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SUMMARY

Controlling several and possibly independent moving agents in order to reach global goals is a tedious
task that has applications in many engineering �elds such as robotics or computer animation. Together, the
different agents form a whole called swarm, which may display interesting collective behaviors. When the
agents are driven by their own dynamics, controlling this swarm is known as the particle swarm control
problem. In that context, several strategies, based on the control of individuals using simple rules, exist. This
paper defends a new and original method based on a centralized approach. More precisely, we propose a
framework to control several particles with constraints either expressed on a per-particle basis, or expressed
as a function of their environment. We refer to these two categories as respectivelyLagrangianor Eulerian
constraints. The contributions of the paper are the following:i) we show how to use optimal control recipes to
express an optimization process over a large state space including the dynamic information of the particles;
ii) the relation between the Lagrangian state space and Eulerian values is conveniently expressed with graph
operators that make it possible to conduct all the mathematical operations required by the control process.
We show the effectiveness of our approach on classical and more original particle swarm control problems.

KEY WORDS: Particle Swarm Control ; Optimal control ; Variational assimilation ; Adjoint method ;
Graph operators

1. INTRODUCTION AND MOTIVATIONS

This paper focuses on the control of a set of particles which together form a whole, the latter
being called “swarm”. From individual properties, and depending on the nature and the state of
particles, collective behavior may appear from such entity [1, 2]. Controlling these collective
behaviors together with individual particles is therefore a key issue which is explored in this
article. This problem can be found in the literature for several distinct application �elds, such as
robot swarms [3, 4], simulation of schools and herds of animals [5], human crowd simulation [6]
or even mobile networks with switching topology [7]. The control of a particle swarm has
mainly been focused on three different problems:i) the rendezvousproblem, also known as the
distributed consensus problem [7, 8], which aims at agreeing on and reaching a common location,
ii) the formationproblem whose goal is to keep a given formation between the different swarm
members [9, 10] and �nally the iii) aggregationproblem, where the objective is for the agents to
group in a cohesive swarm [11, 12]. Other issues arise from economic load dispatching [13] which
looks for the optimal con�guration of generators. Most of the previous works on particle swarm
control focus on the design of individual laws, usually based on potential �elds (see e.g. [14, 15]),
to de�ne the control policy. The latter induces an emerging and global behavior of the swarm also
known asthe swarm intelligence, which has raised several important stability issues [11, 16, 17]. A
good review of those problems and the common associated recipes, along with stability results,
can be found in [15]. In fact, those decentralized approaches performed at the particle level
are motivated by real world conditions (i.e. physical systems which can only communicate with
their local neighbors), but also because the global control problem is tedious, since it requires to
minimize non-convex energy functions, as in [18], de�ned over potentially very large state space,
with possibly chaotic behaviors. The particle swarm optimization (PSO) methods [19], of which a
good overview can be found in [20], allows the minimization of such functionals using sampling
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methods for gradient descent, but is different in nature of the problem addressed in this paper. We
notably propose a new methodology where the swarm control operates globally to enforce a desired
consistency, and for which the gradient of the functional is computed, unlike the PSO methods. In
order to �t to the different problems' nature above cited, the control objectives can be expressed
either on a per-particle basis or relatively to the environment. These two categories of aims are
illustrated in Fig.1 and will be respectively referred to asLagrangianandEulerianconstraints or
goals. However, �nding an explicit correspondence between Lagrangian data and Eulerian quantities
(e.g. position of particles and its analog quantity density) is a non trivial task and calls for a dedicated
methodology.

a b c

Figure 1.Illustrations of the different nature of constraints in the swarm control problem. From an initial con�guration
(a), particles in blue can be controlled either to reach individual positions represented as red circles:Lagrangian

constraints (b) or to meet on a given area:Eulerianconstraint

Assuming that the particles are driven by an evolution model expressed as a system of partial
differential equations (PDE) (a generic model is given in Section3 to illustrate our control method),
we propose to use a deterministic optimization technique from the optimal control family [21, 22]:
the variational assimilation framework. Mostly based on the adjoint theory, it has been widely used
the last three decades [23, 24], mainly because of its convenient way to express the gradient of a
cost-function involving a large system state and the associated parameters. This method has most
of the time been used in a pure Eulerian framework [25, 26] but some applications in the context of
Lagrangian setpoints can be found [27].

The contributions of the paper are then twofold:

� we provide an original theoretical framework which makes it possible to derive a
correspondence between the Lagrangian and Eulerian space (Section4) of quantities related
to the swarm. This mapping is performed generically thanks to operators inspired from the
graph theory [28]. Those operators allow us to conduct mathematical operations such as
the linearization of the constraint operators required by the variational assimilation process
(Section5),

� we recast the centralized swarm control problem within the optimal control theory, and show
the potential bene�ts of this approach by solving several classical particle swarm control
problems (Section6). Among these, we provide formation or aggregation control, and less
classical issues such as control with respect to high order dynamical quantities such as
divergence and vorticity of the swarm velocity.

Finally, a discussion and a conclusion end the paper (Section7).

