
HAL Id: hal-00906188
https://hal.science/hal-00906188

Preprint submitted on 19 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Domain Adaptation of Majority Votes via Perturbed
Variation-based Label Transfer

Emilie Morvant

To cite this version:
Emilie Morvant. Domain Adaptation of Majority Votes via Perturbed Variation-based Label Transfer.
2013. �hal-00906188�

https://hal.science/hal-00906188
https://hal.archives-ouvertes.fr


Domain Adaptation of Majority Votes

via Perturbed Variation-based Label Transfer

Emilie Morvant∗

Institute of Science and Technology Austria
Klosterneuburg, 3400 Austria
emorvant@ist.ac.at

Abstract

We tackle the PAC-Bayesian Domain Adaptation (DA) problem [1]. This arrives
when one desires to learn, from a source distribution, a good weighted majority
vote (over a set of classifiers) on a different target distribution. In this context,
the disagreement between classifiers is known crucial to control. In non-DA su-
pervised setting, a theoretical bound – the C-bound [2] – involves this disagree-
ment and leads to a majority vote learning algorithm: MinCq [3]. In this work,
we extend MinCq to DA by taking advantage of an elegant divergence between
distribution called the Perturbed Varation (PV) [4]. Firstly, justified by a new for-
mulation of the C-bound, we provide to MinCq a target sample labeled thanks to
a PV-based self-labeling focused on regions where the source and target marginal
distributions are closer. Secondly, we propose an original process for tuning the
hyperparameters. Our framework shows very promising results on a toy problem.

1 Introduction

Nowadays, due to the expansion of Internet a large amount of data is available. Then, an important
issue in Machine Learning is to develop methods able to transfer knowledge from different informa-
tion sources or tasks, which is known as Transfer Learning (see [5] for a survey). In this work, we
tackle the hard [6] problem of unsupervised Domain Adaptation (DA), which arises when we want
to learn from a distribution – the source domain – a well performing model on a different distribution
– the target domain – for which one has an unlabeled sample. Consider, for instance, the common
problem of spam filtering, in which one task consists in adapting a model from one user to a new
one. One popular solution is to take advantage of a divergence between the domains, with the intu-
ition that we want to minimize the divergence while preserving good performance on the source data
[7, 8, 1]. Some classical divergences involve the disagreement between classifiers, which appears
crucial to control. Another divergence, the Perturbed Variation (PV) [4], is based on this principle:
Two samples are similar if every target instance is close to a source instance. In this work, we focus
on the PAC-Bayesian DA setting introduced in [1] for learning a good target weighted majority vote
over a set of classifiers (or voters). A key point is that the divergence used, which takes into account
the expectation of the disagreement between pairs of voters, is justified by a recent tight bound on
the risk of the majority vote: the C-bound [2]. This C-bound leads to an elegant and well perform-
ing algorithm for supervised classification, called MinCq [3]. Our contribution consists in extending
MinCq to the DA scenario, thanks to a label transfer from the source domain to the target one. First,
we propose in section 3 a new version of the C-bound suitable for every label transfer defined by a
label function. Then, we design in section 4 such a function thanks to the empirical PV. Concretely,
our PV-based label transfer focuses on the regions where the source and target marginals are closer,
and labels the (unlabeled) target sample only in these regions. Afterwards, we provide to MinCq
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this auto-labeled target sample. We also make use of the PV to define an original hyperparameters
validation. Finally, we show empirically in section 5 that our approach implies good and promising
results on a toy problem, better than a nearest neighboorhood-based transfer.

2 Notations and Background

Throughout this paper, we consider the PAC-Bayesian DA setting described in [1] for classification
tasks where X∈R

d is the input space of dimension d and Y ={−1,+1} is the label set. The source
domain PS and the target domain PT are two different distributions over X×Y . DS and DT are the
respective marginal distributions over X . In the PAC-Bayesian theory, introduced in [9], given a set
of classifiers (that we called voters) H from X to R and given a prior distribution π of support H,
the learner aims at finding a posterior distribution ρ leading to a ρ-weighted majority vote Bρ over
H with good generalization guarantees. Bρ is defined as follows.

