
HAL Id: hal-00906412
https://hal.science/hal-00906412

Submitted on 19 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D-PSTD simulation and polarization analysis of a light
pulse transmitted through a scattering medium

Fabrice Devaux, Éric Lantz

To cite this version:
Fabrice Devaux, Éric Lantz. 3D-PSTD simulation and polarization analysis of a light pulse transmitted
through a scattering medium. Optics Express, 2013, 21, pp.24969 - 24984. �10.1364/OE.21.024969�.
�hal-00906412�

https://hal.science/hal-00906412
https://hal.archives-ouvertes.fr


3D-PSTD simulation and polarization

analysis of a light pulse transmitted

through a scattering medium

Fabrice Devaux* and Eric Lantz
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Abstract: A tridimensional pseudo-spectral time domain (3D-PSTD)

algorithm, that solves the full-wave Maxwell′s equations by using Fourier

transforms to calculate the spatial derivatives, has been applied to determine

the time characteristics of the propagation of electromagnetic waves in

inhomogeneous media. Since the 3D simulation gives access to the full-

vector components of the electromagnetic fields, it allowed us to analyse

the polarization state of the scattered light with respect to the characteristics

of the scattering medium and the polarization state of the incident light. We

show that, while the incident light is strongly depolarized on the whole,

the light that reaches the output face of the scattering medium is much less

depolarized. This fact is consistent with our recently reported experimental

results, where a rotation of the polarization does not preclude the restoration

of an image by phase conjugation.

© 2013 Optical Society of America

OCIS codes: (290.4210) Multiple scattering; (290.5855) Scattering, polarization; (290.2558)

Forward scattering.
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1. Introduction

In a recent paper, we have presented results of ultrafast compensation of turbidity of ex-vivo

biological tissues by type 2 three-wave-mixing phase conjugation (TWMPC), where images

transmitted through biological tissues with thicknesses up to 5 mm were restored [1]. These

results indicate that the scattering process in such biological samples is more or less indepen-

dent of the polarization state of the light and that a polarization change of the phase conjugated

wave with respect to the incident wave does not preclude the image restoration process. Indeed,

the phase conjugated wave (i.e. the idler wave) that retraces the scattering path is not polarized

as the scattered light exiting from the biological tissues (i.e. the signal), because in a type 2

three-wave-mixing process the signal and the idler wave are polarized in orthogonal directions.

The hypothesis of polarization insensitivity, first confirmed by a simple numerical model based

on the Monte Carlo method, deserves further study with a more efficient numerical model. In

fact, we have to implement a numerical model able to simulate accurately, in time and in space,

electromagnetic phenomena such as the propagation of light in a scattering medium and the

non linear optical process of TWMPC. Although the Monte Carlo offers a flexible and accurate

method approach to model the variation in time of the state of polarization of the light trans-

mitted through scattering media [2], non linear optical phenomena and coherent effects of light

propagation are not accessible with this method.

The most popular method to simulate transient electromagnetic wave propagation is the

finite-difference time domain (FDTD) method, where the spatial derivatives in Maxwell′s equa-

tions are approximated by finite differences [3]. Even if FDTD has been developed to treat a

wide range of problems involving interaction of electromagnetic waves with all kind of ma-

terials, the numerical dispersion characteristics associated with FDTD can be problematic es-

pecially when large-scale problems are considered. In these cases, a space sampling density



of at least few tens of cells per wavelength is necessary to ensure that FDTD methods pro-

duce acceptable results. Therefore, 3D sampling of a scattering medium with realistic dimen-

sions (with dimensions of few tens of micrometers in each direction) will require a very large

number of sampling points and very powerful computing resources. An alternative solution

has been proposed by Liu [4]. This method, called the pseudo-spectral time-domain (PSTD)

method, differs from the FDTD by the fact that spatial derivatives are calculated using Fourier

transforms. This spatial differential process converges with infinite order of accuracy for grid-

sampling densities of two or more points per wavelength, provided that the medium optical

properties are sampled in accordance with the Nyquist theorem. In consequence, it allows the

study of various problems on larger scales, more efficiently (with a factor 4D to 8D where D is

