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On the Use of the Multiple Scale Method in Solving

’Difficult’ Bifurcation Problems

Abstract

Several algorithms consisting in ’non-standard’ versions of the Multiple Scale Method are illustrated for ’difficult’ bifurcation

problems. Preliminary, the ’easy’ case of bifurcation from a cluster of distinct eigenvalues is addressed, which requires using

integer power expansions, and it leads to bifurcation equations all of the same order. Then, more complex problems are

studied. The first class concerns bifurcation from a defective eigenvalue, which calls for using fractional power expansions and

fractional time-scales, as well Jordan or Keldysh chains. The second class regards the interaction between defective and

non-defective eigenvalues. This problem also requires fractional powers, but it leads to differential equations which are of

different order for the involved amplitudes. Both autonomous and parametrically excited non-autonomous systems are studied.

Moreover, the transition from a codimension-3 to a codimension-2 bifurcation is explained. As a third class of problems,

singular systems possessing an evanescent mass, as Nonlinear Energy Sinks, are considered, and both autonomous systems

undergoing Hopf bifurcation and non-autonomous systems under external resonant excitation, are studied. The algorithm calls

for a suitable combination of the Multiple Scale Method and the Harmonic Balance Method, this latter to be applied exclusively

to the singular equations. Several applications are shown, to test the effectiveness of the proposed methods. They include

discrete and continuous systems, autonomous, parametrically and externally excited systems.
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1. Introduction

Dynamical systems depend on parameters. When these are var-

ied quasi-statically, the dynamics can, either, remain unchanged,

or strongly modify. A bifurcation is said to occur at a point of

the parameter space at which the dynamics abruptly changes.

Here, new equilibria or cycles arise or disappear, and/or their sta-

bility changes. The bifurcation points occur on manifolds which

separate the parameter space in regions in which the system

possesses equivalent dynamics. Therefore bifurcations organize

the scenario. The codimension of the manifold (equal to the

number of independent algebraic conditions satisfied by param-

eters at bifurcation) is said the codimension of the bifurcation.

In this paper, only bifurcations from equilibria are considered,

and, although not strictly necessary, mechanical systems are

addressed.

Bifurcation problems are almost universally tackled via the

Center Manifold Method (CMM) and the Normal Form Theory

(NFT) [1]. The CMM reduces the dimension of the dynamical

system to that of the center subspace of the Jacobian (i.e. to

the number of its eigenvalues having zero real part); the NFT

reduces the complexity of the equations, via a quasi-identical

change of coordinates, aimed to eliminate the possible largest

number of nonlinear terms. The CMM is not only an algorithm,

but reveals the true essence of the dynamics of a system close

to bifurcation. From a geometrical point of view, it states that

an attractive surface (Center Manifold, CM) exists in the (finite-

or infinite-dimensional) state-space. The CM is found to be

tangent at the equilibrium point to the center subspace, so that

it can be tough as originated by a deformation of this subspace,

caused by nonlinearities. From a mechanical point of view, the

CM establishes a constraint among the state variables. Few of

them, describing the motion in the tangent plane, participate

with their own natural frequency, and therefore are said active

coordinates; the remaining ones, describing motions orthogo-

nal to the plane, do not contribute with their own frequencies,

but are driven from the active coordinates, and therefore are

said passive coordinates. The active coordinates are first-order

quantities, while the passive coordinates are second- or higher-

order quantities. However, they cannot be neglected, since they

contribute to determine stability and to organize the dynamics.

A completely different approach to derive the normal form

of the bifurcation equations, is offered by the Multiple Scale

Method (MSM). Although this algorithm is very popular in

nonlinear dynamics [2], it is less known, or even looked at

with suspicion, in the bifurcation community. This standpoint

is probably due to the fact the, while the CMM is based on a

theorem, the MSM is a heuristic approach, based on formal

series expansions. On the other hand, it has been shown in liter-



ature, that the MSM is computationally more convenient, and

furnishes the same results of the classical approach [3, 4, 5, 6].

Namely, it supplies reduced equations of motion without de-

scribing the center manifold in advance; moreover, it furnishes

bifurcation equations directly in normal form. Thus, it performs

simultaneously the two operations of the classical approach.

However, there exist ’difficult bifurcations’ for which it has

been erroneously believed in literature, that the MSM (or, more

in general, any perturbation method) fails in determining the

bifurcation equations. In spite of this opinion, the author and

his co-workers showed that, to be successful, the MSM must

only be adapted to the problem; once again the method turned

out to be computationally competitive with other methods.

Here, we will discuss three classes of ’difficult’ problems:

1. Defective autonomous systems, in which the Jacobian

operator at bifurcation does not posses a complete system

of eigenvectors [7, 8];

2. Partially defective autonomous systems, in which only

some of the center eigenvalues are defective [9]; or, Hamil-

tonian systems close to divergence, stabilized by resonant

parametric excitation [10];

3. Singular, partially defective systems, in which an evanes-

cent mass coefficient exists, either autonomous [11] or

externally excited [12].

All these problems require special treatments that will be sketched

ahead; additional details can be found in the cited papers.

2. Bifurcation analysis from a cluster of dis-
tinct eigenvalues: the ’easy’ case

We introduce the MSM referring to the simplest case in which

the center eigenvalues are distinct, so that their associated eigen-

vectors form a complete basis for the center subspace (non-

defective cases, see also [13, 14, 15]).

