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Abstract. Composers commonly employ ornamentation and elabora-
tion techniques to generate varied versions of an initial core melodic
idea. Dynamic programming techniques, based on edit operations, are
used to find similarities between melodic strings. However, replacements,
insertions and deletions may give non-musically pertinent similarities, es-
pecially if rhythmic or metrical structure is not considered. We propose,
herein, to compute the similarity between a reduced query and a melody
employing only fragmentation operations. Such fragmentations transform
one note from the reduced query into a possible large set of notes, taking
into account pitch and rhythm constraints, as well as elementary paral-
lelism information. We test the proposed algorithm on four “theme and
variations” piano pieces by W. A. Mozart and L. van Beethoven and show
that the proposed constrained fragmentation operations are capable of
detecting simple variations with high sensitivity and specificity.®.

Keywords: melodic similarity, reduced melody, variations, fragmenta-
tion, musical parallelism

1 Introduction

Ornamentation, embellishment, elaboration, filling in are common strategies em-
ployed by composers in order to generate new musical material that is recog-
nized as being similar to an initial or reduced underlying musical pattern. This
way musical unity and homogeneity is retained, whilst at the same time, varia-
tion and change occur. This interplay between repetition, variation and change
makes music “meaningful” and interesting. Listeners are capable of discerning
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common elements between varied musical material primarily through reduction,
i.e. identifying “essential” common characteristics. Systematic music theories (e.
g. Lerdahl and Jackendoff [19]) explore such processes, as do high-level descrip-
tions [10,22] or semi-Schenkerian computational models [20]. We try here to
identify ornamentations of a given reduced melodic pattern. The proposed pat-
tern matching algorithm employs not only pitch information but also additional
rhythmic properties and elementary parallelism features.

Pattern matching methods are commonly employed to capture musical vari-
ations, especially melodic variations, and may be based on dynamic program-
ming techniques. Similarity between melodies can be computed by the Mongeau-
Sankoff algorithm [23] and its extensions, or by other methods for approximate
string matching computing edit-distances, that is allowing a given number of
restricted edit operations [7,9,13,14]. The similarities can be computed on ab-
solute pitches or on pitch intervals in order to account for transposition invari-
ance [4,11,16,25]. Note that some music similarity matching representations do
not use edit-distance techniques [1,8,17,21]. Geometric encodings also provide
transposition invariance [18,26,27].

In edit-distance techniques, the allowed edit operations are usually matches,
replacements, insertions, deletions, consolidations and fragmentations. However,
edit operations such as replacements, insertions and deletions of notes are ade-
quate for various domains (e.g. bioinformatics [12]) but present some problems
when applied to melodic strings. In the general case, insertions or deletions of
notes in a melodic string seriously affect metrical structure, and the same is true
for substitutions with a note of different duration. Fragmentations and consoli-
dations may be a further way to handle some aspects of musical pattern trans-
formation [6,23]. In [2], Barton et al. proposed to focus only on consolidation
and fragmentation operations on pitch intervals: the sum of several consecutive
intervals in one melodic sequence should equal an interval in another sequence.
Their algorithm identifies correctly variations, including transposed ones, of a
given reduced pattern, but incorrectly matches a large number of false positives,
the consolidation and the fragmentation being applied only on the pitch domain.

In this paper it is asserted that identifying simple variations (that contain
ornamentations) of a given reduced melodic pattern is best addressed using frag-
mentation operations, taking into account both pitch and rhythm information,
along with other higher level musical properties such as parallelism. Apart from
leaving aside replacement, insertion and deletion operations (only fragmentation
is employed), this paper gives emphasis to rhythmic properties of melodic strings
and other higher level structural features (e.g. similar ornamentations are intro-
duced for similar underlying patterns) showing that such information increases
both sensitivity and specificity of melodic variation detection.

The current study is not meant to provide a general method for identifying
variations of a given melodic pattern, but rather an exploration of some factors
that play a role in some “prototypical” cases of musical variation. The chosen set
of variations (W. A. Mozart K. 265, K. 331, K. 455 and Beethoven WoO 64) are



commonly used in composition as prototypical examples illustrating a number of
basic variation techniques (ornamentation, rhythmic variation, modal change);
these apparently simple sets of variations are already quite challenging for com-
putational modeling as the number of notes varies significantly between different
versions (some variations may have 8 times or more notes than the underlying
thematic pattern). Variations, however, appear in many guises and musical sim-
ilarity is very difficult to pin down and define systematically in a general way [3];
further research that takes into account a much larger variation dataset will be
necessary. In the last section, limitations of the current proposal are discussed
and future developments suggested.