2. NOTATIONS AND METHOD OVERVIEW

We �rst begin by introducing in this section the terminology and the notations used in the remainder
of the paper. The control of a swarm of particles requires three main key points:

� the way particles behave in a deterministic fashion: i.e. how they move together subject to
given parameters. More formally, this corresponds to the modelM, which drives the state of
all particlesX through the following evolution equation:

@X
@t

+ M (X ) = 0 ; (1)
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� external constraints applied to the swarm: the setpointsY . These constraints can be
expressed in a different space thanX as it is the case in the swarm control problem considered
in Fig. 1.c, where the particle density is used as a continuous constraint. In that context, ad-
hoc relations capable of linking the Lagrangian system space to such constraints have to be
de�ned. As explained later in the paper, this is performed through graph operators which
formalism is very �exible and valid for dimensionsdim 2 f 1; 2; 3g;

� the swarm control, thanks to the mathematical process combining the last two concepts. In
this paper, we apply the control theory to a system deriving fromM to obtain speci�c states
X (t). A sensor is used to compare the system output to the reference signal. This error is
operated by a controller giving appropriate control variables for the system. Its integration
will lead to a corrected output. In our case, the controller corresponds to theassimilation
process, the system to the evolution modelM, and the sensor to the observation operatorH.
We noteY the reference signal, which can be considered as an observation in anestimation
framework, or as a setpoint in the control approach presented in this paper. Fig.2 shows
the negative feedback control of the state with a user de�ned signal. This control loop is

-

Setpoint
Y

+

Sensor
H(X)

Assimilation
Controller

State
XSystem

M(X; ! )

control 
variable

!

Figure 2.Functional scheme of the method. Each iterative loop computes the difference between the setpointY and
the observed stateH(X ) in the setpoint space. The difference supplies the assimilation process deriving from the model

M which will give new statesX (t) all along time.

not expressed in the frequency domain, andX cannot be determined by one-pass analytical
means unlike many engineering control applications. The reason is the speci�city of both the
assimilation controller and the system which contain time integration of equations.

3. SWARM EVOLUTION MODEL

To demonstrate the ability of the method to stick with common physical systems, we chose to
consider a second order model, abiding by Newton's law of motion. This choice is motivated by the
large variety of swarming phenomena these equations are able to model, like autonomous mobile
robots [29, 30], crowds dynamics [6], or schools of �sh [31]. We obtain for each particlepi the
system:

@yi
@t

= ui , (2a)

mi
@ui
@t

= Fi . (2b)

8
>><

>>:

In this model, an overall forceFi term is applied to every particlepi . We propose to decompose
this force into three main components:

Fi = Fsource;i + Fslow;i + Finteraction;i (3)

The source term provides a uniform and constant displacement, and is composed by a direction
Wi and an intensity� i given for every particle. This term reads:
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Fsource;i = � i Wi (4)

In order to limit the total kinetic energy of the system, it is common to add a friction force reading
for every particlepi :

Fslow;i = � ki ui : (5)

Providing an interaction term in the model demonstrates the power of the assimilation process in
reverberating corrections among a complex system like interactive swarm. One of the most simple
and yet potentially useful interactions is the repulsive force which has been widely used to model
social respect for both humans and animals. We consider it as decreasing with the distance between
particles and so take it as an inverse exponential function [6], and directed toward the particlepi :

r y
ij = � ae� bky j � y i keij : (6)

It is clear that the above model dynamics is described at a particle level, which renders a global
description at a swarm level dif�cult to achieve. It is also indeed dif�cult to consider at this stage
high level constraints involving global properties (such as density or velocity). The purpose of the
next section is to present a new formalism based on graph operators aiming at bridging the gap
between those different levels of representations.

4. GRAPH REPRESENTATION

Formalizing Lagrangian dynamics requires to de�ne equations at a particle level. When one
manipulates physical systems associated with continuous laws, such de�nition can be tedious. Here
we propose to re-write such dynamics directly at the swarm level. The bene�t of such approach is to
de�ne inner swarm interactions. Furthermore, the graph formalism along with its accompanying
matrix provides excellent tools for derivation of Lagrangian functions. The de�nitions of such
operators and Jacobian matrix needed by the variational assimilation, are suggested in this section.
We also propose to explicitly link particle data to discretized continuous quantities by viewing an
Eulerian grid as another graph. Neighboring conditions for particles are also de�ned thanks to these
operators. Before entering into details, let us now present some generalities.

4.1. Generalities

We consider the swarm as a set ofN particles, seen as vertices. We noteV the vertex space andE
the edge space.

The swarmV 2 VN has interconnections seen as edgesE 2 EZ , whereZ is the number of edges
connecting two vertices ofV. In practice obviously we are not interested in connecting every particle
to all others but we are rather interested on some local interaction. Therefore we haveZ � N 2. We
obtain the de�nition of the graphG = fV ; Egde�ning in a row particles and their interactions. It
is important to note that each vertex carries different properties or quantities, usually denoted as:
f : VN ! FN

V 7! f (V)
, with F = R in the case of a scalar quantity. For example, the position of

particles, also called con�guration, can be written as:

y(V) =

2

6
6
6
4

y(p1)
:::

y(pi )
:::

y(pN )

3

7
7
7
5

=

2

6
6
6
4

y1

:::
yi

:::
yN

3

7
7
7
5

. (7)

In order to write graph quantity expressions, we introduce the diagonalisation operator: which
creates a pure diagonal matrix made of the vector values. For instance,f y gives us a new graph
quantity being the product off andy .
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4.2. Connectivity

The connectivity of verticesV is de�ned by the adjacency matrixA 2 ZN � N , whereZ is the integer
domain, which captures the structure of the graphG. This matrix is de�ned as:

A =
�

A ij = 1 if there exists an edge betweenpi andpj ,
A ij = 0 if there is no edge. (8)

In most cases, relations between particles decrease with the distance: the connectivity depends on
the proximity. There exist several ways to set the proximity-based connectivity, such as connecting
vertices within a range, or connecting thek nearest neighbors. Because of the potentially high
number of particles, we chose to use a neighboring condition in a regular grid embedding, which
makes it possible to perform computations more ef�ciently only for a subset of neighboring
particles. The adjacency matrix often goes with the degree matrixD 2 ZN � N , which accounts
for the sum of connections for every vertex. This matrix is diagonal and is de�ned as:

D =
�

D ii =
P

j A ij ,
D ij = 0 .