2.1 Finite-dimensional systems

A finite-dimensional, autonomous, dynamical system is consid-

ered, whose nondimensional equations of motion, in state-form

and expanded around the trivial equilibrium point x = 0, read:

ẋ = J(µ)x+n2 (x,x)+n3 (x,x,x)+ . . . (1)

Here x is the n-dimensional state-vector, J(µ) := J0 + µJ1 is

the Jacobian matrix at the origin, depending on a vector of bifur-

cation parameters µ , and ni (·) are vector-valued homogeneous

polynomials of degree i = 2,3, . . .; moreover, the dot denotes

differentiation with respect the time t. It is assumed that µ = 0

is a bifurcation point, at which the Jacobian J(0) = J0 admits

one or more distinct center eigenvalues λ c := (λc j). To exem-

plify, in a codimension-3 zero-Hopf-Hopf bifurcation (ZHH, see

[6]) there are five eigenvalues in the center spectrum, namely

λ c = (0,±iω1,±iω2), while the remaining stable eigenvalues

have negative real part. We want to analyze the dynamics of the

system around the equilibrium point x = 0, when µ is varied in

a ball of radius 0 < ε ⌧ 1, centered at µ = 0.

First, in order a perturbation parameter appear in the equa-

tions, a rescaling is performed, namely x ! εx, µ ! εµ . Then,

according to the MSM, x(t) = x(t0 (t) , t1 (t) , t2 (t) , . . .) is taken,

where tk := εkt are independent time-scales. Therefore, by

the chain rule, d/dt = ∑
∞
k=0 εkdk, where dk := ∂/∂ tk. Finally,

the state variables are expanded as x = ∑
∞
k=0 εkxk, with xk un-

knowns. When all these rescaling/expansions are substituted

into the Eq (1) and terms with the same power of ε separately

equated to zero, a set of linear perturbation equations is drawn,

namely:

(d0 −J0)x0 =0

(d0 −J0)x1 =−d1x0 +µJ1x0 +n2 (x0,x0)

(d0 −J0)x2 =− (d2x0 +d1x1)+µJ1x1 +n3 (x0,x0,x0)

+2n2 (x0,x1)

(2)

The solution to Eq (2-a), when t ! ∞, reads (generating solu-

tion):

x0 =A0 (t1, t2, . . .)u0 +A1 (t1, t2, . . .)u1eiω1t0

+A2 (t1, t2, . . .)u2eiω2t0 + c.c.
(3)

where u j are the (right) eigenvectors of J0 which span its center

subspace, i.e. (J0 −λc jI)u j = 0; the real A0 and the complex

A1,A2 are amplitudes depending on the slower time-scales; fi-

nally c.c. means complex conjugates. Note that Eq (3) states that

the leading part of the motion belongs to the center subspace,

according to the CM theory.

When the generating solution is substituted in Eq (2-b), sev-

eral combinations among the eigenvalues appear in the ’forcing’

terms, namely (0,ω1,ω2;2ω1,2ω2,ω1 ±ω2). To avoid that x1

diverges on the t0-scale, thus making the series not uniformly

valid, resonant terms must be removed on the right hand member,

by solvability conditions requiring the known term is orthogonal

to the left eigenvectors v j of J0, having equal eigenvalue. In

selecting the resonant terms, possible internal resonance must

be accounted for; for example the ’forcing’ frequency ω1 −ω2

is resonant with the natural frequency ω2 if ω1 = 2ω2. The

solvability conditions, since they always involve d1x0, are of

the type:

d1A j = f1 j (A0,A1,A2; µ) , j = 0,1,2 (4)

i.e., they are first-order differential equations on the t1-scale.

By solving Eq (2-b) x1 is determined, to within some arbitrary

quantity, that can be chosen by requiring x1 is orthogonal to the

center subspace. Thus, x1 describes the main contribution of

the passive coordinates, in the CM view.

The procedure can be carried out to higher-orders, to eval-

uate d2Ak, d3Ak, . . .. At the end, all these partial differential

equations can be recombined in first-order ordinary differential

equations, according to Ȧ j = ∑
∞
k=0 εkdkA j, i.e.:

Ȧ j = f j (A0,A1,A2; µ) , j = 0,1,2 (5)

where the perturbation parameter has been reabsorbed via a

backward rescaling. These are the bifurcation equations sought

for; they state that the (asymptotic) motion occurs on a (five-

dimensional) manifold having the same dimension of the center



subspace. They are found to coincide with those furnished by

the CMM, and already appear in their normal form.

The lower-codimension cases of zero-Hopf (ZH) and Hopf-

Hopf (HH) bifurcations can easily be obtained from the previous

analysis by zeroing the amplitude of the missing mode, i.e.:

Ȧ j =

(

f j (A0,A1; µ) j = 0,1 for ZH

f j (A1,A2; µ) j = 1,2 for HH
(6)

2.2 Infinite-dimensional systems

The method illustrated above can be straightforwardly extended

to infinite-dimensional systems [16, 17, 18]. The relevant equa-

tions of motion read:

ẇ = L(µ)w+n2 (w,w)+n3 (w,w,w)+ . . . (7)

where w = w(x, t) are state variables defined in a domain Ω,

L := L0 + µL1 is a linear differential operator, and ni (·) are

vector-valued homogeneous polynomial of degree i = 2,3, . . ..
All the operators include field equations and boundary condi-

tions.