The paper is organized as follows. Section 2 presents some definitions, Section
3 and 4 describe the algorithm and its results on three sets of variations by
Mozart and one set of variations by Beethoven, totaling 728 bars in 4 themes
and 31 variations. The best results are obtained while combining pitch, length
and parallelism constraints, with sensitivity between 70% and 85% and precision
between 60% and 100%. Section 5 discusses some perspectives of this work.

2 Definitions

A note x is described by a triplet (p,o,¢), where p is the pitch, o the onset,
and ¢ the length. The pitches can describe diatonic (based on note names) or
semitone information. We consider ordered sequence of notes x1 ..., that is
1 = (p1,01,01);, -, Zm = (Pms Omy €m), where 0 < 07 < 09 < ... < 0y, (see
Figure 1). All the sequences used in this paper are monophonic: there are never
two notes sounding at the same onset, that is, for every i with 1 < i < m,
0; + ¥; < 0;41. We do not handle overlapping notes.

N4t
= | | I/\ | : = : | D] |
ANIV4 (& ) | | | | r 1 | | | I 1
[ L — '
pitch p 73 74 73 176 76 71 73 71 74 74
interval Ap 1 -1 3 0 -5 2 -2 3 0
onset o 0 3 4 6 10 12 15 16 18 22
length [ 3 1 2 4 2 3 1 2 4 2

Fig. 1. A monophonic sequence of notes, represented by (p, 0, £) or (“p, 0, £) triplets. In
this example, onsets and lengths are counted in sixteenths, and pitches and intervals
are represented in semitones through the MIDI standard.

Approzimate matching through edit operations. Let S(a,b) the score of the
best local alignment between two monophonic sequences z. ...x, and yp . .. Yp.
This score can be computed by dynamic programming [23]:



S(a—1,b—1) 4 6(za,ys) (match, replacement)
S(a—1,b) + 6(zq, D) (insertion)
. S(a,b—1)+6(2,ys) (deletion)
Sla,b) =max | o’k h_1)4 5({Za—k+1...7a}, ) (consolidation)
S(a—1,b—k)+ 6(za, {yo—t+1.--yp}) (fragmentation)
0 (local alignment)

0 is the score function for each type of mutation. If the last line (0) is removed,
this equation computes the score for the best global alignment between z1 ...z,
and y; ...yp. Moreover, initializing to 0 the values S(0,b), the same equation
computes the score for the best semi-global alignment, that is the score of all
candidate occurrences of the sequence z; ...z, (seen as a pattern) inside the
sequence yj . .. Yp-

The complexity of computing S(m,n) is O(mnk), where k is the number of
allowed consolidations and fragmentations.

3 A Fragmentation Operation for Variation Matching

Allowing many fragmentations may produce many spurious matches: often frag-
mentations are thus restricted to only 2, 3 or 4 notes, of same length and pitch.
However, fragmentation with more notes and with different pitches does occur in
real cases, especially when a pattern is ornamented. Moreover, if we consider a
reduced pattern, then almost any variation of the pattern can be seen as a frag-
mentation of this reduction. For example, the variations of the Andante grazioso
of Mozart K. 331 (Figure 2) can be seen as a fragmentation of a reduced pattern
in 2 to 6 notes, using chord tones but also ornamental tones.

More specifically, we take fragmentation to mean that a relatively long note
is fragmented into shorter notes of the same overall duration (length constraint),
and that the pitch of at least one of the shorter notes matches with the initial long
note (pitch constraint). Finally, if the given reduced theme (query) comprises
repeating pitch and/or rhythm patterns, we assume that the same ornamentation
transformations will be applied on the repeating pitch/rhythm patterns (this
parallelism constraint is enforced in a post-processing stage).

