Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes

Abstract : Covariance parameter estimation of Gaussian processes is analyzed in an asymptotic framework. The spatial sampling is a randomly perturbed regular grid and its deviation from the perfect regular grid is controlled by a single scalar regularity parameter. Consistency and asymptotic normality are proved for the Maximum Likelihood and Cross Validation estimators of the covariance parameters. The asymptotic covariance matrices of the covariance parameter estimators are deterministic functions of the regularity parameter. By means of an exhaustive study of the asymptotic covariance matrices, it is shown that the estimation is improved when the regular grid is strongly perturbed. Hence, an asymptotic confirmation is given to the commonly admitted fact that using groups of observation points with small spacing is beneficial to covariance function estimation. Finally, the prediction error, using a consistent estimator of the covariance parameters, is analyzed in details.
Document type :
Preprints, Working Papers, ...
Liste complète des métadonnées

Cited literature [1 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00906934
Contributor : François Bachoc <>
Submitted on : Wednesday, November 20, 2013 - 3:00:07 PM
Last modification on : Thursday, March 21, 2019 - 1:19:40 PM
Document(s) archivé(s) le : Friday, February 21, 2014 - 4:31:35 AM

Identifiers

  • HAL Id : hal-00906934, version 1

Citation

François Bachoc. Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes. 2013. ⟨hal-00906934⟩

Share

Metrics

Record views

163

Files downloads

138