the dimensionality of the problem) and with a better accuracy than FDTD methods [4–6]. In

particular, the problem of light scattering was addressed with 2D or 3D-PSTD algorithms in

order to calculate the scattered far fields [7] and the particle single-scattering properties with

sizes up to 200 wavelengths [8] or for comparison with the Mie theory [9] and the discrete

dipole approximation [10]. The problem of time reversal was also studied in two dimensions

using the PSTD [11, 12]. In this case, the phase conjugation was obtained by a simple inver-

sion of the magnetic field and not with the equations governing the non-linear effect producing

phase conjugation. In any case, the polarization state and the time of flight of the scattered

electromagnetic fields were not discussed.

In this paper, we propose a 3D-PSTD algorithm to model the propagation of a light pulse

through scattering media with realistic dimensions. The variation in time and the state of po-

larization of the transmitted light are analyzed for different characteristics of the scattering

medium and different polarization states of the incident light. To validate our algorithm, we

compare the results obtained from our simulations with a Monte carlo numerical method and

with some previously reported results. We show that, while the incident light is strongly depo-

larized on the whole, the light that reaches the output face of the scattering medium is much

less depolarized. This simple fact could explain the results reported in [1].

2. Principle of the tri-dimensional pseudo-spectral time domain method

In PSTD algorithms, Maxwell′s curl equations are calculated with discrete Fourier transforms

in order to solve the spatial derivatives on an unstaggered, collocated grid [13]. The Fast-

Fourier-Transform (FFT) is used to implement these spatial derivatives and limitations of FFT,

due to the periodic boundary conditions, are eliminated by using absorbing boundary conditions

formulated for perfect matched layer (PML) in nonconductive media [4, 14, 15].

2.1. Tri-dimensional pseudo-spectral time domain scheme

We consider here the propagation along the z axis of a transverse, pulsed electromagnetic wave

in a linear, lossless, non dispersive, non conductive and inhomogeneous medium. Because a non

dispersive medium is considered, we assume that light is monochromatic or, more precisely,

that its Gaussian time envelope is Fourier transform. According to the Maxwell′s equations,

the components along the (x,y,z) axes of the electric displacement field
−→
D , the electric field−→

E and the magnetic field
−→
B are calculated using the time-stepping iterations [4]. We give here

the details of the time-variation calculations for the x components of the different fields. The

other components can be deduced by a simple circular permutation of the x,y,z indices. The

equations governing electromagnetic fields in the medium are given by :
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Dx and Bx are split respectively into two terms [4] where the second indices y and z are related

to the y, z derivatives so that
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. As we use the FFT to approximate the spatial derivatives, the y derivative of a general

field component, for example Az that is known at all grid points ( j,k, l), can be computed as :

{
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∂y

}
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jkl
, (2)

where νy, Fy and F−1
y denote, respectively, the spatial frequency, the forward FFT and the

inverse FFT along the y direction. The use of the approximation given by Eq. (2) to calculate

the spatial derivatives in Eq. (1) yields backward Euler time-stepping relations of the following

form:
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where ( j,k, l) are cartesian coordinates indices of the spatial sampling point ( j∆x,k∆y, l∆z)
in the sampled volume and n is the index of the temporal sampling point n∆t. γv| jkl and ε jkl are,

respectively, the boundary absorbing layer function along the v direction [4, 15] and the per-

mittivity of the medium at the spatial sampling point ( j∆x,k∆y, l∆z). The absorbing layers are

obtained by setting the term γv| jkl to zero inside the region of interest and to a value increasing

linearly inside the absorbing domains [4]. In these equations, we assume that the permeability

and the permittivity of vacuum are equal to 1 (µ0 = 1, ε0 = 1) so that the speed of light in vac-

uum is normalized : c = 1. According to the Nyquist sampling theorem, the spatial sampling

step is fixed to a value corresponding to two or more samples per wavelength in a single direc-

tion [4] : ∆x = ∆y = ∆z = 0.3λ . With c = 1, the time step is fixed to ∆t = ∆x
16c