We thus propose here to consider a semi-global pattern matching between
a reduced pattern x; ...z, and a monophonic sequence yj ... ¥y, with only frag-
mentations:

S(a,b) = max Sla—1,b—k)+ 6(xa, {Ub—k+1---Up})

The only operation considered here is the fragmentation of a note z, into
k notes {yp—r+1.--Up}. We require that the score function é(xq, {Up—k+1---Yn})
checks the following constraints:
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Fig. 2. The two first measures of the theme and variations of the Andante, K. 331, by
Mozart, preceded by a reduction R of the theme. In the theme, the circled D of the first
measure is a neighbor tone, as the C# of the second measure. This neighbor tone D can
also be found in the variation VI, as an appogiatura. The D that is present in the first
measure of the other variations is better analyzed as a passing tone between C# and
E (a similar role of passing tone can be also argued in a medium-scale interpretation
of the theme). Finally, there are no such Ds in variation I. A “note for note” alignment
between the theme and variation III, IV and V that would align all these Ds but
include some deletions and insertions does not lead here to a satisfactory analysis. Less
errors are done when considering fragmentations between the reduced pattern and the
variations.



— length constraint — the total length of the notes {yp—_g+t1...ys}, with their
associated rests, is exactly the length of z,;

— pitch constraint — at least one of the pitches yp_jt1...yp must be equal to the
pitch of z,, regardless of the octave. To match minor variations, we simply
use a “diatonic equivalence”, considering as equal pitches differing from only
one chromatic semitone (or, when the pitch spelling is not known, allowing
+1 semitone between the sequences, as in the d-approximation [5,24]).

We are not interested here into fine-tuning error costs: 6(zq, {Yp—k+1---Ys})
equals 0 when the constraints are met, and —oo otherwise. Note that with these
simplified costs, a consequence of the length constraint is that, at each position,
there is at most one fragmentation for each note x, — so dynamic programming
can be implemented in only O(mn) time.

Finally, we also propose a post-filtering that applies very well to the varia-
tions technique. Usually, inside a variation, the same transformation pattern is
applied on several segments of the theme, giving a unity of texture. In Figure 2,
variation I could be described by “sixteenths with rest, using chromatic neighbor
tones”, possibly with the help of some high-level music formalism [10,19,22]. We
propose here a simple filter that will be very computationally efficient. The unity
of texture often implies that the underlying base pitch is heard at similar places
(4+ marks on the Figure 2). We thus applied a refinement of the pitch constraint:

— pitch position parallelism filtering — when applying the pitch constraint on a
pattern divided into segments, at least one matched pitch must be found at
the same relative position in at least two segments.

For example, on Figure 2, all + marks, except the ones in parentheses in
variation V, occur at the same relative position in both measures.

4 Results

4.1 The Corpus

In order to evaluate the proposed algorithm, we apply it on the following sets of
“theme and variations” (see Table 1). We started from either .krn Humdrum [15]
or .mid files, keeping only the melody (without acciaccaturas):

— the first movement Andante grazioso of the Piano Sonata 11 in A major
(K. 331) by W. A. Mozart,

— the variations on Ah vous dirai-je maman (K. 265) by W. A. Mozart,

— the variations on Wilhelm von Nassan (K. 25) by W. A. Mozart,

and the Siz Easy Variations on a Swiss Song (WoO 64) by Ludwig van

Beethoven.



Table 1. Sets of variations used in this study. For Mozart K. 331, we started from the
.krn Humdrum files available for academic purposes at kern.humdrum.org, and kept
only the melody. For the other pieces, the melody has been extracted manually and
encoded in .mid or .krn symbolic notation.

Mozart | K. 331 |A major|6/8| theme + 6 variations [144 bars
Mozart | K. 265 |C major|2/4|theme + 12 variations|363 bars
Mozart | K. 25 |D major|4/4| theme + 7 variations |144 bars
Beethoven|WoO 64|F major |4/4| theme + 6 variations | 77 bars

Table 2. Reduced themes used as query for the fragmentation matching, and number
of ground truth occurrences of these themes in the considered sets of variations. The
“parallelism” column display the number of segments used to check the parallelism
constraint. Note that the length of the patterns is manually adapted for variations
with another meter than the theme (variation 12 of K. 265, in 3/4, and variation 10 of
K. 455, in 6/8).

reduced theme length||occurrences|parallelism
Mozart | K. 331 C#EBD 2 bars|| 7x3 X2
Mozart | K. 265 CGAGFEDC 2 bars 13 x2 x4
Mozart | K. 25 DEF#EGF?# 4 bars 8 x 2 X2, x2
Beethoven|WoO 64|CFACGFCCEFDC|6 bars 7x1 X2

In a study on the recognition of variations using Schenkerian reduction [20],
the author uses 10 sets of variations by Mozart; only the first four bars of each
theme (10 themes) and variations (77 variations) are used for testing the pro-
posed system.

