A new gene involved in coenzyme Q biosynthesis in Escherichia coli: UbiI functions in aerobic C5-hydroxylation
Mahmoud Hajj Chehade, Laurent Loiseau, Murielle Lombard, Ludovic Pecqueur, Alexandre Ismail, Myriam Smadja, Béatrice Golinelli-Pimpanneau, Caroline Mellot-Draznieks, Olivier Hamelin, Laurent Aussel, et al.

To cite this version:

HAL Id: hal-00904907
https://hal.archives-ouvertes.fr/hal-00904907
Submitted on 20 Nov 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A new gene involved in coenzyme Q biosynthesis in *Escherichia coli*: UbiI functions in aerobic C5-hydroxylation

Mahmoud Hajj Chehade1,2,3,†, Laurent Loiseau4,†, Murielle Lombard5, Ludovic Pecqueur5, Alexandre Ismail5, Myriam Smadja5, Béatrice Golinelli-Pimpaneau5, Caroline Melot-Draznieks5, Olivier Hamelin1,2,3,†, Laurent Aussel4, Sylvie Kieffer-Jaquinod6, Natty Labessan5, Frédéric Barras4, Marc Fontecave5, and Fabien Pierrel1,2,3,*

†These authors contributed equally to the work

1CEA, iRTSV, Laboratoire Chimie et Biologie des Métaux, F-38054 Grenoble, France
2CNRS, UMR5249, F-38054 Grenoble, France
3Université Joseph Fourier-Grenoble I, UMR5249, F-38041 Grenoble, France
4Laboratoire de Chimie Bactérienne, Aix-Marseille Université UMR 7283, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13009 Marseille France
5Laboratoire de Chimie des Processus Biologiques, Collège de France-CNRS FRE3488, 11 place Marcellin-Berthelot, 75005 Paris, France
6Etude de la Dynamique des Protéomes, Laboratoire Biologie à Grande Echelle, U1038 INSERM/CEA/UJF, Grenoble, France

Running Title: UbiI functions in Escherichia coli coenzyme Q biosynthesis

To whom correspondence should be addressed: Fabien Pierrel, Laboratoire de Chimie et Biologie des Métaux, iRTSV, Bat K’, P272, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
Tel: +33-4-38-78-91-10 ; Fax: +33-4-38-78-91-24 ; E-mail: fabien.pierrel@cea.fr

Keywords: Coenzyme Q, monooxygenase, flavin, *Escherichia coli*, crystal structure, ubi genes

Background: The C5-hydroxylation reaction of coenzyme Q biosynthesis in *Escherichia coli* is catalyzed by an unknown enzyme.

Results: The UbiI protein is responsible for the C5-hydroxylation reaction.

Conclusion: The three monooxygenases involved in aerobic Q biosynthesis are now identified.

Significance: We report the characterization of a gene of unknown function and the first crystal structure of a monooxygenase involved in Q biosynthesis.

SUMMARY

Coenzyme Q (ubiquinone or Q) is a redox active lipid found in organisms ranging from bacteria to mammals in which it plays a crucial role in energy generating processes. Q biosynthesis is a complex pathway which involves multiple proteins. In this work, we show that the uncharacterized conserved visC gene is involved in Q biosynthesis in *Escherichia coli* and we have renamed it *ubiI*. Based on genetic and biochemical experiments, we establish that the UbiI protein functions in the C5-hydroxylation reaction. A strain deficient for *ubiI* has low level of Q and accumulates a compound derived from the Q biosynthetic pathway, which we purified and characterized. We also demonstrate that UbiI is only implicated in aerobic Q biosynthesis and that an alternative enzyme catalyzes the C5-hydroxylation reaction in the absence of oxygen. We have solved the crystal structure of a truncated form of UbiI. This structure shares many features with the canonical FAD-dependent para-hydroxybenzoate hydroxylase (PHBH) and represents the first structural characterization of a monooxygenase involved
in Q biosynthesis. Site directed mutagenesis confirms that residues of the flavin binding pocket of UbiI are important for activity. With our identification of UbiI, the three monooxygenases necessary for aerobic Q biosynthesis in E. coli are known.

INTRODUCTION

Coenzyme Q (ubiquinone or Q) is a widespread redox-active lipid essential for electron and proton transport in the respiratory chains from bacteria to mammals (1,2). Q is composed of a fully-substituted benzquinone ring to which is attached a polyisoprenyl tail with a number of isoprenyl units varying from one species to another (6 in Saccharomyces cerevisiae, 10 in humans and 8 in E. coli). Biosynthesis of Q is a highly conserved pathway, which involves a large number of genes that have been identified mostly from seminal genetic studies using S. cerevisiae and E. coli (3,4). However, our genetic understanding of Q biosynthesis is still incomplete and very few Q biosynthetic proteins have been isolated and characterized biochemically.