(9)

Let us now take the example in a two dimension space of a given con�guration of vertices with a
�rst order neighboring condition described in Fig.3.

p1

p2

p3

p4

p5

Figure 3.Example graph G. The swarm lies on an Eulerian gridC. Connectivity of particles is here de�ned by meshes
proximity with emphasis on nodep1 .

The adjacency and degree matrix of graphGare:

A =

2

6
6
6
4

0 1 1 0 1
1 0 0 0 1
1 0 0 0 0
0 0 0 0 0
1 1 0 0 0

3

7
7
7
5

, D =

2

6
6
6
4

3 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 2

3

7
7
7
5

. (10)

In order to express explicitly the adjacency based on a Eulerian grid, we introduce the mesh
belonging matrixP(V) 2 ZN � M , whereM is the number of meshesc of grid C. P states for the
presence of a vertex in a mesh. We de�ne:

P =
�

Pim = 1 if yi is inside meshcm ,
Pim = 0 otherwise. (11)

Simultaneously we introduce the grid adjacency matrixM o 2 ZM � M representing the connectivity
of meshes ato-th order. We de�ne:

M o;ml =
�

1 if kcm � cl k1 � o,
0 otherwise, (12)
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with cm � cl the leap vector to go from meshcl to cm . The combination of these two matrices gives
us the precise expression of the adjacency:

A = PM oPT . (13)

As for the example in Fig.3, one can easily see thatPT gives the mesh to whichp1 belongs,M 1

gives the �rst order neighbours of this mesh, thenP collects vertices belonging to this set of meshes.

4.3. Weighted relations

Even if the conditions of the connectivity are known, the intensity of the connection must be known
as well, since functionals will have to depend on and eventually drive vertices. Thus, the adjacency
matrix can be augmented by weights. These weightsw(f (pi ); f (pj )) 2 W, or wf

ij , create the matrix�
wf

ij

�
2 WN � N which when combined to the adjacency matrix leads to:

A w f =
�
wf

ij

�
� A , (14)

� denoting the Hadamard, or entrywise, product. In practice, the quantity used by the weightwij

is often a difference of the positionsyi andyj , reading:wy
ij = w(y(pj ) � y(pi )) . As an example, if

taking the weight function as a Gaussian kernelG parameterized by its standard deviation� , such
as:

G y
ij = G (yi ; yj ) =

1
�
�

p
2�

� dim e�
( y j � y i )2

2 � 2 , (15)

one can express in a compact way the concentration of the particle's quantity, or particle density, of
Gby writing:

� = A G y q, (16)

with the quantity of particleq(V) here set to~1, meaning every particle counts for1 ptl � .
Consequently the dimension of the concentration becomes:[� ] = ptl:m � dim . An example of this
density is proposed in Fig.5 (left).

4.4. Rewriting the evolution model with graph operators

At this stage, it is possible to rewrite the evolution model exposed in Section3 with graph
operators. Recalling that every particles are submitted to a forceFi composed of three terms
Fi = Fsource;i + Fslow;i + Finteraction;i , we rewrite the three different components in the following
way:

� the source term, which is is composed by a directionW (V) 2 Rd� N and an intensity
� (V) 2 RN now reads in the graph's space:Fsource= � W ;

� the friction term, which is composed by the particles velocitiesu 2 Rd� N and the friction
coef�cientsk 2 RN nows reads in the graph's space:Fslow = � ku;

� the interaction term, which is composed of weighted relations between particles now reads in
the graph's space:Finteraction= A r y ~1;

which �nally gives the following expression of the evolution model in the graph's space:

@y
@t

� u = 0 , (17a)
@u
@t

� m � 1(� W � ku + A r y ~1
| {z }

F

) = 0 , (17b)

8
>><

>>:

in which one can recognize an evolution equation as de�ned at Eq.1. We now examine the
possibilities offered by the graph operators to perform a link between the Lagrangian quantities

� We noteptl the unit of the quantity of particles.
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involved in the graph and Eulerian quantities relative to the environment. We recall again that this
can be useful if one wants to control the swarm with respect to constraints given at the swarm level
such as density or velocity.

4.5. Projection to Eulerian space

In addition to the grid neighboring condition, we also need to evaluate Lagrangian data in the
Eulerian space for the integration of continuous constraints in the control process. Knowing any
vertex quantity at the vertex location, we have to presume the values elsewhere, such as on the
grid C. We then need to estimate either the concentration of the quantity, or directly the quantity
which will act as an interpolation. Of course, every vertices will not be used for the estimation, and
we will useM oPT to select vertices on sight. The weights, however, are slightly different from
those used for graph adjacency. They mix the quantity of the vertices and the grid. By de�ning�
wf

mj

�
CG

2 WM � N the matrix of weights, withwf
mj = w(f (pj ) � f (cm )) , we can express the

convolution, or concentration here, ofq, the density of particles onCas follows:

� C =
�
G y

mj

�
CG

� M oPT q, (18)

providedy(cm ) = x cm , the center of meshcm . In the case of concentration, the weight has to be a
kernel function, such as gaussianG . The weight reads in this case:

G y
mj = G (xm ; yj ) =

1
�
�

p
2�

� dim e�
( y j � x m )2

2 � 2 . (19)

Introducing the Eulerian adjacency matrixA w f 2 WM � N such as:

A w f =
�
G y

mj

�
CG

� M oPT , (20)

Eq.18can be simpli�ed as follows:
� C = A G y q. (21)

We present in Fig.4 an example of calculation of the concentration ofq in a one dimension space,
and in Fig.5 (right) the calculation in a two dimension space.

