Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes

Abstract : Covariance parameter estimation of Gaussian processes is analyzed in an asymptotic framework. The spatial sampling is a randomly perturbed regular grid and its deviation from the perfect regular grid is controlled by a single scalar regularity parameter. Consistency and asymptotic normality are proved for the Maximum Likelihood and Cross Validation estimators of the covariance parameters. The asymptotic covariance matrices of the covariance parameter estimators are deterministic functions of the regularity parameter. By means of an exhaustive study of the asymptotic covariance matrices, it is shown that the estimation is improved when the regular grid is strongly perturbed. Hence, an asymptotic confirmation is given to the commonly admitted fact that using groups of observation points with small spacing is beneficial to covariance function estimation. Finally, the prediction error, using a consistent estimator of the covariance parameters, is analyzed in details.
Type de document :
Pré-publication, Document de travail
Manuscript: 47 pages, supplementary material: 9 pages, accepted for publication in the Journal of.. 2013
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00906934
Contributeur : François Bachoc <>
Soumis le : mercredi 20 novembre 2013 - 15:00:07
Dernière modification le : vendredi 28 avril 2017 - 01:07:57
Document(s) archivé(s) le : vendredi 21 février 2014 - 04:31:35

Identifiants

  • HAL Id : hal-00906934, version 1

Collections

Citation

François Bachoc. Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes. Manuscript: 47 pages, supplementary material: 9 pages, accepted for publication in the Journal of.. 2013. <hal-00906934>

Partager

Métriques

Consultations de
la notice

100

Téléchargements du document

82