= ∆x
16

, which is

smaller than the maximum time step 2∆x

πc
√

3
corresponding to the stability limit of the 3D-PSTD

algorithm [13]. The time-stepping relations for the other components of the electromagnetic

fields can be easily deduced from Eq. (3) by a circular permutation of the x,y,z indices. The

source terms are designed such as the transverse electromagnetic wave emitted by the source

propagates along the z direction and added, at the intermediate time-step n + 1
2
, to the terms

Dxz|njkl and Dyz|njkl using the relations :
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Sx|njkl and Sy|njkl are the transverse amplitude components of the pulsed source term (delayed

with a time t0 and with a time width σt) at the time step n∆t and at the spatial sampling point

( j∆x,k∆y, l∆z). These components are given by:
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− (n∆t−t0)2

2σ2
t

(5)

ψ , ϕx and ϕy are the parameters used to define the polarization state of the electromagnetic

wave emitted by the source. The spatial amplitude S0| jkl is designed with a Gaussian shape

in the (x,y) transverse plane and with the optimized three-cells normalized pattern [ 1
4
,

1
2
,

1
4
]

along the z axis in order to suppress the aliasing errors [16]. Indeed, this optimized three-cells

normalized pattern, according to the properties of Pascal′s triangle, has a spatial frequency

spectrum which is a discrete decreasing function becoming null at the cutoff spatial frequency.

Finally, the propagation of the wave in the increasing z direction is ensured by adding the source

terms simultaneously on the magnetic field so that
−→
B =

√

µ0
ε
−→e z×−→

D . It is obtained as follows:
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2.2. Characteristics of the sampled volume and of the scattering medium
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Fig. 1. (a) Section along the xz plane of the sampled volume. (b) Example of a scattering

medium modelized by dielectric spheres randomly embedded in a homogeneous dielectric

medium.

The considered volume is sampled with nx × ny × nz points and sampling steps ∆x = ∆y =
∆z = 0.3λ . Figure 1(a) shows a slice along the xz plane of the sampled volume. This volume



is made up of several domains. Absorbing layers, with widths of nx
8

,
ny

8
and

nz

8
pixels, are

defined at the boundaries of the volume along each spatial dimension. The scattering medium

is delimited by these absorbing layers along the x and y dimensions. Along the propagation

axis (z axis), the input face, corresponding to the center of the three-cells source, and the output

face, where measurements are made, are distant respectively of three and two pixels from the

absorbing layers. Finally, in some cases the scattering medium will be surrounded by reflecting

layers along the x and y directions; this point is discussed in section 3.1. The scattering medium

is constituted by an homogeneous dielectric material (with a relative permittivity εm) randomly

filled with dielectric spheres, with a radius rs, a relative permittivity εs > εm and a volume

concentration βs. Figure 1(b) shows a typical distribution, in a (18λ )3 volume, of the dielectric

spheres with a radius rs = 0.9λ and a volume concentration βs ≃ 5%. In this figure, we can

observe that some dielectric spheres overlap and form aggregates with sizes greater than that of

a sphere. Moreover, the spatial sampling step introduces some distortions in the spherical shape

of the spheres. Although aggregates and the imperfect shape of the spheres introduce some

small uncertainties, we do not observe significative variations in our numerical results when

different realizations of the scattering medium with the same characteristics are performed.

Moreover, numerical results are consistent with the estimation of the scattering coefficients

calculated from the Mie theory [17] for spherical particles. In the presented results, the total

volume is sampled with 128× 128× 256 points and the volume of the scattering medium is

Vs ≃ (30λ )2 ×56λ .