Biosynthesis of Q in E. coli requires 9 Ubi proteins (UbiA-H and UbiX), most of them are involved in reactions that modify the aromatic ring of the 4-hydroxybenzoic acid (4-HB) universal precursor (Fig. 1). After prenylation of 4-HB catalyzed by UbiA, UbiX and UbiD are proposed to be involved in the decarboxylation (5). Three methylation (reactions d, f, h, Fig. 1) and three hydroxylation reactions (on C5, C1 and C6, reactions c, e and g respectively) follow to yield Q. UbiG catalyzes both O5- and O6-methylation (6) while UbiE is the C2-methyltransferase (7). The genes encoding the enzymes responsible for the aerobic C1- and C6-hydroxylation reactions have been identified as ubiH and ubiF respectively (8,9) (Fig. 1). UbiF and UbiH share 32 % of sequence identity and are defined as members of class A flavoprotein monooxygenases from sequence analysis (10), even though they have not been isolated in pure form and characterized in vitro. In contrast, the gene responsible for the C5-hydroxylation reaction in E. coli (c on Fig. 1) remains unknown. UbiB has been proposed to be involved in this reaction based on the accumulation of 3-octaprenylphenol (OPP, Fig. 1) in a ubiB- strain (11,12). However, accumulation of OPP does not necessarily reflect a defect in C5-hydroxylation since a strain deficient in the methyltransferase UbiG also accumulates OPP (13). Moreover, the primary sequence of UbiB does not contain any motif characteristic for hydroxylases but instead displays conserved motifs found in a superfamily of ancestral kinases (14).

Searching the gene responsible for the C5-hydroxylation, we reasoned that visC, a gene of unknown function, could be a good candidate to investigate because it locates immediately downstream of ubiH within the same operon (9). Furthermore, visC is predicted to encode a protein with the typical domains shared by flavoprotein monooxygenases and with 30 % and 39 % sequence identity to UbiH and UbiF respectively (Fig. S1)(10). In the present study, we report genetic and biochemical experiments which unambiguously establish that VisC participates to coenzyme Q biosynthesis by catalyzing the aerobic C5-hydroxylation reaction. We therefore propose to change the name of VisC into UbiI. We succeeded in purifying the protein and crystallizing a truncated form of UbiI. The crystal structure shows a high degree of similarity with that of parahydroxybenzoate hydroxylase (PHBH) a well characterized FAD-dependent monooxygenase (15). Albeit incomplete, our structure of UbiI is the first crystal structure of a monooxygenase associated with ubiquinone biosynthesis.

EXPERIMENTAL PROCEDURES

Strains and Growth Conditions

E. coli strains were grown in Luria-Bertani (LB)-rich medium at 37 °C. Anaerobic cultures were performed in sealed 15mL falcon tubes filled to the top with culture medium. Strains used in this study are listed in Table S1. Ampicillin (50 µg/ml) and kanamycin (25 µg/ml) were added when necessary. All the strains are E. coli K-12 derivatives. Strains JW2874, JW2875, JW0659 and JW5581 from the Keio collection (16) were kindly provided by P. Moreau (LCB, Marseille) and were the donor of the ∆ubiF::kan, ∆ubiH::kan, ∆ubiF::kan and ∆ubiE::kan mutations. The ∆ubiI strain was cured to yield ∆ubiIc which was then used to construct the ∆ubiF∆ubiI and ∆ubiE∆ubiI strains. Each mutation was transduced via P1
phage into MG1655. Mutations were confirmed using colony PCR with primers flanking the mutation. *S. cerevisiae* was transformed using lithium acetate and was grown in YNB without pABA and folate (MP Biomedicals) with the indicated carbon sources (17).

Plasmid Construction

Plasmids are listed in Table S1 and their construction is detailed in supplementary text.