By proceeding as for discrete systems, the following pertur-

bation equations are drawn:

(d0 −L0)w0 =0

(d0 −L0)w1 =−d1w0 +µL1w0 +n2 (w0,w0)

(d0 −L0)w2 =− (d2w0 +d1w1)+µL1w1

+n3 (w0,w0,w0)+2n2 (w0,w1)

(8)

The steady generating solution, in the Hopf-Hopf-divergence

case, is:

x0 =A0 (t1, t2, . . .)φ 0 (x)+A1 (t1, t2, . . .)φ 1 (x)eiω1t0

+A2 (t1, t2, . . .)φ 2 (x)eiω2t0 + c.c.
(9)

where φ j (x) are the (right) eigenvectors of L0 which span its

center subspace, i.e. (L0 −λc jI)φ j = 0.

When this solution is substituted into the next perturbation

equation, resonant terms appear. To avoid that w1 diverges on

the t0-scale, each resonant terms must be made orthogonal to

the left eigenvector ψ j (x) of equal eigenvalue. These latter are

solutions of the adjoint homogeneous problem
(
L?

0 − λ̄c jI
)

ψ j =
0, where L?

0 is the adjoint operator (including adjoint boundary

conditions), supplied by the Green (or bilinear) Identity:

Z

Ω

ψ̄T L0φdΩ =
Z

Ω

φ̄
T

L?
0ψdΩ (10)

Once the solvability condition is systematically enforced at

any steps, partial time-differential equations for the amplitudes,

dkA j = fk j (A0,A1,A2; µ) , k = 1,2, . . ., are drawn. These equa-

tions, when are recombined to come back to the true time,

turn out to be formally equal to Eqs (5). Thus, an infinite-

dimensional system is reduced to a 5-dimensional system.

We conclude, by the MSM, that the dimensions of the bifur-

cation equations do not depend on the dimensions of the original

system, but rather of those of its center sub-space, as stated by

the CM theory.

As an example, an elastic cantilevered beam, grounded with

a visco-elastic device applied at the free end, and there loaded by

a follower force, was studied in [18]. The scenarios relevant to

HH and ZH bifurcations are shown in Fig 1, in the plane of the

control parameters µ = (β ,γ), where β is a stiffness coefficient

and γ a load parameter. The bifurcation charts display the

qualitative dynamics occurring in the two-dimensional phase-

space
{

a j

 
:=

{∣
∣A j

∣
∣
 

, in each region of the parameter space

bounded by bifurcation loci.

3. Defective bifurcations

3.1 Finite-dimensional systems

Let us assume that the Jacobian matrix is defective at the bi-

furcation, i.e. the eigenvectors associated with the center eigen-

values are less than their algebraic multiplicity, so that the ba-

sis is incomplete. For example, let λ c = (0,0) be a double-

zero eigenvalue, with just a (proper) eigenvector u0 associated.

Then a Takens-Bogdanov (or double-zero, DZ) bifurcation, of

codimension-2, is said to occur.

To complete the basis, a (index-2) generalized eigenvec-

tor must be associated, so that a Jordan chain (u01,u02), with

u01 := u0 must be built-up by solving the sequence of algebraic

problems:

J0u01 = 0

J0u02 = u01

(11)

under arbitrarily chosen normalization conditions. Now, it is

known from algebra, that, said v0 the unique proper left eigen-

vector (satisfying JT
0 v0 = 0), it results that vT

0 u01 = 0. From

a geometrical point of view, since v0 spans the kernel of the

adjoint operator JT
0 , u01 is in the range of the operator. Only the

highest-index of the chain (in our case u02) has a component

out the the range, namely vT
0 u02 6= 0.

Due to these properties, the integer power expansions used

in the standard approach fail, since, in removing resonant terms,

vT
0 d1x0 = 0 is found, so that the left hand member of Eq (4)

disappears! To overcome the drawback, fractional series expan-

sions must be used, in order to create intermediate perturbation

equations able to generate the highest vector of the chain, when

the resonant terms appear first [7]. Thus, if the eigenvalue has

multiplicity m, fractional powers ε1/m must be used; here we

discuss the simplest case m = 2.

With the same rescaling as before, we introduce fractional

time scales t0, t1/2, t1, . . ., so that d/dt = ∑
∞
k=0 εk/2dk/2; more-

over, we expand the state variables as x = ∑
∞
k=0 εk/2xk/2. Thus

we obtain the following perturbation equations:

(d0 −J0)x0 = 0

(d0 −J0)x1/2 =−d1/2x0

(d0 −J0)x1 =−
(
d1x0 +d1/2x1/2

)
+µJ1x0 +n2 (x0,x0)

(12)

and so on.
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Figure 1. Bifurcation charts for an elastic beam under follower force [18]: Hopf-Hopf bifurcation, (b) zero-Hopf bifurcation.

The generating solution is:

x0 = A0

(
t1/2, t1, . . .

)
u01 (13)

where a real. It could be erroneously believed, at this level, that

the leading motion takes place on a one-dimensional manifold,

since the generalized eigenvector has not taken into account

(as, instead, this is the case in the CMM); we will show soon,

however, that this is not the case.

