Global existence for diffusion-electromigration systems in space dimension three and higher

Abstract : We prove existence of global weak solutions for the Nernst-Planck-Poisson problem which describes the evolution of concentrations of charged species $X_1, ..., X_P$ subject to Fickian diffusion and chemical reactions in the presence of an electrical field, including in particular the Boltzmann statistics case. In contrast to the existing literature, existence is proved in any dimension. Moreover, we do not need the assumption $P = 2$ nor the assumption of equal diffusivities for all $P$ components. Our approach relies on the intrinsic energy structure and on an adequate nonlinear and curiously more regular approximate problem. The delicate passing to the limit is done in adequate functional spaces which lead to only weak solutions.
Type de document :
Article dans une revue
Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2014, 99, pp.152-166. 〈10.1016/j.na.2013.12.015〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00905869
Contributeur : Marie-Annick Guillemer <>
Soumis le : lundi 18 novembre 2013 - 17:33:27
Dernière modification le : jeudi 15 novembre 2018 - 11:56:24

Lien texte intégral

Identifiants

Citation

Dieter Bothe, André Fischer, Michel Pierre, Guillaume Rolland. Global existence for diffusion-electromigration systems in space dimension three and higher. Nonlinear Analysis: Theory, Methods and Applications, Elsevier, 2014, 99, pp.152-166. 〈10.1016/j.na.2013.12.015〉. 〈hal-00905869〉

Partager

Métriques

Consultations de la notice

345