Quinones extraction and quantification by HPLC-ECD analysis

5 mL of cells in exponential phase were centrifuged and the pellet mass was determined. Glass beads (100 µL), 50 µL KCl 0.15M and a volume of a Q solution (used as an internal standard) proportional to the wet weight were added to cell pellet. Q$_{10}$ was used for *E. coli* samples and Q$_{4}$ for *S. cerevisiae* samples. Lipids extraction was performed by adding 0.6 mL of methanol, vortexing for 10 minutes then adding 0.4 mL of petroleum ether (boiling range 40°C-60°C) and vortexing for 3 min. The phases were separated by centrifugation 1 min, 5000 rpm. The upper petroleum ether layer was transferred to a fresh tube. Petroleum ether (0.4 mL) was added to the glass beads and methanol–containing tube, and the extraction was repeated. The petroleum ether layers were combined and dried under nitrogen. The dried samples were stored at -20°C and were resuspended in 100 µL of 98% ethanol, 20 mM lithium perchlorate. Aliquots were analyzed by reversed-phase high-performance liquid chromatography (HPLC) with a C18 column (Betabasic-18, 5 mm, 4.6 × 150 mm, Thermo Scientific) at a flow rate of 1 mL/min using 40% ethanol, 40% acetonitrile and 20% of a mix of 90% isopropanol and 10% lithium perchlorate (1M) as a mobile phase. The mobile phase used to analyze yeast extracts was 5% isopropanol, 20% acetonitrile and 75% of a mix of 98% methanol and 2% lithium perchlorate (1M). Quinones were quantified with an ESA Coulochem III electrochemical detector (ECD) and a 5011A analytical cell (E1, -650 mV; E2, 650 mV). Hydroquinones present in samples were oxidized with a precolumn 5020 guard cell set in oxidizing mode (E, +650 mV). Different volumes of the standard Q solutions were injected in the same conditions in order to correct for sample loss during the organic extraction on the basis of the recovery of the Q internal standard. Standard curves for Q$_{4}$ and Q$_{10}$ were used for Q$_{8}$ and Q$_{8}$ quantification, respectively.

4-HP$_{8}$ purification and characterization

12L of LB culture of ΔubiI cells in stationary phase were centrifuged (4000 rpm, 15 minutes) and cell pellet mass was determined (30g). Lipid extraction was performed for at least ten cycles at 50°C with 150 mL of acetone using a Soxhlet extractor. The extract was concentrated with a rotary evaporator, resuspended in chloroform and applied on a silica column (M60, Macherey Nagel ©). Elution of molecules was realized with 100% of chloroform. Compounds of interest were collected in glass tubes and 4-HP$_{8}$ was further purified by HPLC with 40% acetonitrile, 40% ethanol and 20% of a mix of 90% isopropanol and 10% of water. Oxidized and reduced forms of 4-HP$_{8}$ were purified based on their characteristic UV spectra (see Fig. S3D). NMR spectra were recorded on a Bruker EMX 300 MHz spectrometer with D$_6$-ethanol as solvent. Mass spectrometry measurements were carried out as described in supplementary text.

Expression and Purification

Overexpression of UbiI was achieved by using BL21 (DE3) *E.coli* strain (Novagen) transformed with pET-ubiI-his$_6$. The cultures were grown at 37°C until they reached OD$_{600}$ = 0.4, and then shifted to 20°C for induction. IPTG was added to 0.1 mM, and growth continued overnight. All subsequent operations were carried out at 4°C. Cells were harvested by centrifugation. The cell pellet was resuspended in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM DTT, 30% glycerol (v/v) and 1 mM Pefabloc (VWR). After sonication, the lysate was centrifuged at 180,000 x g for 90 min. The resulting supernatant was loaded onto Ni-NTA Superflow resin (Qiagen) equilibrated with buffer 50 mM Tris-HCl, pH 7.5, 25 mM imidazole, 150 mM NaCl, 5 mM DTT and 30% glycerol (v/v). UbiI was eluted with 250 mM
imidazole, and after imidazole removal by ultrafiltration with Amicon Ultra 30K columns (Millipore), the purified protein was found to be >95% pure as judged by SDS-PAGE. The purified protein was aliquoted and stored at -80°C in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5 mM DTT and 30% glycerol (v/v). Selenomethionylated UbiI was overexpressed according to the indicated protocol (18) and purified with the same protocol as the native UbiI.

Limited trypsin proteolysis

To optimize the conditions of limited proteolysis, experiments were first conducted on an analytical scale (500 µg of UbiI) where ratios of enzyme (trypsin) over substrate (UbiI) ranged from 1:15 to 1:1,000 (w/w) in a final volume of 200 µL. Digestion time was then optimized for a fixed enzyme over substrate ratio. Tryptic digestion analysis was performed by SDS PAGE. Large-scale preparation of cleaved UbiI was then carried out in 50 mM Tris-HCl buffer, pH 7.5, 30% glycerol (v/v) at a protein concentration of 3 mg/mL. After 2 h of incubation of UbiI (21 mg) with trypsin (42 µg) at 37°C, the reaction was stopped by the addition of Pefabloc (1mM), followed by analytical SDS PAGE. The N-terminal 40kDa domain which lacks the C-terminal 6xHis tag was purified on a NiNTA Superflow resin by collecting the flow-through and concentrated to 6-8 mg/mL in 25 mM Tris-HCl, pH 7.5, 150 mM NaCl, 10% (v/v) glycerol.

Protein analysis

Mass spectrometry analysis (MALDI-TOF) was performed to delineate the C-terminal boundary of the N-terminal 40 kDa domain of UbiI, with the MASCOT software and Findpept tool (SiCaPS platform of IMAGIF (Gif-s-Yvette, France). SEC-MALLS experiments were performed to determine the oligomeric state of the protein, in 25 mM Tris-HCl, pH 7.3, 150 mM NaCl, 10% (v/v) glycerol (IMAGIF Structural and Proteomic Biology Unit, Gif-s-Yvette, France).