In the current study, the corpus has a total of 4 themes and 31 variations.
This number may seem low, but the set of variations is used here searching for
a reduction of the theme in the whole melodic surface of the piece (728 bars on
the four pieces). Moreover, the search is not restrained to full bars — there could
be an occurrence starting from any note. However, in the majority of cases,
the length constraint will enforce the metrical structure of the pattern in the
occurrences.

For each variation set, a reduced version of the theme (or part of the theme)
is given as the query (Table 2). The algorithm then identifies matches of this
theme in the piece. The following paragraphs details the results on the four sets.
Some alignments corresponding to the best constraints can be downloaded from
www.algomus.fr/variations.

4.2 Andante grazioso, Piano Sonata 11 (K. 331)

The query is the reduced theme melody R (top of Figure 2), consisting of the
four notes C#E B D. We choose this pattern, having three occurrences in each
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Check pitch parallelism: [x2 ?] ++ Parallelism [x2] found.
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Fig. 3. Two overlapping matches found on the minor variation of K. 331, at measures
13 and 14, including each one 4 fragmentations into 6 notes (F6), with length and pitch
+1 constraints. The * marks indicate the pitches that are identical to the query (with
the approximation C' = C#). (Top.) The real match is confirmed by the parallelism
of pitch positions (sixteenths number 1, 5, 7 and 10 inside each measure) (Bottom.)
This spurious match is discarded, as the position of the matching pitches are different
in the two measures.

m6@720 -  m8@1008 | Score =4
Check pitch parallelism: [x2 ?] ++ Parallelism [x2] found.
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Fig. 4. A false positive in variation IIT of K. 331, that has also common pitch positions.
This false positive occurs (with overlapping) one measure later than a true occurrence,
at measure 5, that is correctly detected.



Table 3. Number of occurrences of the reduced pattern C# E B D found in the theme
and variations of the Andante grazioso of the Piano Sonata 11 by Mozart (K. 331).
Several fragmentation operations are tested. The columns “sens” and “prec” repre-
sents the sensitivity (recall) and precision of the proposed algorithm compared to the
ground truth (3 occurrences in the theme and each variation). In all the cases, these
3 occurrences are found by the method (true positives), except for the variation III,
in minor, when not using diatonic pitch matching. The “no constraint” line is directly
related to the number of notes of the variation — there are matches everywhere.

theme variations
I [ IT|IIT|IV |V | VI|| sens | prec
number of notes 88 [156(201(201|121|351{304
no constraint (all frag. 1...20) 85 [153|198|198|118|348(301(/100%| < 2%
pitch 79 |108|186(129(112|327|260(|100%| < 2%
length 36 |45|37|40|55|37|81(/100%| 6%

3114]13|83% | 41%
3141 83%| 82%

length 4+ pitch
length + pitch + parallelism

14 | 14 {{100%| 46%

length + pitch (diatonic) + parallelism 3 | 4 1/100%| 84%

3
3
length + pitch (diatonic) 3
3
3

WlWw Wlw w
W| O ol 0
Wlw oo O
Wl W W

ground truth 313

variation, instead of the full eight-notes pattern C#E B D A B C# B which has
only one complete occurrence in each variation.

Results are summarized on Table 3. In the theme and each variation, 3 oc-
currences have to be found. As our fragmentations can handle very large sets of
notes, the 3 truth occurrences are always found, except for the variation III, in
minor, when using pitch matching without diatonic equivalence.

The algorithm has thus an almost perfect sensitivity (recall), and should be
evaluated for his precision. Allowing any fragmentation (even starting only on
beats) leads to many spurious results. Adding only the pitch constraint does not
help so much. Adding only the length constraint gives matching every sequence
of two measures against the pattern.