 

 
particle data q
concentration of q
grid

Figure 4.Concentration example. Concentration ofq on grid C obtained byA G y q . HereN = 6 , M = 16 , o = M ,
and the standard deviation ofG is set as the size of the meshes ofC.

To get the quantity value elsewhere other than on vertices, we use the Eulerian adjacency weights
as interpolation weights. For eachpi , we divide the convolution by the sum of weights applied. This
normalization can be done with the introduction of the Eulerian degree matrixD 2 WM � M , de�ned
as:

D =
�

Dmm =
P

j A mj ,
Dml = 0 .

(22)

In the end, lettinguC 2 Rdim M be the Eulerian velocity expressed on gridC, we obtain the
expression:

uC = D � 1
w y A w y u. (23)
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p1

p2

p3

p4

p5p1

p2

p3

p4

p5 p1

p2

p3

p4

p5

Figure 5.Example graph G. Left) The density is expressed on graphG by Eq.16, right) the density is expressed on
grid C by Eq.21.

This acts as an inverse distance weighted interpolation where the number of samples used equals
M oPT ~1, and providedwy

mj decreases askyj � x cm k grows.
The choice ofw is critical, and can lead to very different results. It has to be chosen and con�gured

with respect to the expected smoothing degree, and the desired extrapolation type when away from
the swarm. Ideally, the perfectw should match the following requirements:

� accuracy: the evaluated quantity at an available data is itself. This reads:(yj = x cm ) uj =
ucm ) , w(0) = 1 ;

� vacuum relevance and stability: when far from the available data (i.e. the swarm), the
evaluated quantity corresponds to the average of the available data;

� smoothness: as we deal with continuous data, the quantity has to be smooth;
� simple mathematical derivation for computation ease.

The inverse distance weight functionwy = 1
ky j � x c m k , despite its accuracy and the fact that

it appears to be a rational choice is likely to generate high variations potentially leading to
discontinuities ifN � M . For the sake of robustness, we instead chose to use the gaussian kernel
functionG , again despite the fact it causes small accuracy discrepancy. It amounts to determine a
range of interpolation depending on the particles to grid elements distance. In addition, this weight
function turns out to be powerful if the particle density is used for the calculation of its standard
deviation at each positionx cm . To illustrate this, we present in Fig.6 an example of the evaluation
of uC comparing this method to a �xed standard deviation, showing how the density-based method
provides a more robust evaluation for the natural interpretation that can be made of the underlying
continuous quantity. However, with such Gaussian kernel, the derivationw@y unfortunately gets a
little more complicated.

4.6. Differenciation

For particle control purposes, we will be led to derive equations by some vectorial vertex data noted
f 2 Rdim � N . Eq. 16 shows how the adjacency can be used to estimate new vertex quantities. To
help differenciate graph equations, we slightly modify this notation by setting the multiplied vector
inside the adjacency matrix, therefore yielding a new weighting type. Considering andd 2 RN

as scalar data, we write:

 = A w f d = A w f :d
~1, (24)

where the functional matrix is de�ned such as:A w f :d =
�
wf

ij dj
�
. We will denote the weight

derivationw@f
ij =

@wf
ij

@fj
= �

@wf
ij

@fi
2 Wdim .
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particle data u
evaluation of u
density-based evaluation of u
grid

Figure 6.Evaluation example using particles density.Evaluation ofu on gridCobtained byD � 1
G y A G y u . HereN = 6 ,

M = 16 , o = M . The standard deviation ofG is set as the size of the meshes ofC for the simple evaluation, and as the
inverse of two times the particle density (2A G y ~1) for the density-based evaluation.

The derivation@ 
@f 2 Wd� N � N readsy:

@ 
@f

= @f A w f d (25)

= @f

2

6
6
6
4

P N
j wf

1j djP N
j wf

2j dj

:::P N
j wf

Nj dj

3

7
7
7
5

(26)

=

2

6
6
6
4

@f 1

P N
j wf

1j dj @f 2

P N
j wf

1j dj ::: @f N

P N
j wf

1j dj

@f 1

P N
j wf

2j dj @f 2

P N
j wf

2j dj ::: @f N

P N
j wf

2j dj

::: ::: ::: :::
@f 1

P N
j wf

Nj dj @f 2

P N
j wf

Nj dj ::: @f N

P N
j wf

Nj dj

3

7
7
7
5

(27)

=

2

6
6
6
4

�
P N

j w@f
1j dj w@f

12 d2 ::: w@f
1N dN

w@f
21 d1 �

P N
j w@f

2j dj ::: w@f
2N dN

::: ::: ::: :::
w@f

N 1d1 w@f
N 2d2 ::: �

P N
j w@f

Nj dj

3

7
7
7
5

(28)

= �
h� P N

j w@f
ij dj

�
� ik

i
+

�
w@f

ij dj
�

. (29)