Crystallization

Crystals were grown at 19 °C by the hanging drop vapor diffusion method. 1 µL protein (6-8 mg/mL) was mixed with 1 µL precipitant solution consisting of 0.1 M Tris pH 8.5, 12% (w/v) polyethylene glycol 4000, 0.1 M NaCl, 0.2 M MgCl₂, which led to plate crystals within 2-3 days. For the selenomethionylated protein, the precipitant solution was 0.1 M Bis-tris propane pH 9.0, 14% (w/v) polyethylene glycol 4000, 0.1 M NaCl, 0.15 M MgCl₂.

Data collection and structure determination were carried out as described in supplementary text.

Docking methods

A potential binding site of FAD in UbiIₜ was explored using docking calculations. Comparing the binding site residues of FAD in PHBH (1PBE) with those in the crystal structure of UbiIₜ, we noted that a number of residues are not favorably oriented to allow the docking of FAD. Preliminary to docking calculations, a UbiIₜ monomer was thus prepared as follows: i) rotamers of Arg49, Arg35 and Asp164 were selected in order to allow the one-step insertion of a rigid model of FAD in its extended conformation as observed in 1PBE; ii) the binding site residues were further energy minimized using CHARMm in Discovery Studio 3.1 (http://accelrys.com). The resulting protein structure was then used as the receptor and FAD was docked as a flexible ligand using Autodock software (19). The docking results place FAD in a range of plausible positions spanning the length of the binding pocket of UbiIₜ. Among the best docked structures, we detail here a potential location of the FAD co-factor in UbiIₜ selected for its highest similarity with the conformation observed in 1PBE. There is a rather good correspondence for ligand-receptor interactions between PHBH-FAD (1PBE) and the modeled UbiIₜ-FAD complex (Table S4).

RESULTS

E. coli ΔubiI synthesizes low Q₈ level in aerobic conditions

We constructed a ΔubiI strain in which the ORF of *ubiI* has been replaced with a kanamycin
resistance cassette. ΔubiI cells display a growth comparable to WT cells both on glucose and on succinate media (Fig. S2A) unlike ΔubiH cells, as previously observed (9). Evaluation of the cellular content in electroactive isoprenoid quinones by using electrochemical detection (ECD) of lipid extracts after separation by HPLC (17,20) revealed that Q₈ content in ΔubiI cells accounted for only 7% of that in WT cells (Fig. 2A). Furthermore, an unknown electroactive compound X could be detected (Fig. 2B). The levels of the isoprenoid naphtoquinones, demethylmenaquinone (DMK₈) and menaquinone (MK₈) were not significantly different in WT and ΔubiI cells (Fig. 2B and S2B). Transformation of ΔubiI cells with a plasmid containing the ubiI ORF restored Q₈ content and abolished the accumulation of compound X (Fig. 2A and 2B). ΔubiI cells grown anaerobically had a content of Q₈ comparable to that in WT cells (Fig. 2C, 2D) and accumulation of compound X was abolished. As expected, a strong increase in MK₈ content was observed in cells grown anaerobically (21). Reversion of the Q₈ biosynthetic defect by anaerobic growth of ΔubiI cells is reminiscent of the phenotype of a ΔubiH strain (22) (Fig. 2C, 2D). Collectively, these data establish that UbiI is involved in aerobic Q₈ biosynthesis but not in MK₈ biosynthesis.