3. Numerical results

First, we investigate the temporal properties of the scattered light exiting from inhomogeneous

media designed with different values of βs. In order to validate our numerical model, the tem-

poral profile of the output light intensity is compared with the time-resolved transmittance

function of a semi-infinite scattering medium given by Patterson et al. [18]:

T (t) = (4πDv)−
1
2 t−

3
2 × e−µavt

×
{

(d − l∗s )e−
(d−l∗s )2

4Dvt − (d + l∗s )e−
(d+l∗s )2

4Dvt

+(3d − l∗s )e−
(3d−l∗s )2

4Dvt − (3d + l∗s )e−
(3d+l∗s )2

4Dvt

}

(7)

D = 1
3[µa+(1−g)µs]

is the diffusion coefficient where µs, µa and g = 〈cosθ〉 are, respec-

tively, the scattering coefficient, the linear absorption coefficient and the anisotropy coeffi-

cient. Because non-absorptive particles are considered, calculations are performed with µa = 0.

l∗s = 1
(1−g)µs

is the reduced mean free path, d is the thickness of the scattering medium, t is

the time and v is the light velocity in the medium. We also compare the results of the PSTD

algorithm with Monte Carlo simulations. In the Monte-Carlo method for photon transport, the

propagation distance between two scattering events and the scattering direction cosines are

randomly generated using the inverse distribution laws method [19].

Then, we analyze the time dependence of the polarization state of the scattered light for

different polarization states of the incident light.

3.1. Time-resolved propagation of a short pulse in scattering media

A short pulse polarized along the x axis and with a 27 f s duration ( 1
e2 full width) is emitted by

the source. The source has a very narrow circular gaussian shape in the transverse plane with

a full width 6∆x = 1.8λ . For a radius rs = 0.9λ and a refractive index of the non-absorptive



dielectric spheres ns =
√

εs = 1.34, the size parameter of the spheres is krs = 2πnsrs

λ = 7.6, which

implies that light scattering occurs in the Mie regime, with an anisotropy coefficient g = 0.85.

Although the scattering properties of a medium mostly depend on the relative size of the spheres

with respect to the wavelength, we perform calculations by considering a wavelength λ =
1µm corresponding approximately to the wavelength used in our experiments reported in [1].

Considering that spheres are embedded in a lossless homogeneous medium with a refractive

index nm =
√

εm = 1 and with volume concentrations of 5%, 7%, 9% and 11%, the scattering

coefficients are calculated using the Mie theory. Table 1 gives the values of these coefficients

with respect to the volume concentrations βs. µs and µ∗
s are given in µm−1. Ns = µsd = d

ls
and

N∗
s = µ∗

s d = d
l∗s

are, respectively, the number of scattering events and the number of reduced

scattering events calculated for a thickness d = 56λ = 56 µm of the scattering medium.

Table 1. Scattering coefficients with respect to the volume concentrations βs of the dielec-

tric spheres.

βs (%) µs (µm−1) µ∗
s (µm−1) Ns N∗

s

5 0.18 0.027 10.1 1.5

7 0.24 0.036 13.4 2.0

9 0.30 0.045 16.7 2.5

11 0.35 0.053 19.7 3
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Fig. 2. (a)-(d) Single-frame excerpts from the video (Media 1) recording, in the xz plane

and at the times 0, 70, 120 and 170 f s, the propagation of the 27 f s pulse in a scattering

medium with βs = 7% . (a) The white contours show the locations and the shapes of the

particles in the considered xz plane of the medium. (b)-(d) The white dotted lines represent

the boundaries of the scattering medium . (e) Corresponding profiles along the z axis of the

pulse intensity integrated in the (x,y) transverse plane.

Figures 2(a)–2(d) show, at different propagation times, single-frame excerpts from the video

recording in the xz plane the intensity of the pulse propagating in a scattering medium with

a volume concentration of 7% (Media 1). It corresponds to a medium with a thickness twice

as great as the reduced mean free path (d = 2l∗s ). The propagation axis is graduated in optical



pathlength units : δ = 〈ns〉z, where 〈ns〉= nm +(ns−nm)βs is the average value of the refractive

index of the scattering medium. Typically, with βs = 7%, 〈ns〉= 1.024 and the average speed of

light in this medium is v = c
〈ns〉 = 0.977c. In Fig. 2(a), the white contours show the location and

the shape of the scattering particles and in Figs. 2(b)–2(d) the white dotted lines represent the

boundaries of the scattering medium. In Fig. 2(d), we can observe the increasing temporal and

spatial spreading due to scattering of the pulse during its propagation. Light scattering produces

a speckle pattern which is closely related to the location of the spheres in the medium. In the