One can identify the degree and adjacency matrix out of this expression, leading to the equation:

@ 
@f

= � D w @f :d + A w @f :d . (30)

Using the graph LaplacianL = D � A , we �nally obtain:

@ 
@f

= � L w @f :d . (31)

It becomes also possible to simply write swarm PDEs describing the behavior of particles. In the
cased = ~1, one can notice thatL w @f is symmetric.

yConsideringA independent off , which is an approximation in casef = y as seen in Eq.13, where it depends on the
mesh belonging matrixP .
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The derivation of Eulerian quantities C is different since the weight function depends in part
on the grid meshes instead of double vertex dependency for classical graph weights. Therefore, the
degree matrix does not appear and the derivation of the convolution ofd on Csimply reads:

@ C

@f
= A w @f d. (32)

5. OPTIMAL CONTROL

The evolution modelM of Eq. 1 aims at giving a �rst assumption of the particle behavior. The
evolution of the system stateX (t) can be directly inferred from this model by integrating it over
time. The assimilation process is in charge of modifying this state trajectory by taking into account
setpoints (or observations) at given times. As a result, the control is de�ned as a tradeoff between
what can be expected from the model and what is actually required by external constraintsY (t).
In fact, the degree of freedom allowing to modify the evolution of the particles predicted byM is
de�ned by the levels of con�dence in the model, the setpoints, and the initial state conditions. In the
assimilation process, these levels are related to the covariance matrices. This is explained thoroughly
in the next section.

5.1. Problem statement

Assuming the swarm being coarsely driven by the evolution modelM, one can add an unknown
additive control variable� M , relative to the noise on the evolution, leading to:

@X
@t

+ M (X ) = � M . (33)

The setpoint dataY (t) have to be compared to the model outputX (t), as seen in Fig.2. This
comparison can be direct or not, for example through higher level constraints such as differential
particles con�guration or local density (as seen in Fig.1). The relation from such data toX is
therefore not direct, and leads to introducing an observation operatorH, formalizing:

H(X ) = Y + � H , (34)

where� H stands for an error on the setpoint. Note that a direct observation corresponds toH equals
the identity.

Finally, as for the initial condition, we also assume its value to be uncertain, leading to:

X (t0) = X 0 + � 0. (35)

Therefore, the problem consists in extractingX that satis�es the system of relations33, 34 and
35. This is thecontrol issue: how to extract a solution of lower energy on variables� M and � 0

(i.e. abiding by as much as possible the natural modelM and the initial conditionX 0) such that
the computed state along time �ts the actual setpointsY , up to the authorized error. This leads to
extractingX (t) that corresponds to the lowest discrepancy between the external constraints and the
original trajectory in state space. These conditions can be expressed through the minimization of
the cost functionJ de�ned as:

J (� M ; � 0) =
1
2

Z t f

t 0

k� M k2
Q � 1 dt +

1
2

Z t f

t 0

k� 0k2
B � 1 dt

+
1
2

Z t f

t 0

kY � H(X )k2
R � 1 dt.

(36)

whereQ, B andR are respectively the error covariance matrices associated to noises� M , � 0 and
� H . The expressionk:kC � 1 stands for the induced norm of the inner product



C � 1:; :

�
whereC is

an endomorphism.
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These covariances are of high importance in the control process, in the sense that they
parameterize the trade-off between the deterministic model and the setpoints. For example, the
initial con�guration of the swarm att0 can be set as fully trusted, and so not modi�able, by
parameterizing the associated error to zero and therefore associating an error covariance matrix
such that:B � 1 = + 1 . Similar behaviors hold for matricesQ andR.

From a mathematical point of view, in practice, the optimization of Eq.36 leads to some
dif�culties in reason of the potentially large size of the system state and to the complexity of the
evolution model. A solution to face this problem is to use an adjoint formulation, as presented in the
next section.

5.2. Adjoint formulation

As mentioned, the estimation of� J (� � 0; � � M ) is in practice unfeasible for a large system's state
(hereX 2 R2 dim N ). As a matter of fact, such an evaluation would require computing perturbations
of the state variables along all the components of the control variables(� � M ; � � 0) and all along the
temporal grid – i.e. integrating our evolution model for all perturbed components of the control
variables which is computationally completely unrealistic. An elegant solution of this problem
consists in relying on anadjoint formulation[21] by adding an adjoint variable� to the derived
model @M. With the help of a few expansions and properties, and by de�ning the linearisation
@X M 2 R2 dim N � 2 dim N of operatorM (also known as Gâteaux derivative) by:

(@X M )dX = lim
� ! 0

M (X + �d X ) � M (X )
�

, (37)

and the adjoint linearised operator(@X M ) � 2 R2 dim N � 2 dim N such as:

h(@X M )dX ; � i =


dX ; (@X M ) � �

�
, (38)

it can be demonstrated that solving the assimilation problem in an incremental framework consists
in performing the following algorithm1 on the basis of the solutionX (t) given by the model
integration.

Algorithm 1: Incremental variational data assimilation
Data: TrajectoryX (t)
Result: Optimal solution

� Perform integration ofM with initial conditionX (t0) = X 0

while No convergencedo

� Set� (t f ) = 0
� Backward integration of the adjoint linearised model:

@�
@t

+ ( @X M ) � � = ( @X H) � R� 1 (Y � H(X )) (39)

� From adjoint trajectory� (t; � H):

– compute:dX (t0) = d� 0 = 1
t f � t 0

B � (t0)

– compute:d� M (t) = Q� (t)

� Forward integration of the linearised model:

@dX
@t

+ ( @X M )dX = d� M (40)

� Update trajectoryX (t) by adding computeddX (t)

end
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The method �rst consists in obtaining the state trajectoryX (t) abiding by the evolution modelM
with respect to the given initial conditionX 0.