When the generating solution is substituted in Eq (12-b),

since the ’known’ term −
(
d1/2A0

)
u01 belongs to the range of

the operator, no solvability is required and the solution reads

x1/2 =−
(
d1/2A0

)
u02. Note that the highest-index eigenvector

of the chain appeared, and that, due to the lack of solvability

conditions,
(
d1/2A0

)
is still unknown.

With the previous results used in Eq (12-b), ’resonant’ 0-

frequency terms appear, generated by the last two terms in the

equation. However, now d1/2x1/2 =−
⇣

d2
1/2

A0

⌘

u02 is available

to remove them, since it is out of the range of the operator. This

solvability condition is of the type:

d2
1/2A0 = f1/2 (A0; µ) (14)

When further steps are performed, and the solvability conditions

reconstituted in a whole, the following bifurcation equation is

recovered:

Ä0 = f
(
A0, Ȧ0; µ

)
(15)

Note that this is a second-order ordinary differential equation

in the amplitude A0; therefore, the leading motion occurs on a

two-dimensional manifold, as predicted by the CMM.

3.2 Infinite-dimensional systems

When the system is infinite-dimensional, the perturbation analy-

sis closely follows that for finite-dimensional systems [19, 20,

21, 22]. However, due to the occurrence of defective eigen-

values, we need to extend to continuous systems the concept

of Jordan chain. This task has been accomplished by Keldysh

[23, 24], who defined Keldysh chains for one-dimensional sys-

tems, similarly to the Jordan chains. Thus, if λ c = (0,0) is a

double-zero eigenvalue, a Keldysh chain (φ 01,φ 02) is defined,

satisfying the equations:

L0φ 01 = 0

L0φ 02 = φ 01

(16)

where φ 01 is a proper eigenvector, and φ 02 an index-2 gen-

eralized eigenvector. The same orthogonality conditions ob-

served for the algebraic system holds, i.e.
R

Ω ψ̄T φ 01dΩ = 0,
R

Ω ψ̄T φ 02dΩ 6= 0, where ψ is the proper eigenvector which

spans the kernel of L?
0.

By repeating the former analysis,we find w = w0+ε1/2w1+
. . . , i.e., with ε reabsorbed:

w = A0

(
t1/2, t1, . . .

)
φ 01 − Ȧ0φ 02 + . . . (17)

where the evolution of the real amplitude is governed by the

bifurcation equation (15).

As an example, when a visco-elastic externally damped

cantilevered beam is loaded at the tip by a follower µ and a

gravitational ν force, it undergoes a double-zero bifurcation for

suitable combinations of the parameters [21, 22]. The relevant

bifurcation chart is shown in Fig 2 for two different damping

combinations, which display a non-catastrophic or catastrophic

behavior (i.e. with or without an attractor in each region).

4. Interaction between defective and non-
defective eigenvalues

4.1 Autonomous systems

We saw that distinct eigenvalues call for integer power expan-

sions, while defective eigenvalues require fractional expan-
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Figure 2. Bifurcation chart around a double-zero bifurcation point for a visco-elastic beam under gravitational and follower

forces [21]: (a) non-catastrophic, (b) catastrophic behavior.

sions. What happens when eigenvalues of the two types in-

teract? An example of such an occurrence is offered by the

double-zero/Hopf bifurcation (DZH, see [9]). In this case,

λ c = (0,0,±iω1), and the associated auto-space is spanned

by (u01,u02,u1, ū1), where (u01,u02) is a real Jordan chain, and

(u1, ū1) are complex conjugate complex eigenvalues. Since

the defective eigenvalue (0,0) calls for power expansions of

ε1/2 and the non-defective eigenvalues (+iω1, −iω1) for inte-

ger powers of ε , we chose the stronger condition, and expand in

series of ε1/2; consistently, we introduce time-scales multiple

of the same power. As a result, we again obtain the perturbation

equations (12).

The generating solution, in this case, reads:

x0 = A0

(
t1/2, t1, . . .

)
u01+A1

(
t1/2, t1, . . .

)
u1eiω1t0 +c.c. (18)

where A0 is real and A1 is complex. When this is substituted in

the Eq (12-b), this latter becomes:

(d0 −J0)x1/2 =−
(
d1/2A0

)
u01−

(
d1/2A1

)
u1eiω1t0 +c.c. (19)

To remove secular terms, the 0-frequency ’known term’ must

be rendered ortogonal to the left proper eigenvector v0, and the

ω1-frequency term to the left proper eigenvector v1. However,

due to the properties of the Jordan chains, while v̄T
1 u1 6= 0, it

is vT
0 u01 = 0; consequently, d1/2A1 = 0 but d1/2A0 is undeter-

mined at this order. Therefore, as expected, A1 follows the rule

for non-defective amplitudes, while A0 behaves as defective

amplitudes. However, this is not a general rule, since, due to the

interaction, this simple scheme does not hold at higher-orders.

Moreover, it has been explained in [9] that, differently from

the previous cases, in which the complementary solution of

each perturbation equation can be ignored, here, in order to

avoid inconsistencies, some of them must be taken into account.

