Geometrical Regular Languages and Linear Diophantine Equations

Abstract : We present a new method for checking whether a regular language over an arbitrarily large alphabet is semi-geometrical or whether it is geometrical. This method makes use first of the partitioning of the state diagram of the minimal automaton of the language into strongly connected components and secondly of the enumeration of the simple cycles in each component. It is based on the construction of systems of linear Diophantine equations the coefficients of which are deduced from the the set of simple cycles. This paper addresses the case of a strongly connected graph.
Type de document :
Communication dans un congrès
Markus Holzer and Martin Kutrib and Giovanni Pighizzini. DCFS 2011, Jul 2011, Giessen/Limburg, Germany. Springer, 6808, pp.107-120, 2011
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00906785
Contributeur : Jean-Philippe Dubernard <>
Soumis le : mercredi 20 novembre 2013 - 12:47:33
Dernière modification le : mardi 28 octobre 2014 - 17:58:26

Identifiants

  • HAL Id : hal-00906785, version 1

Collections

Citation

Jean-Marc Champarnaud, Jean-Philippe Dubernard, Franck Guingne, Hadrien Jeanne. Geometrical Regular Languages and Linear Diophantine Equations. Markus Holzer and Martin Kutrib and Giovanni Pighizzini. DCFS 2011, Jul 2011, Giessen/Limburg, Germany. Springer, 6808, pp.107-120, 2011. 〈hal-00906785〉

Partager

Métriques

Consultations de la notice

108