At this stage of the process, the assimilation controller of Fig.2, and detailed in the above
Fig. 7 (left), is in charge of computing the control variables of the system.

Adjoint 
linearised sensor

(! XH)* R-1

Assimilation Controller

Adjoint
linearised model

(! XM)*(X;! X)
B,Q

! (t)
control 

variables
d! 0, d! M

System

Linearised
model

! XM(X;d! 0,d! M)
+X

dX(t)
! H

X(t)
! X

Figure 7.Details of the assimilation controller and the system of Fig.2 in an incremental framework.

Around the state trajectory, the backward integration of the adjoint linearised model of Eq.39 is
in charge of computing� which can be seen as an error variable along time. The evolution of� is
in fact:

� powered by a discrepancy measure between the setpointY and the state observationH(X );
� and guided by the adjoint linearised model(@X M ) � .

The variations of the control variables� 0 and � M (t) are then calculated using� , thus allowing to
compute the variation of the state trajectorydX (t) by the forward integration of Eq.40 as shown
in Fig. 7 (right). Finally, the state correction is added to last obtained state trajectoryX (t), and the
overall process is iteratively repeated until convergence.

It is important to notice that both the linearized model and its adjoint evolve around the updated
state. To start the control we then must dispose of a �rst assumption ofX (t), which is done thanks
to the direct integration ofM (X ), and to an initial conditionX 0.

The details of this derived models are now presented, and will be followed by several sensors
presentation along with their linearisation.

5.3. Linearized model

The model being de�ned by the equation system17, their expression therefore read:

@X M =
�
1 0
0 � m � 1

� �
0 1

@y F @u F

�
, (41)

(@X M ) � =
�
0 @y FT

1 @u FT

� �
1 0
0 � m � 1

�
. (42)

One can observe that the task consists in correctly expressing the linearization and the transposed
linearization of forcesF. Thanks to Eq.17band Eq.31, we get:

@y F = � L r @y , (43)

@u F = � k . (44)

Sincer y
ij is a vector, its derivative is a matrix (2 Rd� d). Considering the distance between two

particlesD y
ij = kyj � yi k, the repulsion force is of formf (D y

ij )ey
ij with f : R ! R. The derivation

for any distance-based interaction force, includingr y
ij , then reads:

r @y
ij =

1
D y

ij
f (D y

ij )
�
ey

ij

�
�

orthoradial
projection

� � f 0(D y
ij )

�
ey

ij

�
�

radial
projection

� , (45)

which is a symmetric matrix. In the end, transposals of the above linearisations simply give the
adjoint linearised terms by reading

(@y F)T = @y F, (46)

(@u F)T = @u F. (47)
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5.4. Observation operators

One easily understands that the sensor of Fig.2 transforms the stateX to a data lying in the same
domain asY . Therefore any user de�ned setpoint must be associated to an observation operator
H(X ). If the setpoint is directly connected to the system's state, this operator is trivial. For example
in our case, a full state setpoint reads:

Y =
�
y sp
usp

�
) H(X ) =

�
y
u

�
) (@X H) � =

�
1 0
0 1

�
. (48)

In case of higher level observations, the expression ofH and its linearisation can take various forms.
In the following we present some observation operators that appear to be useful in the context of
particle swarm control.

5.4.1. Lagrangian setpointsIn addition to the trivial Lagrangian observation lately presented, we
propose two operators based on inter particles relations.

The �rst operator consists in imposing speci�c relationships between particles. When such
relationships correspond to distances, this observation operator describes shapes [11], but we note
that other shape-description possibilities could have been used (see for example [32]). The relation
between a single particlepk and others is de�ned through a weight functionw and a state quantity
f . Assuming the relation between particles de�ned through a matrixM sp 2 WN � N , we can extract
the vector of relations of thek-th particle, the desired spatial relations, by writing:

k
Y = M sp � i

k 2 WN , (49)

with � i
k 2 ZN . This setpoint has to be compared to the state by the sensor and through the adjacency

matrix de�ned by weighted connectionsw, and one of the state's quantitiesf belonging toX , leading
to:

k
H(X ) = A w f � i

k . (50)

In the rest of the paper we call this ak-speci�c adjacencyoperator (KSA) associated to thek-speci�c

vector of adjacencies:
k
aw f 2 WN . In order to derive the observation operator, we also introduce the

k-speci�c Laplacian matrix:
k
l w @f =

@
k
aw f

@f
, (51)

which can be seen as ak-decomposition of the Laplacian matrix,i.e.:

X

k

k
l w @f = L w @f . (52)

This operator reads:

k
l w @f =

8
>>>>>><

>>>>>>:

k
l w @f ;ij = w@f

ij if i = j
k
l w @f ;ij = � w@f

ij if j = k
k
l w @f ;ij = 0 if i = j = k since@f k wf

kk = 0
k
l w @f ;ij = 0 otherwise

(53)

For example, if such a setpoint is applied to every particlepk , the control process will amount to
�nd f that minimizeskM sp � A w f k. Alternatively, in casew 2 R is a distance function between
dataf of the nodes of the graph, this operator is invariant to the shape's translation and rotation.