presented speckle patterns like in Fig. 2(b), some peak intensities much larger than the mean

intensity make difficult viewing the temporal profile of the pulse during its propagation. Then,

in order to resolve with a better accuracy the time spreading of the temporal shape of the pulse

intensity, we plot in Fig. 2(e) the normalized pulse intensity profiles along the z axis, at the same

times considered in Fig. 2(a)–2(d), where the pulse intensity is integrated in the (x,y) transverse

plane. In the video we clearly see that the speckle patterns shown in Figs. 2(a)–2(d) are strongly

correlated to the particular realization of the particles in the medium and we can observe the

propagation of the backscattered light. On the other hand, we verified that the time shape of the

pulse intensity, integrated in the (x,y) plane, is substantially the same whatever the realization.

In order to validate our numerical model, we compare systematically the temporal shape

of the transmitted light given by our PSTD algorithm with the analytical expression of the

time-resolved transmittance of a scattering medium given by Eq. (7) and with Monte-Carlo

simulations [19]. The curves giving the results of the Monte Carlo simulations correspond to

the histogram of the optical pathlengths calculated over 10000 trajectories. First, simulations

are performed with scattering media only delimited by the absorbing layers. With the PTSD

algorithm, the durations of the transmitted pulses are significantly shorter than the results given

by the two other methods. We explain this discrepancy by the small transverse dimensions of

the scattering mediium : indeed, a large part of the scattered light is lost in the absorbing layers.

Therefore, in order to avoid these losses, we have added reflective layers at the boundaries of

the transverse plane (see Fig. 1).

Figure 3 shows the different temporal shapes of the output light (green curves), obtained

with the reflective layers, with respect to the thickness expressed in number of reduced mean

free paths. Each curve is compared with the corresponding time-resolved transmittance curve

(red curves) convolved with the input pulse (blue curves) and with the Monte-Carlo simulations

(cyan curves). The x-axis is graduated in units of optical pathlength and the vertical dotted lines

correspond to the optical pathlength corresponding to a straight propagation in the scattering

medium : 〈ns〉d. Each curve is normalized by its peak value. Though Monte-Carlo simulations

are calculated over 10000 trajectories, some oscillations remain in the presented results, but

these oscillations are progressively smoothed out when the number of trajectories increases.

We can observe that the results of the PSTD algorithm fit with a very good agreement the

Monte-Carlo simulations but not the transmittance function. This discrepancy can be explained

by the fact that the diffusion model used to calculate the transmission function is valid for

scattering media with a large number of reduced mean free paths, which is not the case here.

In future works, scattering media with a larger numbers of l∗s should be investigated in order to

demonstrate a possible better agreement between the PSTD and the diffusion theory.

In addition to the temporal analysis of our results, we used the method proposed in [20] to

determine the diffusion properties of a scattering medium by measuring the speckle contrast

resulting from the transmission of a femtosecond pulse. The contrast of a speckle is shown to

be C = 1√
N

, where N is the number of independent speckle patterns incoherently added. When a

scattering medium is illuminated by a Fourier-transform short pulse, with a time duration τl , the

transmitted pulse is stretched to approximately the average one-way traversal time τs = d2

2Dv
> τl

[21]. Then, the transmitted pulse is no more Fourier-transform and it can be considered as the
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Fig. 3. Comparison of the time-shapes of the transmitted pulse given by the PSTD algo-

rithm (green curves), Monte-Carlo simulations (cyan curves) and analytical transmittance

convolved by the input pulse shape (red curves) for different values of N∗
s . The x-axis is

graduated in optical pathlength units. The blue curves represent the input pulse and the

vertical dotted lines correspond to the optical length of the scattering medium.

superposition of N Fourier-transform pulses with a frequency bandwidth limited by ∼ 1
τs

. It

leads to the addition of independent speckle patterns whose contrast is related to this time by :

C ∼
√

τl

τs

(8)