By skipping this discussion for the sake of brevity, we find

x1/2 = −
(
d1/2A0

)
u02 . By going one step further, we obtain

solvability conditions of the type:

d2
1/2A0 = f1/2,0 (A0,A1; µ)

d2A1 = f1/2,1 (A0,A1; µ)
(20)

When the analysis is carried out to the higher-orders and the

solvability conditions reconstituted, the following bifurcation

equations are finally obtained:

Ä0 = f0

(
A0, Ȧ0,A1; µ

)

Ȧ1 = f1

(
A0, Ȧ0,A1; µ

) (21)

They govern the dynamics of a 4-dimensional system, consis-

tently with the dimension of the CM.

4.2 Transition from a higher- to a lower-codimension

bifurcation
Let us consider a damped Hamiltonian systems at the diver-

gence, under self-excitation causing Hopf bifurcation. There

exist three non-hyperbolic eigenvalues λ c = (0,±iω) plus a

fourth hyperbolic (stable) eigenvalue λs =−ξ where ξ > 0 is

a damping coefficient. If the damping is large, i.e. ξ = O(1),
we can analyze this bifurcation as a (easy) codimension-2 ZH

bifurcation (see Fig 3-a); however, if the damping is small,

i.e. ξ = O(ε), the system is close to a (difficult) codimension-

3 DZH bifurcation (see Fig 3-b). The question is: how large

must be the damping in order for the fourth eigenvalue can

be considered stable and not a perturbation of a zero eigen-

value? To answer the question, it needs to analyze the transition

from the higher-codimension (partially-defective) to the lower-

codimension (non-defective) bifurcation, by increasing ξ from

zero.

A paradigmatic system introduced in [9] to analyze the prob-

lem, consists of two Duffing-Van der Pol coupled oscillators, of

nondimensional equations:

ẍ+ x−µ ẋ+g(x,y, ẋ, ẏ) = 0

ÿ−νy−ξ ẏ+h(x,y, ẋ, ẏ) = 0
(22)

where µ := (µ,ν ,ξ )! 0. Here, the x-oscillator, of finite stiff-

ness, undergoes a Hopf bifurcation at µ = 0; the y-oscillator,

of evanescent stiffness ν and evanescent damping ξ , under-

goes a DZ bifurcation at (ν ,ξ ) = (0,0). The nonlinear terms

g(·) ,h(·) couple the two oscillators. Therefore, a DZH occurs

at µ = 0; however, if ξ is allowed to become large of order 1, a

ZH bifurcation occurs.
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Double-zero/Hopf

The following bifurcation equations, of the type (21), were

found by the MSM [9]:
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; ξ Ȧ0
|{z}

ε2

; . . .
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0

B
@µA1, A2

1Ā1, A1A0Ȧ0
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ε3/2

; . . .

1

C
A

(23)

where L j are linear operators. Here the order of the differ-

ent terms is determined by the perturbation analysis, which

states that A0 = O
(
ε1/2

)
and A1 = O

(
ε1/2

)
; however, due to

the fact that d1/2A0 6= 0, d1/2A1 = 0, it happens that (d/dt)A0 =

O
(
ε1/2 ⇥ ε1/2

)
, while (d/dt)A1 = O

(
ε ⇥ ε1/2

)
. We can con-

clude that the dynamic of A0 is faster than the dynamics of A1

(and therefore Ä0 and Ȧ1 are of the same order).

When, however, ξ is increased to the order-1, since a simple

zero-eigenvalue is included in the center spectrum, the bifurca-

tion becomes non-defective, so that no fractional powers can

be involved in the perturbation analysis; therefore (d/dt)A j =

O
(
ε ⇥ ε1/2

)
for both amplitudes. As a consequence, Ä0 be-

comes of an higher-order with respect to Ȧ1, i.e. the dynamics

of A0 becomes slower and comparable with those of A1. Thus,

while Ä0 jumps to the higher-order terms of Eqs (23-a), ξ Ȧ0

enter among the leading terms, and Eqs (23) become:

ξ Ȧ0 =−L0

(
νA0, A3

0, A1Ā1A0; . . .
)

Ȧ1 = L1

(
µA1, A2

1Ā1, A1A0Ȧ0; . . .
) (24)

Note that the order of the differential equations is lowered,

so that the dynamics occurs on a three-dimensional manifold.

These are just the bifurcation equations for the zero-Hopf bifur-

cation.

Numerical solutions of Eqs (23) highlighted the existence

of quasi-periodic solutions which strongly affect the dynam-

ics close to the double-zero/Hopf bifurcation. However, when

the damping is increased, they move away, thus explaining the

transition phenomenon. This is illustrated in Fig 4, where two

bifurcation charts, for small and large damping are represented.

Lines I to III denotes bifurcations from which steady solution

arise (I periodic, II buckled, III periodic around a buckled equi-

librium), while QP denotes quasi-periodic solutions (in which

A0,A1 are periodic).

4.3 Statically unstable systems under stabilizing para-

metric excitation

Let us consider a class of linear Hamiltonian systems, close

to divergence, at which a double-zero eigenvalue occurs. It is

known that, if a linear parametric excitation of frequency Ω is

applied, rendering the stiffness (or the mass) time-dependent,

the statically unstable system can be re-stabilized [25, 26]. The

phenomenon can clearly be explained by a perturbation analysis

[10], which shows how the parametric frequency combines

itself with the natural frequencies of the Hamiltonian system,

to produce restabilizing time-independent terms (i.e. apparent

stiffnesses), which are able (if of suitable sign) to compensate

the lack of stiffness of the unexcited system.