The second operatoris quite the same as the last one. It however introduces a degree of freedom
by adding a normalization: the scale of the setpoint is now unspeci�ed. Instead of explicitly impose
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Table I.Overview of the three Lagangian observation operators.

Y setpoint H(X ) observation operator (@X H) � adjoint linearised observation operator

state X sp X I N

k-speci�c
M sp � i

k
k
aw f

�
k
l w @f

� T

adjacency

k-speci�c M spD � 1
M sp

� i
k

�
k
dw f

� � 1
k
aw f

�
k
l w @f �

k
H 
 @f

k
dw f

� T �
k
dw f

� � 1

normalized adjacency

relations between particles withM sp , we only desire here to respect the proportion of relation. We
name this operatork-speci�c normalized adjacencyoperator (KSNA). WithD M sp 2 WN � N being
the degree matrix ofM , we thus write:

k
Y = M spD � 1

M sp
� i

k , and
k
H(X ) = A w f D � 1

w f � i
k . (54)

In other words, by noting
k
dw f = � k

i D w f � i
k 2 W thek-speci�c degree, we obtain:

k
H(X ) =

k
aw f

�
k
dw f

� � 1

, (55)

and its derivation gives:

@f

k
H = �

�
k
dw f

� � 2 �
k
aw f 
 @f

k
dw f

�
+

�
k
dw f

� � 1 k
l w @f ,

=
�

k
dw f

� � 1 �
k
l w @f �

k
H 
 @f

k
dw f

�
.

(56)

The KSA and KSNA operators, alike the direct state operator, are applied to Lagrangian setpoints.
This is summarized in Tab.I. We will now turn to the management of environment data into the
sensor process, that we refer as Eulerian constraints.

5.4.2. Eulerian setpointsIn some speci�c applications, it is also of great interest to control the
swarm by continuous data. For example, one can impose at a given time the concentration of
particles to respect a continuous constraint de�ned on a gridC. For the sake of clarity, let us consider
a system driven by the modelM whose properties arey , u and q the quantity of particles (the
system's state being composed ofy , u). To control the system either on the basis of the position,
velocity or quantity, we need to de�ne two operators: thedensity observation operatorthat links
the system state to a continuous quantity de�ned on the grid and theprojection observation
operator that is in charge of estimating the values of the given component on a grid. These two
operators are detailed below.

Density observation operator.In this case, we seek to express the concentration of particlesq on
the grid. The observation operator seen in Eq.21is such as:H(X ) = � C = A G y q, and its derivation
by X simply reads:

@X H =
�
@y H
@u H

�
=

�
A G @y q

0

�
. (57)

Projection observation operator.As mentioned above, its goal is to evaluate on a gridC some
variables. The velocityu accounts for a rational data to estimate onC, and its projection on it is
already given in Eq.23such as:H(X ) = uC = D � 1

w y A w y u. Its derivation byX reads:

@X H =
�
@y H
@u H

�
=

�
D � 1

w y

�
A w @y u � uCA w @y

�

D � 1
w y A w y

�
(58)
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Table II.Eulerian observation operators.

Y setpoint H(X ) observation operator (@X H) � adjoint linearised observation operator

density � C;sp A G y q ) Eq.21
�
qA T

G @y

0

�
) Eq.57

velocity uC;sp D � 1
w y A w y u ) Eq.23

�
Sw @y :u
A T

w y

�
D � 1

w y ) Eq.58

divergence � C;sp r uC ) Eq.59
�
(@y r uC)T

(@u r uC)T

�
) Eq.61

curl � C;sp [r � ] uC ) Eq.60
�
(@y [r � ] uC)T

(@u [r � ] uC)T

�
) Eq.62

where for clarity sakes, we have introduced the EuleriandeviationoperatorSw @f :d = A w @f d �
dCA w @f allowing to expressing derivations in a more compact way.

In addition to these operators inspired from particles concentration and velocity, we propose
higher level setpoints based on the derivatives of the velocity. More precisely, we use:

� thedivergence, which expresses the dynamic of dilatation or concentration of particles:

H(X ) = � C = r uC = D � 1
w y (D � 1

w y Dw @y A w y � A w @y )u, (59)

� andvorticity (or rotational or curl), related to the dynamic of whirling of the particles:

H(X ) = � C = [ r � ] uC = D � 1
w y ([r � ] A w y + D � 1

w y [Dw @y � ] A w y )u. (60)

The result of the derivation of these operators is directly expressed as follows:

� for divergence:

@X H =
�
@y H
@u H

�
=

�
�D � 1

w y � CA w @y + D � 2
w y Dw @y Sw @y :u � D � 1

w y Sw @2 y :u
D � 1

w y (D � 1
w y Dw @y A w y � A w @y )

�
; (61)

� for vorticity:

@X H =
�
@y H
@u H

�
=

�
�D � 1

w y � CA w @y + D � 2
w y Dw @y � Sw @y :u � D � 1

w y Sw @2 y � u
D � 1

w y (D � 1
w y [Dw @y � ] A w y + [ r � ] A w y )

�
. (62)

These observation operators, along with their derivation required by the control process,
illustrate the variety of possible phenomena relative to a Lagrangian model. The Eulerian ones are
summarized in Tab.II . Let us now turn to the experiment results.

6. RESULTS

In this section, we test and validate our control approach by imposing Lagrangian and Eulerian
setpoints to a particle swarm submitted to the dynamical model presented in Section3. Before
describing these experiments, we �rst discuss some practical aspects in the next paragraph.