E. coli ΔubiI accumulates 3-octaprenyl-4-hydroxyphenol (4-HP₈)

Compound X was purified from ΔubiI cells and found to be present in two redox states. Analysis by high-resolution mass spectrometry in positive mode gave a m/z ratio (M+H⁺) of 655.5445 for reduced compound X and 653.5297 for the oxidized form corresponding respectively to chemical formulas of C₄₆H₇₀O₂ +H⁺ (M = C₄₆H₆₉O₂ : 654.53755; ppm, 1.3) and C₄₆H₆₈O₂ +H⁺ (M = C₄₆H₆₇O₂ : 652.5219; ppm, 0). Fragmentation of the 653.5 molecular ion yielded a characteristic tropiylium-like ion (C₃H₇O⁺), often found for aromatic compounds containing a benzyl unit, in addition to fragments corresponding to loss of methine, methylene or methyl groups of an octaprenyl tail in the molecule (Fig. S3A). These data are consistent with compound X being a phenyl ring functionalized with an octaprenyl tail and either two OH groups in the reduced (quinol) C₄₆H₇₀O₂ molecule or two keto groups in the oxidized (quinone) C₄₆H₆₈O₂ molecule (Fig. S3B). The ¹H NMR spectrum of the purified C₄₆H₇₀O₂ compound shows well-defined peaks both in the aromatic and aliphatic regions (Fig. S3C). Most of the signals in the 3.2-5.3 ppm region could be attributed to the vinylic and allylic protons of the octaprenyl substituent. The aromatic region of the spectrum shows more relevant information. Three distinguishable massifs, each corresponding to a unique proton, can be observed at 6.44 ppm (doublet of doublet with ¹J and ²J coupling constants), 6.57 ppm (doublet with a ¹J coupling constant) and 6.61 ppm (doublet with a ²J coupling constant) (Fig. 2E). These results confirm a 1, 2, 4-trisubstitution of the phenyl ring. The NMR spectrum of the commercially available 2-methyl-4-hydroxyphenol shows a highly similar pattern with close chemical shifts and coupling constants (Fig. 2E). The NMR data thus establish the two hydroxyl groups of the C₄₆H₇₀O₂ compound are in para relative position. Accordingly, the UV spectra of oxidized and reduced forms of compound X and of 2-methyl-4-hydroxyphenol are comparable (Fig. S3D, S3E). Collectively, all these data identify 3-octaprenyl-4-hydroxyphenol (4-HP₈, Fig. 2F) as the compound that accumulates in ΔubiI cells.

UbiI complements a C5-hydroxylation defect in S. cerevisiae

Drastic decrease of Q₈ and accumulation of 4-HP₈, lacking a OH or a OCH₃ group at C₅, is a strong indication that the C5-hydroxylation reaction is deficient in E. coli ΔubiI cells and that UbiI functions as a C5-hydroxylase in Q₈ biosynthesis. To verify this hypothesis, we tested whether heterologous expression of UbiI was able to complement a S. cerevisiae Δcoq6 strain which lacks the C5-hydroxylase Coq6 (17). In combination with Coq8 over-expression, required for maintaining the integrity of the Q biosynthetic complex in S. cerevisiae (23), the mitochondria-targeted E. coli UbiI protein was found to partially restore respiratory growth of Δcoq6 cells on lactate-glycerol medium, a process that requires coenzyme Q (Fig. 3A). HPLC-ECD analysis of cellular lipid extracts of Δcoq6 /Coq8+UbiI cells demonstrated the presence of Q₈ together with 4-HP₆ (Fig. 3B) whereas Δcoq6 /Coq8 cells accumulated exclusively 4-HP₆ (17).
Complementation by UbiI is not optimal but is nevertheless significant since Δcoq6 /Coq8+UbiI cells contain about 12% of the amount of Q₈ present in Δcoq6 /Coq6 cells (Fig. 3C). These results establish that UbiI can function as a C5-hydroxylase in *S. cerevisiae*.

The residual C5-hydroxylase activity in ΔubiI cells is provided by UbiF

ΔubiI cells synthesize a small amount of Q₈ (Fig. 2A), reflecting that the C5-hydroxylation activity, although limited, is still taking place. In order to test the involvement of genes of the Q pathway in this biosynthetic activity, we constructed ΔubiF ΔubiI and ΔubiE ΔubiI mutants. ΔubiE cells accumulate the biosynthetic intermediate C2-demethyl-C6-demethoxy-Q₈ (DDMQ₈ peak at 6.87 min. in Fig. 4A), as published before (7). Deletion of *ubiI* in a ΔubiE strain led to the accumulation of 4-HP₈ and of a diminished amount of DDMQ₈ (Fig. 4A). In contrast, deletion of *ubiI* in the ΔubiF strain caused the expected accumulation of 4-HP₈ but also the complete disappearance of DMQ₈ (Fig. 4B), showing that the C5-hydroxylation reaction is totally abolished in the ΔubiF ΔubiI strain. Collectively, these results demonstrate that the residual C5-hydroxylase activity observed in ΔubiI cells is provided by UbiF, the C6-monoxygenase.

Crystal structure of a C-terminal truncated form of UbiI

We overexpressed and purified the UbiI-his₆ protein which contains a C-terminal hexahistidine tag. However, the protein was cofactor-free, as shown by UV-vis spectroscopy, and highly unstable, with a significant propensity to aggregate and precipitate. Limited trypsin proteolysis of UbiI-his₆ generated a soluble fragment (MW~40 kDa, Fig. S4A). MALDI-TOF mass spectrometry of the truncated UbiI (UbiI₆) (Fig. S4B) together with the result that UbiI₆ does not bind to Ni-NTA, suggested that ~35 residues at the C-terminus had been removed (two cleavage sites after residue 364 and 365 respectively), as confirmed below by the crystal structure of UbiI₆. The truncated UbiI₆ protein expressed from a plasmid was not able to complement the ΔubiI strain since the quinone profile was similar to that of ΔubiI cells containing an empty vector (Fig. S4C). UbiI₆ behaved as a tetramer in solution, as shown by SEC-MALLS experiments (Fig. S4D), and crystallized in space group *P*2₁*2*₁2*₁*.

