Geometrical regular languages and linear Diophantine equations: The strongly connected case

Abstract : Given an arbitrarily large alphabet Σ, we consider the family of regular languages over Σ for which the deterministic minimal automaton has a strongly connected state diagram. We present a new method for checking whether such a language is semi-geometrical or not and whether it is geometrical or not. This method makes use of the enumeration of the simple cycles of the state diagram. It is based on the construction of systems of linear Diophantine equations, where the coefficients are deduced from the set of simple cycles
Type de document :
Article dans une revue
Theor. Comput. Sci., Elsevier, 2012, 449, pp.54-63
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00906811
Contributeur : Jean-Philippe Dubernard <>
Soumis le : mercredi 20 novembre 2013 - 13:16:13
Dernière modification le : jeudi 14 décembre 2017 - 08:38:51

Identifiants

  • HAL Id : hal-00906811, version 1

Collections

Citation

Jean-Marc Champarnaud, Jean-Philippe Dubernard, Franck Guingne, Hadrien Jeanne. Geometrical regular languages and linear Diophantine equations: The strongly connected case. Theor. Comput. Sci., Elsevier, 2012, 449, pp.54-63. 〈hal-00906811〉

Partager

Métriques

Consultations de la notice

162