Definition 1. Let H be a set of voters from X to R. Let ρ be a distribution over H. The ρ-weighted
majority vote Bρ (sometimes called the Bayes classifier) is,

∀x ∈ X, Bρ(x) = sign

[
E

h∼ρ
h(x)

]
.

The true risk of Bρ on a domain P is, RP (Bρ)=
1
2

(
1−E(x,y)∼P yBρ(x)

)
.

Usual PAC-Bayesian generalization guarantees (e.g. [10, 11, 12, 13, 14]) bound the risk of the
stochastic Gibbs classifier Gρ, which labels an example x by first drawing a voter h from H accord-
ing to ρ, then returns sign[h(x)]. The risk of Gρ corresponds to the expectation of the risks:

RP (Gρ) = E
h∼ρ

RP (h) =
1
2

(
1− E

h∼ρ
E

(x,y)∼P
yh(x)

)
.

It is then easy to relate Bρ and Gρ by: RP (Bρ) ≤ 2RP (Gρ).
In that light, the authors of [1] have done a PAC-Bayesian analysis of DA. Their main result is stated
in the following theorem.

Theorem 1 ([1]). Let H be a set of voters. For every distribution ρ over H, we have,

RPT
(Gρ) ≤ RPS

(Gρ) + disρ(DS , DT ) + λρ,

where λρ is a term related to the true labeling on the two domains1, and

disρ(DS , DT )=
∣∣∣ E
(h,h′)∼ρ2

(
E

xt∼DT

h(xt)h
′(xt)− E

xs∼DS

h(xs)h
′(xs)

)∣∣∣ is the domain disagreement.

This bound reflects the philosophy in DA: It is well known [7] that a good adaptation may be possi-
ble if the divergence between the domains is small while achieving good performance on the source
domain. The point which calls our attention in this result is the definition of the domain disagree-
ment, disρ(DS , DT ), directly related to the disagreement between pairs of voters, and justified by
the definition of the following theoretical bound called the C-bound [3, 2].

Theorem 2 (The C-bound as expressed in [3]). For all distribution ρ over H, for all domain PS

over X × Y of marginal (over X) DS , if E
h∼ρ

E
(xs,ys)∼PS

ysh(xs) > 0, then,

RPS
(Bρ) ≤ 1−

(
E

h∼ρ
E

(xs,ys)∼PS

ysh(xs)

)2

E
(h,h′)∼ρ2

E
xs∼DS

h(xs)h′(xs)
.

Since we can remark the C-bound’s denominator is also related to the disagreement between pairs
of voters, we propose, in the next section, a new formulation suited for DA. Before, we recall
the supervised classification algorithm MinCq [3] which ensues from the C-bound (and described
in Algo. 1). Concretely, MinCq learns a performing majority vote by optimizing the empirical
counterpart of the C-bound: It minimizes the denominator, i.e. the disagreement (Eq. (1)), given a
fixed numerator i.e. a fixed margin for the majority vote (Eq. (2)), under a particular regularization
(Eq. (3)).2 Note that its consistency is justified by a PAC-Bayesian generalization bound.
Since the C-bound, and thus MinCq, focus on the disagreement between voters, which is crucial to
control in DA [7, 8, 1], we propose to make use of the C-bound and MinCq in a DA perspective.

1Since one usually omits this term in algorithms, we do not develop it. More details could be found in [1].
2For more technical details on MinCq, please refers to [3].
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Algorithm 1 MinCq(S,H, µ)

input A sample S = {(xi, yi)}
|S|
i=1, a set of voters H,

a desired margin µ > 0

output Bρ(·)=sign

[
|H|∑

j=1

(
2ρj−

1
|H|

)
hj(·)

]

Solve argmin
ρ

ρ
T
Mρ−A

T
ρ, (1)

s.t. m
T
ρ =

µ

2
+

1

2|S||H|

|H|∑

j=1

|S|∑

i=1

yihj(xi), (2)