As soon as both pitch and length constraints are enforced, the algorithm gives
good results, with very few false positives: In the majority of the variations, only
the 3 true occurrences are found. The best results are here when using afterwards
the “pitch parallelism” constraint (on two halves of the pattern), filtering out
some spurious matches (see Figure 3). This method has an overall 84% precision.

False (or inexact) positives can still happen in some situations (Figure 4),
but they are very few: only 4 in this piece. Moreover, some false positives are
overlapping with true matches, and could be discarded with a more precise
scoring system.
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Fig. 5. Two matches found in the first variation of K. 265. (Top.) Good match and
alignment. (Bottom.) Although the end of this match is a true positive, the align-
ment is wrong: the true occurrence should be shifted a quarter before, but the ties
on the melody prevent a good alignment respecting the length constraint across the
fragmentations.

4.3 Variations on Ah vous dirai-je maman (K. 265)

For Twelve Variations on “Ah vous dirai-je, Maman” (K. 265), we selected a
query as the eight notes CGAGF E D C, this full theme appearing twice in
each variation, totaling 26 occurrences. The parallelism constraint here applies
on the four segments of one measure, requiring that at least two measures share
common pitch positions.

Results are summarized on Table 4. With pitch, length and parallelism con-
straints, the algorithm outputs 20 true positive occurrences (sensitivity of 77%)
with regular pitch matching, and 22 true positive occurrences (sensitivity of
85%) with £+1 pitch matching.

Note that the sensitivity is not as perfect as in K. 331: For example, on
some variations, the length constraint can not be enforced (see Figure 5, bot-



Table 4. Number of occurrences (occ) of the reduced pattern C G AG F E D C found in
Twelve Variations on “Ah vous dirai-je, Maman” by W. A. Mozart (K. 265, 1387 notes
in our encoding). The ground truth has 2 occurrences in the theme and each variation,
totaling 26 occurrences. The column “(tp)” shows the number of true positives found
by each method, and the columns “sens” and “prec” give the associated sensibility
and precision. As we encoded the files in MIDI, without pitch spelling information, we
used here a £1 semitone pitch approximation to match the minor variation (but it also
brings some spurious occurrences).

[Joce (tp)] sens [ prec |
length + pitch 39 (20)| 77% | 51%
length + pitch + parallelism 29 (20)| 77% | 69%
length + pitch (£ 1) 71 (22)| 85% | 31%
length + pitch (+ 1) 4 parallelism|| 36 (22)| 85% | 61%
ground truth (26)

tom). Again, there are very few false positives, especially when the parallelism
constraint is required.

4.4 Variations on Wilhelm von Nassan (K. 25)

On the variations on Wilhelm von Nassan (K. 25), the query appears twice in
each variations, totaling sixteen occurrences (Figure 6). Since the reduced query
is not symmetrical (two whole notes, then four half notes), we choose here to
apply the parallelism constraint in two separated parts, first checking the first
two bars together, and then the third and fourth bars.

With the pitch, length and parallelism constraint, the algorithm is able to
find twelve true occurrences (sensitivity of 75%). The results are summed up in
Table 5. Even with the parallelism constraint, eight false positives are found.
Some of them are in fact true positives that are shifted in time, and therefore
not correctly located.

However, fifteen false positives are discarded by the parallelism constraint,
bringing the precision of the algorithm from 34% to 60%. This example shows
again how a simple parallelism constraint discards many false positives, and
therefore provides results with better precision.

4.5 Six Easy Variations on a Swiss Song (Beethoven, WoO 64)

On Siz Easy Variations on a Swiss Song (L. van Beethoven, WoO 64), we use
a longer reduced query with two anacrousis (Figure 7). The theme being eleven
bars long, and the query six bars long, the query appears only once in each vari-
ations. Therefore, the pattern appears seven times in the whole piece. The par-
allelism constraint (see Figure 9) compares the pitch positions of the first three
bars (with the anacrousis) and of the last three bars (also with the anacrousis).



Table 5. Number of occurrences of the reduced pattern found in Wilhelm von Nassan
(K. 25) by W. A. Mozart. The ground truth has 2 occurrences in the theme and each
variation, totaling 16 occurrences.

occ (tp) [sens|prec
length + pitch (£ 1) 35 (12)[75%|34%
length + pitch (£ 1) + parallelism|| 20 (12)[75%|60%
ground truth (16)

e

= o =

T

%V
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S

Fig. 6. Query used for the Variations on Wilhelm von Nassan (K. 25) aligned to the
theme.