To explain the algorithm, let us consider a Hamiltonian

finite-dimensional linear system, parametrically excited by a

harmonic law of small amplitude δ :

ẋ = (J(µ)+δBcosΩt)x (25)

and assume that J0 admits a double-zero eigenvalue, at which

the unique eigenvector u0 ⌘ u01 is associated, and complex con-

jugate purely imaginary eigenvalues ±iω j. An exhaustive anal-

ysis of the system would require considering all the resonance

conditions possibly occurring between the excitation frequency

Ω and the natural frequencies ω j (see [10], where a specific

system was analyzed); here, we limit ourselves to the 1:1 reso-

nant case Ω ' ω1, by excluding any other form of resonance. In

this case, the algorithm described above for DZH bifurcations

of nonlinear autonomous systems also applies to this class of

linear non-autonomous systems. Indeed, from a computational

point of view, the harmonically-dependent coefficients have the

same role played by nonlinearities in autonomous systems.

By performing the rescaling µ ! ε2µ, δ ! εδ , and us-

ing fractional series expansions and time-scales, we obtain the

following perturbation equations:

(d0 −J0)x0 = 0

(d0 −J0)x1/2 =−d1/2x0

(d0 −J0)x1 =−
(
d1x0 +d1/2x1/2

)
+

1

2
δBx0

⇣

eiΩt0 + e−iΩt0

⌘

(26)

We take a generating solution made of two components: the

static mode u01 and the dynamic mode u1 in resonance with the

excitation (indeed, a small damping would produce the decay of

all the other components). Hence, the solution to Eq (26-a) reads

as Eq (18). At the next-order, Eq (26-b), the same results are

found, namely d1/2A1 = 0 and d1/2A0 undetermined; moreover

x1/2 =−
(
d1/2A0

)
u02. When all these results are substituted in

Eq (26-c), the parametric excitation combines with the gener-

ating solution, giving rise the forcing frequencies (Ω,Ω±ω j).
Since Ω ' ω1, these frequencies are, in the order, resonant with
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Figure 4. Bifurcation chart for a paradigmatic system, showing transition from double-zero/Hopf to zero-Hopf bifurcation [9]: (a)

small damping, (b) large damping.

the dynamic mode of amplitude A1, and the static mode of am-

plitude A0, when j = 1 is taken. Therefore, solvability, leads to

the following differential equations:

d2
1/2A0 = L1/2,0

(
A1, Ā1;δ

)

d2A1 = L2,1 (A0;δ )
(27)

When the procedure is carried out up to the ε2-order, where the

parameters µ have been ordered, and the solvability conditions

reconstituted, the following bifurcation equations are obtained:

Ä0 = L0

(
A0,A1, Ā1;δ ,µ

)

Ȧ1 = L1

(
A0, Ȧ0,A1, Ā1;δ ,µ

) (28)

which are a particular (linear) form of the more general Eqs

(21).

These equations have been derived in [10] for a upright

double pendulum, under gravitational forces triggering static

instability, and harmonic vertical motion of amplitude δ , pre-

scribed at the support and providing the parametric excitation.

The analysis led to the results displayed in Fig 5-a, where the

stability region of the equilibrium position x = 0 is shown in

the frequency-amplitude plane. It is seen that, when the system

is unexcited (δ = 0), the equilibrium is unstable; however, a

frequency-dependent amplitude δ exists, which stabilizes the

equilibrium. The phenomenon, however, only takes place on the

right of the resonance value, while no stable equilibrium exist

on the left. Results have also been compared with numerical

solutions based on the Floquet theory (Fig 5-b). It is seen that,

while the accordance is excellent for small δ , it is not good

for large δ . In spite of this, the MSM captures the qualitative

behavior, including the existence of a narrow stability zone at

higher-amplitudes.

5. Bifurcations of singular systems: the Non-
linear Energy Sinks

5.1 Autonomous systems undergoing Hopf bifurca-

tion

The occurrence, at the bifurcation, of the center eigenvalues

λ c = (0,0,±iω) is not only an accidental (and detrimental)

event, but even a desired circumstance adopted in passive con-

trol. As a matter of fact, when a mechanical system undergoes

a Hopf bifurcation, e.g. triggered by wind flow forces, a control

strategy recently studied in literature consists in attaching to it

one (or more) essentially nonlinear oscillators (i.e. single d.o.f.

devices with zero linear stiffness) having evanescent mass, said

Nonlinear Energy Sinks (NES, [27, 28]). Thus, the augmented

system also posseses a double zero eigenvalue. The NES works

as a (well-known) Tuned Mass Damper (TMD), i.e. it is able

to capture the input energy by preserving the main structure

[29, 30]; however, being essentially nonlinear, it is able to adapt

its own frequency, thus working in a frequency range wider that

the mono-frequent TMD. Many semi-analytical or numerical

methods were proposed in literature to solve this problem, and

it was common opinion that ’standard perturbation methods’ do

not work [31]. This is, indeed, true, but a ’non-standard’ ver-

sion of the MSM, combined with the Harmonic Balance Method

(HBM), and therefore denoted by MS-HBM, was indeed shown

to work in [11, 12].