∀j ∈ {1, . . . , |H|}, 0 ≤ ρj ≤
1

|H|
, (3)

where ρ=(ρ1, . . . , ρ|H|)
T is a vector of weights,

M is the |H|×|H| matrix formed by
|S|∑

i=1

hj(xi)hj′ (xi)

|S|

for (j, j′)∈{1, . . . , |H|}2, and:

m =

(
1
|S|

|S|∑

i=1

yih1(xi), . . . ,
1
|S|

|S|∑

i=1

yih|H|(xi)

)T

A=

(
|H|∑

j=1

|S|∑

i=1

h1(xi)hj(xi)

|H||S|
, . . . ,

|H|∑

j=1

|S|∑

i=1

h|H|(xi)hj(xi)

|H||S|

)T

Algorithm 2 P̂ V (S,T, ǫ, d)

input S = {xs}
|S|
s=1 and T = {xt}

|T |
t=1 are unla-

beled samples, ǫ > 0, a distance d

output P̂ V (S, T )
1. G←

(
V =(A,B), E

)
, where A = {xs∈S}

and B = {xt∈T}, est ∈ E if d(xs,xt) ≤ ǫ
2. MST ←Maximum matching on G
3. Su ← number of unmatched vertices in S
Tu ← number of unmatched vertices in T

4. Return P̂ V (S,T ) = 1
2

(
Su

|S|
+ Tu

|T |

)

Algorithm 3 PV-MinCq(S, T,H, µ, ǫ, d)

input S = {(xs, ys)}
|S|
s=1 a source sample, T =

{xt}
|T |
t=1 a target sample,H, µ > 0, ǫ > 0, d

output Bρ(·)

MST ← Step 1. and 2. P̂ V (S, T, ǫ, d)

T̂ ← {(xt, ys) : (xt,xs)∈MST , (xs, ys)∈S}

return MinCq(T̂ ,H, µ)

3 A C-bound suitable to Domain Adaptation with Label Transfer

First, we propose to rewrite the C-bound with a labeling function l : X 7→ Y , which associates a
label y ∈ Y to an unlabeled example xt ∼ DT . Given such a function, the C-bound becomes:

Corollary 3. For all distribution ρ over H, for all domain PT over X × Y of marginal (over X)
DT , for all labeling functions l : X 7→ Y such that E

h∼ρ
E

xt∼DT

l(xt)h(xt) > 0, we have,

RPT
(Bρ) ≤ 1−

(
E

h∼ρ
E

xt∼DT

l(xt)h(xt)

)2

E
(h,h′)∼ρ2

E
xt∼DT

h(xt)h′(xt)
+

1

2

∣∣∣∣ E
(xt,yt)∼PT

(yt − l(xt))

∣∣∣∣ .

The first two terms correspond simply to the usual C-bound measured with the labeling function l.
The term 1

2

∣∣E(xt,yt)∼PT
(yt − l(xt))

∣∣ can be seen as a divergence between the true labeling and
the one provided by l: The more similar l and the true labeling are, the tigher the bound is.
With a DA point of view, an important remark is that only one domain appears in this bound. Then,
we guess that this domain is the target one, and that the computation of a relevant labeling function
has to make use of the information carried by the source labeled sample S. Concretely, given a
labeled source instance (xs, ys), we want to transfer its label ys to an unlabeled target point xt close
to xs. This will give rise to an auto-labeled target sample, on which we can apply MinCq. To tackle
the issue of defining the label transfer, we propose, in the following, to investigate a recent measure
of divergence between distributions: the Perturbed Variation [4].

4 A Domain Adaptation MinCq with the Perturbed Variation

We first recall the definition of the Perturbed Variation (PV) proposed in [4].

Definition 2 ([4]). Let DS and DT two marginal distributions over X , let M(DS , DT ) be the set
of all joint distributions over X ×X with marginals DS and DT . The perturbed variation w.r.t. a
distance d : X ×X 7→ R and ǫ > 0 is defined by,

PV (DS , DT , ǫ, d) = infµ∈M(DS ,DT ) Pr
µ

[d(X ,X ′) > ǫ] ,

over all pairs (DS , DT ) ∼ µ, such that the marginal of X (resp. X ′) is DS (resp. DT ).