The structure of the native UbiI₆ protein was solved at 2.8 Å resolution by the single anomalous dispersion method using the selenomethionylated protein and refined to 2.0 Å resolution (Table S2 and Fig. S5). The overall tertiary structure of the tetramer reveals that each monomer contains a typical FAD-binding domain with a Rossman-like β/α/β-fold (Fig. 5A). A search for proteins with similar fold with DALI (24) indicates that the structure of UbiI₆ is similar to that of several flavin-dependent monoxygenases including p-hydroxybenzoate hydroxylase (PHBH) from *Pseudomonas fluorescens* (Table S3). Superimposition of the structure of UbiI₆ with that of PHBH in complex with FAD (Fig. 5B) supports the presence of a FAD binding pocket in UbiI₆.

The FAD binding site in UbiI₆

The existence of a binding site for a FAD cofactor in UbiI was confirmed with docking experiments and minimization simulations using a UbiI₆ monomer and the extended conformation of FAD from PHBH (1PBE) as the starting position (25). The results of these calculations are shown in Figure 5C. The docked FAD in UbiI₆ exhibits a number of canonical interactions reminiscent of those involving FAD in PHBH, especially at the isoalloxazine ring and the ribityl chain (Fig. 5C, Table S4).

Figure 5C shows that the isoalloxazine ring is located within hydrogen bonding distances of the main-chain nitrogens of L297, V302, N303, and A52, and the side-chain amide nitrogen atom of N303. Also, it may be stabilized by π-π stacking with F269, an interaction shared in a number of other flavoproteins (26-28). The ribityl chain is hydrogen bonded to side chains of R49 and N110, as it is in PHBH using R44 and Q102. Finally, the negatively charged pyrophosphate group is electrostatically complemented by: (i) the α1 helix dipole of the β/α/β-fold at the N-terminus as in PHBH, (ii) hydrogen bonding with the side chain of R49 residue (R44 in PHBH) and the main chain of M13, a residue within the conserved GxGxxG motif of flavoproteins (S13 in PHBH).

Our model of the docked FAD in UbiI₆ was validated by site-directed mutagenesis. We
Indeed mutated both residues G301 and N303, which are conserved in flavoprotein monooxygenases (29)(Fig. S1). These residues form the bottom of the isoalloxazine binding pocket in UbiL. Expression of UbiL-G301A-N303Δ in the ΔubiI strain led to a Q8/4-HP8 ratio comparable to that found in ΔubiI cells containing an empty vector (Fig. 5D). In contrast, expression of UbiI led to the complete disappearance of 4-HP8 (Fig. 2B). These results show that the G301A-N303Δ double mutation strongly impairs UbiI activity probably as the consequence of a steric effect from the G301A mutation and the substitution of a hydrogen-bond stabilization by a repulsive electrostatic interaction resulting from the N303Δ mutation, both predicted to substantially affect the binding of FAD.

DISCUSSION

By using a combination of genetic, biochemical and structural approaches, we have established that visC, a gene of unknown function in *E. coli*, encodes a protein that plays an important role in coenzyme Q biosynthesis under aerobic conditions. Consequently we have renamed this gene ubiI. We show here that the UbiI protein functions in the C5-hydroxylation reaction of aerobic Q biosynthesis in *E. coli*.

More precisely, the function of the UbiI protein is to introduce the OH group on the C5 carbon of the phenyl ring of ubiquinone as supported by several lines of evidence. First, 4-HP8 which accumulates in ΔubiI cells is diagnostic of a deficiency in the C5-hydroxylation reaction. Indeed, 4-HP8 results from decarboxylation of OHB (reaction b, Fig. 1) to form OPP, which is then hydroxylated at position C1 (reaction c) without C5-hydroxylation (reaction c) and O5-methylation (reaction d) taking place. Likewise, we have shown that *S. cerevisiae* strains deficient for the C5-hydroxylation accumulate 4-HP6 (17,20). Second, UbiI complements the C5-hydroxylation defect of Δcoq6 *S. cerevisiae* cells (Fig. 3), which shows that UbiI is a functional ortholog of the C5-hydroxylase Coq6. Given the modest sequence identity between UbiI and Coq6 (25%) and the fact that Coq proteins are organized in a multiprotein complex (3), it is not surprising that UbiI does not fully complement the deletion of coq6 (Fig. 3C). Third, we have established that UbiI displays a number of characteristics of FAD-dependent monooxygenases: (i) it shows high sequence homology with members of this class of enzymes, including the well studied PHBH and also UbiH, UbiF and Coq6 (Fig. S1); (ii) the crystal structure of UbiL shows great structural homology with PHBH, including at the level of a binding pocket for a FAD cofactor, as confirmed by docking experiments; (iii) G301 and N303 which contribute to the FAD binding pocket are important for the C5-hydroxylase activity of UbiI. On the basis of these results, we propose that UbiI is a FAD-dependent monooxygenase which catalyzes the O2-dependent C5-hydroxylation reaction of coenzyme Q8 biosynthesis in aerobic conditions.