To illustrate the algorithm, we consider a symmetric (odd

nonlinearities) finite dimensional system of state-variables x,

with a NES attached, whose displacement is y (Fig 6); the

relevant equations of motion, in nondimensional form, read:

ẋ = J(µ)x+n3 (x,x,x)+ . . .−
(
ξ ż+κz3

)
r̂

m
(
z̈− rT ẍ

)
+ξ ż+κz3 = 0

(29)

where z := rT x−y is the elongation of the NES, and r, r̂ :=(0,r)T

are influence coefficient vectors. Moreover, m ⌧ 1 is the NES

mass, ξ ⌧ 1 the damping and κ = O(1) the nonlinear stiffness.

Since m is small, but different from zero, the system posses a



(a) (b)

Figure 5. Stability region for the parametrically excited double pendulum close to divergence [10]: (a) MSM solution, (b)

Numerical solution.

pair of (nearly) zero eigenvalues; however, since the mass is

evanescent, the equations are of singular type.

r
T

x

xi

x j

xk

y

κ
ξ

m
µ

Figure 6. Sketch of a multi-d.o.f. system equipped with a

NES, under normal wind flow.

To solve the problem, we first rescale the variables as (x,z)!
ε1/2 (x,z) and the parameters as (µ,m,ξ )! ε (µ,m,ξ ); then,

we expand the variables in integer series, i.e. x = ∑
∞
k=0 εkxk,

z = ∑
∞
k=0 εkzk and use integer time-scales tk := εkt. Thus we

obtain the generating perturbation equation:

ε0 : (d0 −J0)x0 = 0 (30)

the ε1-order equations:

(d0 −J0)x1 =−d1x0 +µJ1x0 +n3 (x0,x0,x0)

−
(
ξ d0z0 +κz3

0

)
r̂

md2
0z0 +ξ d0z0 +κz3

0 = mrT d̈2
0x0

(31)

and so on. Note that, due to the fact m is evanescent, the NES-

equation shifts at a higher order, this being the main difference

with the case studied in the previous Section.

The generating solution, therefore, accounts for the uncon-

trolled main system. If, at µ = 0, it undergoes a Hopf bifurca-

tion, then:

x0 = A(t1, t2, . . .)u1eiω1t0 + c.c. (32)

whit A a complex amplitude. When this is substituted in the

NES equation (31-b), a strongly nonlinear equation in z0, with

harmonic excitation, is found. Since it cannot be solved by

elementary functions, the Harmonic Balance Method (HBM) is

used, by letting:

z0 =
∞

∑
k=1

B0k (t1, t2, . . .)eikωt0 + c.c. (33)

where B0k are complex amplitudes. The HBM furnishes a set of

cubic algebraic equations of the type:

g0 (A,B0) = 0 (34)

where B0 := (B01,B02, . . .). These provide an algebraic con-

straint between the amplitude of oscillation A of the main sys-

tem and the harmonic components of the NES elongation. They

describe a (parameter independent) manifold in the amplitude

space on which the motion occurs. The Figure 7 shows a typical

manifold in the space of the moduli (a,b01,b03) of the ampli-

tudes (A,B01,B03).
By substituting the z0 solution in Eq (31-a) and removing

secular terms, a differential equation governing the evolution of

A on the t1-scale is found, having the form:

d1A = f1 (A,B0; µ) (35)

If the analysis is truncated at this order, the dynamics is ruled

by this last equation, with B0 acting as a passive variable via the

constraint (34), so that the motion is restrained to the manifold.

However, if this latter exhibits turning point with respect to A

(as it occurs in Fig. 7), the motion cannot cross them, since Ȧ is

generally different from zero there; hence, the equations break
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Figure 7. Typical nonlinear manifold for a NES-controlled

system.

down at these singular points. To overcome this limitation, a

further step must be accomplished in the perturbation analysis.

After the equation for x1 is solved and substituted in the

higher-order equation for the NES (not shown for brevity), a

solution of the form:

z1 =
∞

∑
k=1

B1k (t1, t2, . . .)eikωt0 + c.c. (36)

is sought for via the HBM, which leads to differential equations

of the type:

O(m,ξ )d1B1 = g1 (A,B1; µ) (37)

where B1 := (B11,B12, . . .) and O(m,ξ ) denotes coefficients of

the order of the NES mass and damping coefficients, all close to

zero. Here, therefore, the singular nature of the system clearly

reveals itself.

By coming back to the original time, and by letting B :=
B0 +B1, we finally have:

Ȧ = f (A,B; µ)

εḂ = g(A,B; µ)
(38)

If just a harmonic were used in the HBM, then the system would

be four-dimensional, according to the CM theory; however, due

to the singularity of the system, which call for introducing

several amplitudes, the dimension is higher.

It should be remarked that, differently from the Complexifi-

cation procedure by Manevitch [32], usually adopted in litera-

ture to tackle this problem, the HBM has been used here just to

solve one equation, namely the NES-equation, and not for the

whole system.

The singular bifurcation equations (38) govern the well-

known relaxation oscillations, or ’Strongly Modulated Responses

(SMR)’ [33]. They consist in alternate slow and fast regimes. In-

deed, when the system moves close to the (parameter dependent)

manifold of equation g(A,B; µ) = 0, i.e. when g(A,B; µ) =
O(ε), then Ḃ = O(1), i.e. the motion is slow; when, in contrast,

the system is far from the manifold, i.e. g(A,B; µ) = O(1),
then Ḃ = O

(
ε−1

)
, i.e. the motion is fast.