In other words, two samples are similar if every target instance is close to a source instance. Note

that this measure is consistent and that its empirical counterpart P̂ V (S, T ) can be efficiently com-
puted by a maximum graph matching procedure described in Algo. 2 [4].
In our label transfer objective, we then propose to make use of the maximum graph matching com-
puted MST by the PV at step 2 of Algo. 2 (with d the euclidian distance and ǫ a hyperparameter).

3



Target rotation angle 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦

MinCq 92.1 78.2 69.8 61 50.1 40.7 32.7
SVM 89.6 76 68.8 60 47.18 26.12 19.22

TSVM 100 78.9 74.6 70.9 64.72 21.28 18.92
DASVM 100 78.4 71.6 66.6 61.57 25.34 21.07
PBDA 90.6 89.7 77.5 58.8 42.4 37.4 39.6
DASF 98 92 83 70 54 43 38

NN-MinCq 97.7 83.7 77.7 69.2 58.1 47.9 42.1

PV-MinCq 99.9 99.7 99 91.6 75.3 66.2 58.9

Table 1: Average accuracy results on 10 runs for 7 rotation angles.

Concretely, we label the examples from the unlabeled target sample T with MST , with the intuition
that if xt ∈ T belongs to a pair (xt,xs) ∈ MST , then xt is affected by the true label of xs. Else,

we remove xt from T . The auto-labeled sample obtained is denoted by T̂ . Then we provide T̂ to
MinCq. Our global procedure, called PV-MinCq, is summarized in Algo. 3.
Obviously, a last question concerns the hyperparameters selection. Usually in DA, one can make use
of a reverse/circular validation as done in [15, 1, 16]. However, since in our specific situation with
PV-MinCq, we have not directly make use of the value of the PV, we propose to select parameters

with a k-fold validation process optimizing the trade-off: RS(Bρ) + P̂ V (S, T ), where RS(Bρ) is
the empirical risk on the source sample. This heuristic is justified by the philosophy of DA: Mini-
mize the divergence (measured with the PV) between the domains while keeping good performances
on the source labels transferred on the target points.

5 Experimental Results

We tackle the toy problem called “inter-twinning moon”, each moon corresponds to one class. We
consider seven target domains rotating anticlockwise the source domain according to 7 angles. Our
PV-MinCq is compared with MinCq and SVM with no adaptation, and with DA approaches: The
semi-supervised Transductive-SVM (TSVM) [17], the iterative DA algorithms DASVM [15] (based
on an auto-labeling) and DASF [16] (based on the usual bound in DA [7]), and the PAC-Bayesian DA
method PBDA [1]. We also report a version of MinCq that makes use of a k-NN based auto-labeling
(NN-MinCq): We label a target point with a k-NN classifier of which the prototypes comes from the
source sample. We used a Gaussian kernel for all the methods. The preliminary results – illustrated
on Tab. 1 – are very promising. Firstly, PV-MinCq outperformns on average the others, and appears
more robust to change of density (NN-MinCq and MinCq appears also more robust). This confirms
the importance to take into account the disagreement between voters in DA3. Secondly, the PV-based
labeling implies better results than the NN one. Unlike a NN-based labeling, using the matching
implied by the computation of the PV appears to be a colloquial way to control the divergence
between domains since it clearly focuses on high density region by removing the target example
without matched source instance, in other words on regions where the domains are close. These two
points confirm that the PV is a relevant measure to control the process for a DA task.

6 Conclusion and Future Work

In this work, we have proposed a first procedure to tackle DA by making use of the recent algorithm
called MinCq. Indeed, MinCq allows us to take into account the disagreement between classifiers,
which is known to be crucial in DA. Our approach has the originality to directly minimize a risk
on the target domain thanks to a labeling defined with the Perturbed Variation distance between
distributions. The preliminary results obtained are promising, and we would like to apply the method
to real-life applications. Another exciting perspective is to define new label transfer functions, for
example by computing the PV with a more adapted distance d such as the domain disagreement.

3Note that preliminary experiments using PV with a SVM have implied poor results. This also probably
confirms the importance of the disagreement.
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