From the time-integrated speckle patterns obtained with our PSTD algorithm, we have cal-

culated the contrast σI
〈I〉 , where 〈I〉 is the mean intensity and σI is the standard deviation of

the intensity fluctuations. Then, we have compared these contrast values with the contrast cal-

culated with Eq. (8) as well as with the contrasts calculated from measurements of the time

widths of the transmitted pulses. Figure 4 shows the typical output speckle pattern obtained

with an input pulse, with a duration τl = 27 f s ( 1
e2 full width), transmitted through a medium

with a thickness d = 3l∗s . Table 2 summarizes the values of the contrasts calculated with the

different methods. τs and τ ′l are, respectively, the average one-way traversal time (in f s) and

the time full width of the transmitted pulse (in f s measured at 1
e2 ). We can observe that all the

methods give values of the contrast in good agreement even if the calculated one-way traversal

times are significantly greater than the durations of the output pulses. The same measurements

have been performed for increasing time durations of the incident pulse (from 27 to 253 f s). A

scattering medium with a thickness d = 2l∗s that corresponds to an average one-way traversal

time τs = 577 f s is considered. As expected, the contrast of the speckle patterns observed at the

output of the scattering medium increases from 0.24 to 0.52 with the time width of the input
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Fig. 4. Normalized intensity of the output speckle pattern obtained with a 3l∗s scattering

medium. The contrast is C = 0.21.

pulse and the contrasts calculated with the different methods give results in good agreement.

Table 2. Comparison of the contrasts of the speckle patterns calculated with different meth-

ods and for different values of N∗
s .

N∗
s

σI
〈I〉 τs ( f s)

√

τl
τs

τ ′l ( f s)
√

τl

τ ′
l

1.5 0.29 433 0.25 311 0.30

2 0.23 577 0.22 449 0.24

2.5 0.22 724 0.19 512 0.23

3 0.21 863 0.18 586 0.21

The good fit between the results obtained with the PSTD and the Monte-Carlo simulations

and the good agreement between the contrast values calculated by the different methods tend

to prove that our PSTD algorithm correctly simulates the propagation of a light pulse through

an inhomogeneous medium.

3.2. Time-resolved polarization analysis of scattered light

In this section, we study the space and time-resolved polarization state of the transmitted light

with respect to the properties of the scattering medium and with respect to the polarization state

of the input pulse. The time variation of the local polarization state of the transmitted light is

characterized by calculating the components of the Stokes vector in the the output plane, at the

time step n∆t and at the spatial sampling point ( j∆x,k∆y) :

I|njk = Ex|njkE∗
x |njk +Ey|njkE∗

y |njk
Q|njk = Ex|njkE∗

x |njk −Ey|njkE∗
y |njk

U |njk = Ex|njkE∗
y |njk +E∗

x |njkEy|njk
V |njk = i(Ex|njkE∗

y |njk −E∗
x |njkEy|njk)

(9)

Figures 5(a)–5(d) show pictures of the components of the normalized local Stokes vector.

These results are obtained with a 2l∗s scattering medium. 〈〉t denotes the time integration of the

considered variables. Correlations between the intensity speckle pattern (Fig. 5(a)) and the local

value of the Q component (Fig. 5(b)) can be observed and show that the shinning speckle grains

are related to the coherent part of the transmitted light. Figure 5(e) presents the corresponding

degree of polarization defined as :
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Fig. 5. Time-integrated components of the local Stokes vector and the local degree of polar-

ization (DOP) of the light transmitted through a 2l∗s scattering medium. Stokes parameters

are normalized by the peak intensity of the speckle pattern.

DOP =

√

Q2 +U2 +V 2

I
(10)

Table 3. Average values and standard deviations of the space and time-integrated local

Stokes parameter Q and DOP.

N∗
s 〈Q〉xyt σQ 〈DOP〉xyt σDOP

1.5 0.44 0.17 0.49 0.14

2 0.31 0.17 0.40 0.13

2.5 0.25 0.17 0.35 0.13

3 0.20 0.17 0.31 0.12

For the different values of N∗
s , we calculated the average values and the standard deviations of

the Stokes parameters and of the DOP. Figure 6 and Table 3 summarize the statistical properties

of these variables. 〈〉xyt denotes the integration in time and space of the considered variables. As

the input pulse is linearly polarized in the x direction, its normalized Stokes vector reads Iin = 1,

Qin = 1, Uin = 0 and Vin = 0 (DOPin = 1). When N∗
s increases, we can observe that the average

values of the U and V components remain null with a large standard deviation and the average

values of the Q parameter and of the DOP decrease. More surprisingly, we find that, although
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Fig. 6. Histograms of the time-integrated local Stokes parameters and of the DOP for dif-

ferent values of N∗
s .

the rate of depolarized light increases with N∗
s , a significant part of the transmitted light remains

linearly polarized along the x axis even when the thickness of the scattering medium is larger

than l∗s .