The equations (38) were used in [11] to investigate the effec-

tiveness of the NES in controlling the oscillations consequent to

a Hopf bifurcation of a two d.o.f.’s airfoil, capable to vertically

translate and to rotate. A single d.o.f. NES was attached to

it, either windward or leeward. The analysis of the bifurcation

equations led to the results displayed in Fig 8, where continuous

lines denotes periodic solution for the original system (with

and without NES) and dots numerical solutions. A small re-

gion of quasi-period solutions, consequent to secondary Hopf

bifurcations, was also found (the curves denote the min/max

amplitudes). It is seen that the NES has always a beneficial

linear effect, since it shifts forward the critical wind velocity µ .

However, while the first arrangement produces subcritical at-

tractors, the second one entails a supercritical behavior, always

reducing the amplitude of the limit-cycle.

Two phase-portraits in the amplitude-plane are reported in

Fig 9, corresponding to the vertical lines in Fig 8. They show

that (Fig 9-a) the stable periodic solution on the manifold is

attractive of the system dynamics; in contrast (Fig 9-b), the un-

stable periodic motion existing between the two Hopf secondary

bifurcations produces a limit cycle on the (a,b)-plane, which

occurs around the manifold.

5.2 Externally excited systems
Nonlinear Energy Sinks are also employed to passively control

systems under external excitation [33]; the MSM-HB also works

for them [12]. As an example, let us consider a Hamiltonian

system, slightly damped, subject to a harmonic excitation of

frequency Ω and amplitude δ , having equation:

ẋ = J(µ)x+n3 (x,x,x)+ . . .−
(
ξ ż+κz3

)
r̂+δ fcosΩt

m
(
z̈− rT ẍ

)
+ξ ż+κz3 = 0

(39)

Here J(µ) = J0 + µJ1, where J0 is the Jacobian matrix of an

Hamiltonian system, admitting all non-zero eigenvalues ±ω j,

and µ := (σ ,ξ ) is a vector of small parameters, including stiff-

ness and damping coefficients. Moreover, the external frequency

Ω is assumed to be resonant with a natural frequency ω1, and

other forms of resonance are excluded.

By rescaling the external force as δ ! εδ and using the

same arguments for the autonomous system, we obtain pertur-

bation equations like (30) and (31), this latter accounting for the

new term:

(d0 −J0)x1 =−d1x0 +µJ1x0 +n3 (x0,x0,x0)

−
(
ξ d0z0 +κz3

0

)
r̂+

1

2
δ f
⇣

eiΩt0 + e−iΩt0

⌘

md2
0z0 +ξ d0z0 +κz3

0 = mrT d̈2
0x0

(40)
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Figure 8. Periodic and quasi-periodic motions for an airfoil equipped with a NES [11], put (a) windward, and (b) leeward.
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Figure 9. Phase-portrait for the airfoil [11], at the cross-sections marked in Fig 8: (a) µ = 0.05, (b) µ = 0.07.

Therefore, by using the generating solution (32), which takes

into account only the natural mode involved in the resonance,

and repeating the same steps as before, the following bifurcation

equations are obtained, identical to Eqs (38), but including δ
among the parameters:

Ȧ = f (A,B; µ,δ )

εḂ = g(A,B; µ,δ )
(41)

These equations have been used in [12] to analyze the response

of a single d.o.f. system with a NES attached; some results are

reported in Fig. 10. Fig. 10-a shows the amplitude-frequency

curve; an unstable periodic motion (yellow circle) exists be-

tween secondary Hopf points (black squares). When the mo-

tion is plotted on the amplitude plane (Fig. 10-b) SMR are

observed, occurring around the unstable periodic motion. The

time-histories of the amplitude (Fig. 10-c) and that of the dis-

placement x (Fig. 10-d) show the relaxation oscillations.

6. Conclusions

We discussed how to adapt the Multiple Scale Method in order to

solve ’difficult’ bifurcation problems. We obtained the following

main results.

1. When the system is defective at the bifurcation, i.e. the

center eigenvalue does not possess a complete set of eigen-

vectors, fractional power expansions and fractional times

of order ε1/m must be used, with m the algebraic mul-

tiplicity of the eigenvalue. By systematically enforcing

solvability conditions at each order, and then recombin-

ing them on the true time-scale, an m-order differential

equation for the amplitude is drawn.

2. When the system is partially defective at the bifurcation,

i.e. defective and non-defective eigenvalues interact, then

fractional powers must be used, although some of the

derivatives of the amplitudes can be zero, this denoting

that the dynamics is of slow-fast type. Consequently,

the bifurcation equations are differential equations of

different order.

3. When the system is, in addition, singular, as it happens

for NES-equipped systems, integer powers must be used,

in conjunction with the Harmonic Balance Method to

solve singular equations. The bifurcation equations are

found to be in the form of singular equations, exhibiting

relaxation oscillations.

Several applications have been shown, to display mechanical

phenomenon and to test the effectiveness of the proposed meth-
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Figure 10. Response of a single-d.o.f. system equipped with NES to external excitation [12]: (a) amplitude-frequency response;

(b) phase-portrait; (c), (d) time-histories.

ods. They include discrete and continuous systems, autonomous,

parametrically excited and externally excited systems. More-

over, the algorithm was able to explain the transition between

two bifurcations of different codimensions, when a parameter is

varied.
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