dimensional Wiener processes

Let us now consider a problem with a non-quadratic Hamiltonian, for example a
stochastic perturbation of a mathematical pendulum

d

(
pt

qt

)
=

(
−sin(qt)

pt

)
(dt+c1◦dW1

t +c2◦dW2
t ),

with two independent Wiener processesW1
t andW2

t and two real non-negative pa-
rametersc1,c2.
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Fig. 4.4 Stochastic mathematical pendulum withp0=0.2,q0=1,c1=1,c2=0.5. Energy along all the nu-
merical solutions (left). Zoom for the computed energy of the midpoint and energy-preserving schemes
(middle). Numerical positions of the energy-preserving scheme and Euler-Heun’s method.
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Fig. 4.5 Stochastic mathematical pendulum. Mean-square errors at time tend=2: M=1000 samples used
and reference solution computed with the midpoint scheme and a step sizehexact=2−12. The dashed lines
have slopes 1/2 and 1.

Figure 4.4 (left plot) displays the energyH(p,q)= 1
2 p2−cos(q) along one sample

of the numerical solutions given by all the methods. The longtime interval is[0,500]
and the numerical schemes use a step sizeh=2−6. The energy does not remain con-
stant along numerical solutions given by the Euler-Maruyama, the Euler-Heun and
the Milstein methods. However, the numerical solution given by the midpoint scheme
remains almost constant over this long time interval as observed in this figure (mid-
dle plot). This behaviour is very interesting and could result from the symplecticity
of this method. The energy along the stochastic discrete gradient method and the
energy-preserving scheme is of course preserved. A good long time stability of the
proposed scheme can be observed in this figure too (right plot), where the numerical
positions of the energy-preserving method and Euler-Heun’s method are displayed. A
good long time stability of the stochastic discrete gradient and the midpoint methods
is also observed, the results are however not shown for a better visibility.

We also show the convergence order of all the numerical integrators in Figure 4.5.
Here, the reference solution is computed using the stochastic midpoint scheme with
step sizehexact=2−12 andM=1000 samples are used for the expectations. A mean-
square order of convergence one is observed for the energy-preserving scheme.
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Fig. 4.6 Hamiltonian along the numerical solutions of a Lotka-Volterra system (left plot). Loglog plot of
the mean-square errors at timetend=1 usingM=1000 samples (right plot). The dashed lines have slopes
1/2 and 1.

4.4 Lotka-Volterra system

We finally consider a stochastic extension of the Lotka-Volterra system [6], for which

B(y)=




0 dy[1]y[2]bdy[1]y[3]
−dy[1]y[2] 0 −y[2]y[3]
−bdy[1]y[3] y[2]y[3] 0


,

and
H(y)=aby[1]+y[2]−ay[3]+ν lny[2]−µ lny[3].

For our numerical experiments, we choose the following parametersa=−2, b=−1,
d=−0.5, ν =1, µ =2, and initial valuesy0=(1.0,1.9,0.5). The constant in front of
the noise term is taken to bec=0.5. Figure 4.6 displays the Hamiltonian along one
sample of the numerical solutions given by all the numericalintegrators. We used the
schemes with a step sizeh=2−8 on the interval[0,5]. As expected, the total energy
of our problem remains constant along the numerical solutions given by the energy-
preserving scheme (2.1) and the stochastic discrete gradient from [10] up to roundoff
errors. This fact is not observed along numerical solutionsgiven by the other schemes.
In the convergence plot, a rate of convergence in the mean-square sense of one is
observed for the energy-preserving method. For these numerical experiments, the
reference solution was computed using the midpoint rule anda stepsizehexact=2−12.

5 Conclusion and prospects

In this paper, we have extended deterministic energy-preserving schemes from [6]
to the case of randomised Poisson systems. We have proved that these numerical
integrators are of mean-square order one, preserve the energy and quadratic Casimirs
for problem (1.1). A few questions remain open at the moment:

• What is the weak order of convergence of the proposed numerical schemes? We
suspect that the weak order of the proposed scheme is the sameas the weak
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order of the midpoint method from [17]. This question will beaddressed in a
forthcoming work.

• Is it possible, as in the deterministic case, to raise the order of the energy-
preserving schemes? This seems a difficult task for the mean-square order. How-
ever, the techniques developed in [1] may be used to construct high weak order
based on the energy-preserving scheme 2.1.

• In the end of Section 1 we addressed the question of developing numerical
schemes that preserve more than one first integrals of the problem. This certainly
deserves further theoretical investigations.
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