Coupling of a method of moments adapted to planar circuit and volumic methods

Caroline Girard, Stéphane Lanteri, Ronan Perrussel, Nathalie Raveu

To cite this version:

Caroline Girard, Stéphane Lanteri, Ronan Perrussel, Nathalie Raveu. Coupling of a method of moments adapted to planar circuit and volumic methods. COMPUMAG 2013, Jun 2013, Budapest, Hungary. pp.PC5-16. hal-00907090

HAL Id: hal-00907090
https://hal.archives-ouvertes.fr/hal-00907090

Submitted on 20 Nov 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Coupling of a method of moments adapted to planar circuit and volumic methods

C. Girard1,2, S. Lanteri2, R. Perrussel1 and N. Raveu1

1Université de Toulouse : INPT, UPS ; CNRS ; LAPLACE ; ENSEEIHT, Toulouse, France,
2NACHOS project-team, INRIA Sophia Antipolis-Méditerranée, Sophia Antipolis, France

\texttt{Caroline.Girard@inria.fr}

Abstract—Hybridization between a method of moments called WCIP (Wave Concept Iterative Procedure) and volumic methods like the FDTLM (Frequency Domain Transmission Line Method), the FEM (Finite Element Method) and the HDG (Hybridizable Discontinuous Galerkin) method is presented in 2d in this paper. The considered problem is the Helmholtz equation in the frequency domain. Two test cases are provided to validate the proposed hybridization principle.

Index Terms—Electromagnetic modeling, microwave propagation, finite element methods.

I. INTRODUCTION

Our work is part of circuits modeling in high frequencies. In particular, we aim at studying electromagnetic susceptibility of planar circuits. The WCIP \cite{1} is a specific method adapted to microwaves planar circuits study. Nevertheless, this latter cannot characterize circuits with dielectric inhomogeneities \cite{2}. In this context, we are concerned in this study with the hybridization between different numerical methods in the frequency domain. The WCIP has been hybridized with a finite element method (FEM-Q\textsubscript{1}), a hybridized discontinuous Galerkin method (HDG) \cite{3} and a method based on transmission lines theory (FDTLM) \cite{4}. Two 2d validation examples are dealt with in this short paper to validate the resulting hybrid methods. TM and TE cases have been studied, but only TE results are presented here.

II. HYBRIDIZATION PRINCIPLE

The computational domain is separated into two parts to simplify the approach as it is shown in figure 1. Domain 1 is tackled with the WCIP whereas domain 2 is addressed with another method; the connection is achieved at the interface. The linear system to be solved is:

\[
\begin{pmatrix}
I_{d} - \begin{pmatrix}
S_{1}^{W} & 0 \\
0 & S_{2}^{F}
\end{pmatrix}
\end{pmatrix}
\begin{pmatrix}
B_{1} \\
B_{2}
\end{pmatrix} =
\begin{pmatrix}
B_{0}
\end{pmatrix},
\]

(1)

where \(I_{d}\) is the identity matrix, \(S_{1}^{W}\) the discretization of the WCIP operator, defined by:

\[
S_{1}^{W} = \text{FMT}^{-1} \Gamma_{1} \text{FMT}
\]

(2)

with \(\Gamma_{1}\) the diagonal matrix composed of modal diffraction coefficients, FMT the discretization of a fast modal transform, \(S_{2}^{F}\) the operator discretization of domain 2. \(S\) the transmission operator between both domains, \(B_{1}\) and \(B_{2}\) incident waves on the interface (\(\Sigma\)) (see figure 1) and \(B_{0}\) the source.

III. NUMERICAL RESULTS

A. Diffraction of a guided mode on a perfect sheet

The example of figure 2a is taken into account with \(H = 1.27\text{cm}\) and \(a = 1.27\text{cm}\) at 16 GHz. Analytic solution for electric and magnetic fields being known, relative discretization error in \(L_{2}\)-norm is evaluated (see figure 3). FEM is implemented with quadrangular elements (FEM-Q\textsubscript{1}) and HDG with triangular elements (HDG-P\textsubscript{1}). The HDG-P\textsubscript{1} method provides better results as far as relative error is concerned, and the three methods converge in \(h^{2}\), \(h\) denoting the mesh step.

A comparison between hybrid methods using HDG-P\textsubscript{0}, HDG-P\textsubscript{1} and HDG-P\textsubscript{2} \cite{3} in domain 2 was also performed for E-field (see table I). This comparison shows that convergence order is 1 with HDG-P\textsubscript{0}, 2 with HDG-P\textsubscript{1} and also 2 with HDG-P\textsubscript{2} because WCIP limits convergence order, but relative error is improved with HDG-P\textsubscript{2}.

Figure 1: Representation of the studied case, separation between both domains according to the interface.