It should be noted that very few Ubi proteins involved in Q8 ring modification have been characterized biochemically, maybe as a result of limited stability and solubility when these proteins are expressed individually, as encountered with UbiI. In fact only the purified O-methyltransferase UbiG has been shown to display *in vitro* activity so far (6). In the case of UbiI, we had to work with a truncated form lacking 34 amino acids in the C-terminus to obtain a homogeneous protein in solution that we could crystallize. Unfortunately, this protein was inactive when assayed *in vivo* and could not bind FAD *in vitro*. Further studies are required to obtain a pure active UbiI enzyme. Nevertheless, our structure of UbiI is the first X-ray crystal structure of a monooxygenase implicated in Q biosynthesis.

A fascinating question raised by our work concerns the role of UbiB in Q biosynthesis. We clearly show that UbiI is responsible for the C5-hydroxylation reaction and therefore UbiB is not catalyzing this step as this has been thought for years (4). An attractive possibility is that UbiB functions in regulating Q8 biosynthesis via its putative kinase activity as originally proposed by Clarke and coworkers (12). If so, the function of UbiB would be consistent with the emerging function of its eukaryotic homologs from *S. cerevisiae* (Coq8) (23) and humans (ACDK3/CABC1)(30).

Our characterization of ubiI yielded intriguing observations regarding the hydroxylation reactions. First, inactivation of ubiI...
does not completely abrogate Q₈ biosynthesis. We have shown that in the absence of UbiI, the C6 monoxygenase UbiF is able to hydroxylate the neighbouring C5, which points to a relatively poor regioselectivity of UbiF. However, there is no doubt that the main C5-hydroxylase is UbiI and not UbiF since UbiF only promotes the biosynthesis of 7% of WT Q₈ levels in ΔubiI cells and since the C5-hydroxylation is not deficient in ΔubiF cells because only DMQ₈ but no 4-HP₈ is detected in these cells. Second, we have shown that UbiI is dispensable for anaerobic Q₈ biosynthesis similarly to what was reported for UbiH and UbiF (22). As dioxygen is the source of the three oxygen atoms which are incorporated during the aerobic hydroxylation reactions (c, e and g, Fig. 1) of Q₈ biosynthesis (31), the flavin-dependent monoxygenases UbiF, UbiH and UbiI do not function in anaerobic conditions. Therefore, an alternative unidentified enzymatic system must substitute for UbiI, UbiF and UbiH in order to catalyze the hydroxylation reactions during anaerobic Q₈ biosynthesis. The next challenge will be to identify the anaerobic hydroxylation system.

REFERENCES

polypeptide: evidence that UbiG catalyzes both O-methylation steps in ubiquinone biosynthesis. Biochemistry 35, 9797-9806

Acknowledgments – We thank Christophe Velours and Laila Sago for performing the SEC-MALLS and mass spectrometry analysis on the IMAGIF-platform, Dimitri Chérier for technical assistance and Djemel Hamdane for fruitful discussions. The authors acknowledge SOLEIL for provision of synchrotron radiation facilities and would like to thank Beatriz Guimaraez for assistance in using beamline PROXIMA 1. Thanks are due to Dr. Nassos Typas (EMBL, Heidelberg) and Prof. Carol Gross (UCSF, USA) for sharing unpublished results at the beginning of this study.

FOOTNOTES

The atomic coordinates for the crystal structure of UbiI are available in the Protein Data Bank under reference 4K22.

The abbreviations used are: coenzyme Q (Q), coenzyme Q8 (Q8), C6-demethoxy-Q8 (DMQ8), C1-demethyl-C6-demethoxy-Q8 (DDMQ8), 3-octaprenyl-4-hydroxybenzoic acid (OHB), 3-octaprenylphenol (OPP), 3-octaprenyl-4-hydroxyphenol (4-HP8), 3-hexaprenyl-4-hydroxyphenol (4-HP10), demethylmenaquinone (DMK8), menaquinone (MK8) para-hydroxybenzoate hydroxylase (PHBH), 4-hydroxybenzoic acid (4-HB), high performance liquid chromatography-electrochemical detection (HPLC-ECD), flavin adenine dinucleotide (FAD), Size Exclusion Chromatography - Multi-Angle Laser Light Scattering (SEC-MALLS)