Now, let’s us examine the evolution in time of the state of polarization of the light transmitted

through the scattering medium. We have plotted the variation with time of the instantaneous

values of the spatially integrated Stokes parameters for the different scattering media (Fig.

7). The x-axis (i.e. time axis) is still graduated in optical pathlengths. The first observation

concerns the peak of the Q parameter. When N∗
s increases, its value decreases relatively to the

peak intensity but its position is less delayed than the peak intensity position. The rising edges

of the Q and I variations are confounded and the time width of the Q component (τQ ∼ 100 f s)

is much larger than the width of the input pulse (τl = 27 f s). Moreover, while the time width of

the intensity profiles increases with N∗
s , the time width of the Q component remains constant

as well as its temporal shape. We can also observe that the light is completely depolarized

when the optical pathlength of the scattered light is greater than twice the optical thickness of

the medium. These results confirm that the early transmitted light (corresponding to the so-

called ballistic photons) is preferentially vertically polarized as well as the weakly scattered

light corresponding to the so-called snake photons. Moreover, it shows that the time arrival of

the weakly scattered light is not determined by the scattering coefficient of the medium. Future

works should be done in order to characterize more precisely this property with respect to the

thickness of the scattering medium, the size and the shape of the scattering particles.

We studied also the variation of the DOP during time. Figure 8(a) represents the transient

regime of the space and time-integrated 〈DOP〉xyt obtained with the different scattering media.

The curves exhibit maxima very close to 1 at the early times and decrease up to the final values
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Fig. 7. Time variation of the space-integrated components of the Stokes vector for the

different media. x-axes are graduated in optical pathlength units.

given in Table 3. Figures 8(b)–8(d) show the local time-integrated DOP at different times for

the 2l∗s scattering medium. In Fig. 8(b), that corresponds to the early time of the scattered light,

the local DOP is close to 1 in an area located at the center of the transverse plane and with

transverse dimensions close to the size of the source. This corresponds to the light that travels

in a straight line across the medium. At the time corresponding to the peak value (Fig. 8(c)),

the DOP is close to 1 in the whole transverse section. For increasing times, the local DOP

exhibits some increasing fluctuations until it reaches its final state depicted by the Fig. 8(d).

The last numerical experiments concern the influence of the polarization state of light on

the scattering process. Linear and circular polarizations of the light emitted by the source are

considered. In both cases, the time-resolved variation of the Stokes components and of the DOP

of the transmitted light are studied for different scattering media with increasing values of βs.

We have modelized scattering media made of dielectric spheres, with a radius rs = 0.6λ and a

refractive index ns = 1.34, embedded in a medium with a refractive index nm = 1. At λ = 1 µm,

the anisotropy coefficient is g = 0.81 and the size parameter of a sphere is krs = 2πnsrs

λ = 5.0.

With the volume concentrations of 7, 9 10 and 12%, the scattering media are characterized by

the coefficients µ∗
s =0.043, 0.053, 0.063 and 0.073 µm−1, and the thickness of the scattering

media corresponds, respectively, to a number of reduced scattering events N∗
s = 2.4, 3, 3.6 and

4.1.