With the pitch, length and parallelism constraint, the algorithm is able to
find five true occurrences (sensitivity of 71%). The pattern has not been found
in the first variation, the pitch constraint not being respected (see Figure 8). In
this variation set, no false positive has been found (precision of 100%), which
can be explained by the length of the query. However, despite this length, the
algorithm is still able to provide a very good sensitivity.

Fig. 7. Reduced theme of Beethoven’s Six Easy Variations on a Swiss Song used as a
query in the algorithm.



Fig. 8. First bars of the first variation of WoO 64. The A in the first bar does not
respect the pitch constraint (F in the query), and therefore this occurrence is not
found.
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Fig. 9. A positive match found in the fifth variation of WoO 64. The parallelism con-
straint is enforced for at least one position in both segments.

5 Discussion

In this paper, we have shown that a unique edit operation — a fragmentation —
gives very good results in matching a reduced query against a theme and a set
of variations. The key point in our approach is to focus on musically relevant
fragmentations, allowing very large fragmentations, but restricting them with
rhythm and pitch information along with some parallelism.

Such an approach with fragmentations works because we start from a reduced
query. Moreover, a very simplified matching procedure and error cost have been
used in this study. This simple model has produced good results in four sets
of variations that contain instances of extensive ornamentation. However, the
model may be improved in many ways. For instance, fine-tuning scores for the
¢ function could improve the results, allowing imperfect fragmentations and some
other classical operations. The “parallelism” constraint that was tested here is
also very simple (one common pitch position on several segments of a pattern),
and the number and the position of segments were manually selected for each
piece. This parallelism constraint could be extended to become more generic, but
its current simplicity makes it very suitable for efficient computation. Finally,
theses ideas could also be adapted to interval matching, to be transposition
invariant.

5.1 Analysis of Elaborated Sets of Variations

An important limit of this present study is that the four chosen sets of variations
are easy or intermediate piano pieces, and that their composition technique
almost always respects the global layout of the theme. At the opposite end of
the spectrum, one could look for example to the 15 “Eroica” Variations (op. 35)
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Fig. 10. Example of a more complex transformation on the “Eroica” variations by
Beethoven (op. 35). In this set of variations, two melodies are transformed : the theme
and the bass line. In the variation no. XIV, these melodies are tangled: During the first
eight bars, the transformed bass line is played at the soprano, and the transformed is
played at the bass. Then, the roles are exchanged.

or the 33 “Diabelli” Variations (op. 120) by Beethoven. Such pieces exhibit much
complex transformations of the musical material. The proposed algorithm could
extract some of these variations, but will be limited by the following facts:

— In many cases, there is not a single melody that can be extracted from the
polyphonic texture, or the melody can alternate between several voices (see
Figure 10);

— However, even in the cases where a melody can be extracted, further or-
namentation and transformation sometimes do not respect the length con-
straint.

We used in this study only fragmentations, and not the usual insertion/dele-
tion/substitution operations from [23], but, as stated in the introduction, these
operations break the metrical structure as soon as they affect durations of in-
dividual notes. For us, a good generic solution based on the fragmentation op-
eration could include some relaxation of the length constraints — thus allowing
insertion of notes or group of notes — but at the same time shall include a rein-
forcement of high-level constraints, such as the parallelism operation.

5.2 Towards a Unique Transformation Operation

Going a step further, we argue that relevant similarities between two melodies —
and maybe even between polyphonic pieces — should be computed with a unique



high-level transformation operation of a group of several notes {1, Zs...z¢} into
another group of notes {y1, y2...yx }- The traditional edit operations of match/re-
placement /insertion/deletion, along with fragmentation and consolidation, can
be seen as particular cases of this transformation operation, one set of notes
being reduced to a singleton or to the empty set. In such a framework, com-
puting 6 ({z1, x2...x¢}, {y1, Y2...yx }) may require several steps, possibly including
dynamic programming with the more classical operations. Seeing transformation
as the basic operation could yield musical similarities that span a larger range
than usual operations.
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