Figure 2: Examples

(a) Waveguide

(b) Microstrip line

A comparison between hybrid methods using HDG-P\textsubscript{0}, HDG-P\textsubscript{1} and HDG-P\textsubscript{2} \cite{3} in domain 2 was also performed for E-field (see table I). This comparison shows that convergence order is 1 with HDG-P\textsubscript{0}, 2 with HDG-P\textsubscript{1} and also 2 with HDG-P\textsubscript{2} because WCIP limits convergence order, but relative error is improved with HDG-P\textsubscript{2}.
B. Diffraction of a guided mode on a microstrip line

A microstrip line is inserted on the surface (Σ) (see figure 2b). It is centered and the metal proportion compared to air is 50%. We inject the TE$_1$ mode on the microstrip and we calculate the relative error on the E-field and the J-current. In this case, we do not know analytic solution and therefore, the chosen reference is the solution obtained with the WCIP alone, meshing the domain with N = 215 where N is the number of segments on (Σ). Relative errors on electric field and current are respectively summarized in tables II and IV and convergence orders are given in tables III and V.

Table II: Relative discretization error in L$_2$-norm on E-field.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>FEM-Q$_1$</th>
<th>HDG-P$_1$</th>
<th>HDG-P$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.34\times10$^{-2}$</td>
<td>2.91\times10$^{-2}$</td>
<td>2.65\times10$^{-2}$</td>
</tr>
<tr>
<td>1/2</td>
<td>1.34\times10$^{-2}$</td>
<td>1.58\times10$^{-2}$</td>
<td>1.47\times10$^{-2}$</td>
</tr>
<tr>
<td>1/4</td>
<td>7.24\times10$^{-3}$</td>
<td>8.23\times10$^{-3}$</td>
<td>7.72\times10$^{-3}$</td>
</tr>
<tr>
<td>1/8</td>
<td>3.86\times10$^{-3}$</td>
<td>4.31\times10$^{-3}$</td>
<td>4.06\times10$^{-3}$</td>
</tr>
<tr>
<td>1/16</td>
<td>2.03\times10$^{-3}$</td>
<td>2.23\times10$^{-3}$</td>
<td>2.11\times10$^{-3}$</td>
</tr>
</tbody>
</table>

Table III: Convergence orders on E-field.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>FEM-Q$_1$</th>
<th>HDG-P$_1$</th>
<th>HDG-P$_2$</th>
<th>FDTLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8025</td>
<td>0.8527</td>
<td>0.8557</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>0.8953</td>
<td>0.9373</td>
<td>0.9237</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>0.9099</td>
<td>0.9350</td>
<td>0.9262</td>
<td></td>
</tr>
<tr>
<td>1/8</td>
<td>0.9282</td>
<td>0.9507</td>
<td>0.9440</td>
<td></td>
</tr>
</tbody>
</table>

We notice that convergence orders are respectively 1 and 0.5 for E-field and J-current (order reduction coming from the discontinuity between metal and dielectric) in TE case whatever method used in domain 2, with very close relative discretization errors between hybrid methods.

Table IV: Relative discretization error in L$_2$-norm on J-current.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>FEM-Q$_1$</th>
<th>HDG-P$_1$</th>
<th>HDG-P$_2$</th>
<th>FDTLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.77\times10$^{-2}$</td>
<td>2.76\times10$^{-2}$</td>
<td>2.76\times10$^{-2}$</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1.95\times10$^{-2}$</td>
<td>1.95\times10$^{-2}$</td>
<td>1.95\times10$^{-2}$</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>1.37\times10$^{-2}$</td>
<td>1.37\times10$^{-2}$</td>
<td>1.37\times10$^{-2}$</td>
<td></td>
</tr>
<tr>
<td>1/8</td>
<td>9.65\times10$^{-3}$</td>
<td>9.59\times10$^{-3}$</td>
<td>9.61\times10$^{-3}$</td>
<td></td>
</tr>
<tr>
<td>1/16</td>
<td>6.76\times10$^{-3}$</td>
<td>6.70\times10$^{-3}$</td>
<td>6.72\times10$^{-3}$</td>
<td></td>
</tr>
</tbody>
</table>

Table V: Convergence orders on J-current.

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>FEM-Q$_1$</th>
<th>HDG-P$_1$</th>
<th>HDG-P$_2$</th>
<th>FDTLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5037</td>
<td>0.5048</td>
<td>0.5044</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>0.5064</td>
<td>0.5080</td>
<td>0.5073</td>
<td></td>
</tr>
<tr>
<td>1/4</td>
<td>0.5097</td>
<td>0.5121</td>
<td>0.5111</td>
<td></td>
</tr>
<tr>
<td>1/8</td>
<td>0.5139</td>
<td>0.5174</td>
<td>0.5160</td>
<td></td>
</tr>
</tbody>
</table>

IV. CONCLUSION

This work enables us to check hybridization principle between the WCIP and other volumic methods. A convergence order of 2 has been emphasized in a canonical case whatever the hybrid method implemented (FEM-Q$_1$, HDG or FDTLM) and using HDG-P$_2$ does not improve convergence order. The insertion of a microstrip line between both domains is also very relevant, because the 3 methods provide similar results, namely a convergence order of 1 for E-field and an order of 0.5 for electric current for a TE$_1$ mode in excitation. Consequently, inhomogeneous substrates, not dealt with the WCIP alone, will be studied with these hybrid methods keeping the advantages of surface conditions of the WCIP. This work is promising for the hybridization in 3d.

V. ACKNOWLEDGMENTS

The authors acknowledge support from the Defence Procurement Agency (DGA).

REFERENCES