FIGURE LEGENDS

Figure 1. Biosynthetic pathway of coenzyme Q8 in E.coli.
The numbering of the aromatic carbon atoms used throughout this study is shown on Q8 and the octaprenyl tail is represented by R on carbon 3 of the different biosynthetic intermediates. The name of the enzymes catalyzing the reactions (each labelled with a lower case letter) is indicated. The enzyme catalyzing the C5-hydroxylation (reaction c) is unknown (see full text for further details). Abbreviations for coenzyme Q8 (Q8), C6-demethoxy-Q8 (DMQ8), C1-demethyl-C6-demethoxy-Q8 (DDMQ8), 3-octaprenyl-4-hydroxybenzoic acid (OHB) and 3-octaprenylphenol (OPP) are underlined.

Figure 2. ΔubiI cells have a decreased Q8 content in aerobic conditions and accumulate 3-octaprenyl-4-hydroxybenzoic acid (OHB) and 3-octaprenylphenol (OPP) are underlined.

A) Quantification of cellular Q8 content (n=6-8) in lipid extracts from WT and ΔubiI cells containing an empty vector pBAD (vec) or pBAD-ubiI. Error bars are standard deviation. B) HPLC separation and electrochemical detection (HPLC-ECD) of lipid extracts from 2 mg of the same cells as in A. The peaks corresponding to Q8, compound X, demethylmenaquinone (DMK8), menaquinone (MK8) and to the Q10 standard are marked. C) HPLC-ECD of lipid extracts from 2mg of ΔubiI cells (in black) or ΔubiH cells
(in grey) grown in aerobic (dashed lines) or anaerobic conditions (solid lines). D) Quantification of cellular Q₆ content of cells described in A (n=3). Error bars are standard deviation. E) Superimposition of the aromatic region of the ¹H NMR spectra of compound X and of commercial 2-methyl-4-hydroxyphenol (2M4HP) in D₆-ethanol. F) Chemical structure of 4-HP₆.

Figure 3. Ubil displays C5-hydroxylase activity in *S. cerevisiae.*
A) *S. cerevisiae Δcoq6* cells transformed with pRS416-**COQ6** plasmid encoding Coq6, an empty vector (vec) or with pRS426 TDH3-**ubiI**, an episomal vector encoding Ubil in combination or not with pRS423-**COQ8** were grown in YNB-pABA-folate 2% galactose 0.4% glucose for 24 h and serial dilutions were spotted onto agar plates. The plates contained synthetic medium-pABA-folate + 10uM 4-HB with either 2% glucose or 2% lactate-2% glycerol. The plates were incubated for 2 days (glucose) or 4 days (lactate-glycerol) at 30 °C. B) HPLC-ECD of lipid extracts from 2mg of Δcoq6 cells expressing Coq6 or from 6 mg of Δcoq6 cells expressing Ubil in combination with Coq8. Cells were grown in YNB-pABA-folate 2% lactate-2% glycerol supplemented with 10 uM 4-HB. Peaks corresponding to demethoxy-Q₆ (DMQ₆), Q₆, 3-hexaprenyl-4-hydroxyphenol (4-HP₆) and to the Q₄ standard are marked. C) Q₆ content of Δcoq6 cells containing either pRS416-**COQ6** or pRS426 TDH3-**ubiI** in combination with pRS423-**COQ8**, were grown in the same medium as in B. Error bars are standard deviation (n = 4).

Figure 4. UbiF is responsible for the residual C5-hydroxylation in the absence of Ubil.
A) HPLC-ECD of lipid extracts from 2mg of WT cells (dashed black line), ΔubiE cells (in grey) or ΔubiEΔubiI cells (in black). B) HPLC-ECD of lipid extracts from 2mg of ΔubiF cells (in grey) or ΔubiFΔubiI cells (in black).

Figure 5. Crystal structure of a truncated form of Ubil and its FAD binding site.
A) Ribbon diagram of the crystal structure of tetrameric Ubil₄. Each subunit is represented with a different colour with the β/α/β Rossman-like fold of one subunit highlighted in orange. B) DALI superimposition of Ubil₄ (blue) with PHBH (yellow, pdb: 1PBE) and the FAD of PHBH shown as ball and sticks. The r.m.s.d. is 3.0 Å for 327 Cα. C) Docking of FAD in Ubil₄. Residues involved in hydrogen bonding and π-type interactions are represented. See details in Table S4. D) Corrected integration of the electrochemical signal for the peaks corresponding to Q₈ (in black) and 4-HP₆ (in grey) after HPLC analysis of lipid extracts from ΔubiI cells containing an empty vector, pBAD-ubiI or pBAD-ubiI[G301A-N303D] (n=4). The ratio of the area of the Q₈ and 4-HP₆ peaks is indicated.

Figure 1
Figure 2
Figure 3

Figure 4
Figure 5