In these numerical experiments, we removed the reflective layers at the boundaries of the

scattering medium in order to prevent the right ↔ left changes of a circular polarization due to

the reflections. Figures 9(a) and 9(b) show, for the two values of βs, the time-resolved variations

of the space-integrated Stokes components (〈I〉xy,〈Q〉xy) and (〈I〉xy,〈V 〉xy) of the transmitted

light initially linearly and circularly polarized. These components are normalized by the peak

values of the intensity. In both figures, we can observe that the time variations of the intensities

are confounded. It shows that the intensity temporal shape of the transmitted light is indepen-

dent of the incident polarization state [2]. However, we can observe on the same figures, that
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the component Q of the linearly polarized light decreases a little faster than the component V

of the circularly polarized light. This result is consistent with previous works showing that, in

the Mie regime, linearly polarized light is more rapidly depolarized than circularly polarized

light [2, 22]. The exponential time decay of the Stokes components Q and V is also clearly

exhibited, with a decay constant of about 0.25 µm−1 with the time axis graduated in optical

pathlength units ( corresponding to a time decay constant of about 0.075 f s−1). With the x-axis

graduated in number of scattering events unit (c(t − t0)+ 〈ns〉d)µ∗
s , we can observe that the

light is depolarized if it has experienced an optical path longer than an optical thickness of the

medium of approximately one reduced mean free path.

Because the mean values of the Stokes components (U,V ) and (Q,U) are null, respectively

for the linear and the circular polarization state of the incident light, we calculated the cor-

responding instantaneous time variation of the space integrated degree of linear polarization

〈DOPL〉xy = 〈Q
I
〉xy and the degree of circular polarization 〈DOPC〉xy = 〈V

I
〉xy. Figure 9(c) de-

picts the time variation of the DOPL and the DOPC for scattering media with βs =7, 9 ,10 and

12 %. The x-axis origin of the curves corresponds to the optical thickness of the media. In

agreement with the Q and V variations,the DOPL decreases a little faster than the DOPC. Since

the FWHM of the curves decreases approximately from 19 µm (i.e. 63 f s) to 16 µm (i.e. 53 f s)

when βs increases, the FWHM of the DOP curves expressed in optical pathlength unit divided

by the reduced mean free paths increases from 0.8 to 1.1, if we take into account the reduced

mean free paths calculated for the different values of βs. It confirms that the exiting scattered

light has undergone, on average, one reduced scattering event before being depolarized. In Fig.

9(b) weak oscillations (they would be almost invisible with a linear scale) can be observed in

the time variation of the Stokes parameters V for an incident wave circularly polarized (red

dashed curve) between optical pathlengths of 80 and 90 µm. These oscillations, traducing a

fluctuation of the instantaneous polarization state of light, are reproducible but with different

shapes for different realizations of the scattering medium. Similar oscillations can be observed
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or (I,V ), respectively for linearly (blue lines) or circularly (red lines) polarized incident
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Time variation of the space integrated linear and circular degrees of polarization when the

incident light is, respectively, linearly and circularly polarized with βs =7, 9 ,10 and 12 %.

in Fig. 7 for the Stokes parameters U and V .

4. Conclusion

For the first time to our knowledge, a 3D-PSTD algorithm has been implemented to solve the

full-wave Maxwell′s equations in order to resolve, in time and space, the propagation of electro-

magnetic waves in inhomogeneous media with realistic dimensions in the three dimensions of

space. The polarization state of the light exiting the scattering media was also analyzed with re-

spect to the characteristics of the scattering medium and to the polarization state of the incident

light. The numerical results match with a very good agreement the Monte-Carlo simulations

and are consistent with previous works. We show that, with this numerical model, it is possible

to resolve and fully characterize all the properties of an electromagnetic wave propagating in a

complex medium. In addition, we confirm that the ballistic part and the weakly scattered light

emerging from a scattering medium maintain a polarization state very close to the polarization

state of the incident light even when the thickness of the scattering medium is much greater than

one reduced mean free path. This explains in part our surprising experimental results reported

in [1], where the object image is retrieved by the phase conjugated light despite the rotation

of the polarization due to the nonlinear process of phase-conjugation. These results encourage

us to model other problems related to phenomena of light scattering as the polarization depen-

dence property of the backscattered light [23] or the propagation of light in inhomogeneous

media with birefringence or optical activity properties. In future works, we will model time

reversal of scattered light by phase conjugation, obtained by three or four wave mixing, in or-



der to more fully understand and explain our experimental results or works performed by other

groups [24].
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