6.1. General considerations for experiments

Below are some general settings:

� for the ease of presentation, the experiments are performed in 2D space (i.e.dim = 2 );
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� the simulations ofM, @X M, and(@X M ) � are performed using the 4-th order Runge-Kutta
time integration to guarantee stable trajectories, and the time step is set to0:1s;

� we use a gridCof 32� 32 meshes, each one sizing1m � 1m;
� the mass of particlesm is set to~1kg for every experiment.

As for the error covariance matrices:

� as the relation of Eq.17abetween particles positions and velocities is considered as perfect,
we setQy null. As a consequence, onlyQu related to the error covariance matrix on the
dynamic modeling in Eq.17bwill be non null;

� covariances are parameterized for a slow convergence to avoid oscillations and so improve
clarity of method's behavior;

� concerning the initial condition, in order to stick with a constrained initial position, we set it
null in this paper for bothBy andBu .

Regarding computation performances, each control loop duration of the examples presented
lasted averagely between 10 and 30 seconds on a 2.3 Ghz laptop. Let us also specify that we
used thestore all method consisting of saving the states (positions and velocities) all along the
sequence. In case of very big state space, for instance here a large number of particles, and/or
very large number of time steps, the needed memory can become signi�cant, which may appear as a
drawback of this method, but did not appear as a critical issue in the following experiments. We now
turn to experiments with Lagrangian observations. All the experimentations are performed with the
parameter values of Tab.III .

6.2. Lagrangian observations

In this example, the goal is to impose a relative relationship between particles. To that end, the
KSNA operator detailed in Section5.4.1 will be used. Although it is formalized for any graph
data and any weight function, we will show, for the sake of clarity and in order to have a better
understanding of the assimilation process, the results by taking:f = y andwf

ij = D y
ij = kyj � yi k,

the Euclidean distance function. Considering a spatial con�guration of particles (a pattern), we
can build its adjacency matrix following Section5.4and obtainM sp de�ning the distance of every
particle to all others. The experiment, therefore, consists in bending the modelM to obtain at a given
time tsp a spatial con�guration of the particles being as close as possible to the targeted pattern with
respect to the modelM.

We consider an adjacency matrix of distancesM sp built thanks to a given swarm pattern, and
will apply the KSNA operator for every particlepk . The setpoint pattern will be the wordTAC
(standing forTensorial Adjoint Control) at tsp = 12 s. It is built of�ine and constituted ofN = 46
particles. The initial condition on positionsy t 0

is taken as the desired pattern but at a smaller scale
as compared to the repulsion magnitudea and the duration lasting up to the setpoint. Therefore,
the integration of the evolution model will signi�cantly disperse particles over time. This leaves
trajectories of particles which can be used to easily highlight the way the solution converges. So
far, we would obtain attsp a con�guration of particles which relative positions do not need to be
exchanged. A small randomization aroundy t 0

is added to break this arrangement and solicit more
hardly the repulsive term of the model during the control.

The result of the experiment appears in Fig.8. The �rst step (i.e. simulation of the model) in Fig.
8(a) shows that the swarm has no other behavior than diffusion due to particle repulsion. After a
few control loops , the swarm changes its whole state quickly and a new behavior appears, as shown
on the trajectories of Fig.8(b). With 200 assimilation iterations (Fig.8(c)), the word TAC appears
clearly from a qualitative point of view. However the swarm begins to encounter dif�culties due to
particles impediment and the rate of evolution over control loops start to considerably slowdown, as
the normalized Root Means Square (RMS) ofH(X ) � Y shows in Fig.8(d). Actually, at this stage,
the swarm is struggling to overcome the model which does not easily allow for recon�guration of
the swarm, since the initial condition has broken the ideal one as said previously. This is why at
convergence, in Fig.8(c) we can observe particles switching their position by a careful rotation, as
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(a) Model integration (b) Control after 10 assimilation iterations

(c) Control after 200 assimilation iterations
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Figure 8.KSNA experimentation. Red dots represent swarm con�guration att = 12 s, blue dots att0 = 0 s. Dashed
lines are particle trajectories over sequence duration. Covariances are tuned for a slow and steady convergence to preserve

the dynamic of the swarm.
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in the left side of theC letter. The two closest particles (top of letterA) are still trying to switch their
position. They are pushed toward each other by the adjoint linearised observation operator(@X H) � ,
but repulsed by the model. This is a typical local minimum case and drawback of the method
These particles are stuck in a bad con�guration regarding to the setpoint, and cause the others'
positioning to be polluted, since the problem is over constrained when the setpoint patternM sp is
fully connected. Using other shape descriptors by advanced multiresolution strategies or stochastic
gradients could for instance lower this problem by minimizing the number of local minima. However
this is out of the scope of this paper. Another possibility to overcome this dif�culty under the
proposed framework would be to decrease the con�dence in the model, or increase the setpoint
con�dence by adjusting the covariance matrices. It is also possible to sparse the latter one in order
to relax the control problem.

Last, we obviously notice that scale orientation and positioning of the pattern obtained at
convergence correspond to the apparently closest solution in reference to the simulation (a focus on
orientation reveals that the obtained pattern is not horizontally oriented) which proves the ef�ciency
of our approach.

6.3. Eulerian observation

In this section, we present experiments with two kinds of Eulerian setpoints based on density and
on divergence plus vorticity.

6.3.1. Aggregation density controlProblem statement.The aggregation problem is well-known
when dealing with robot swarms [9, 33]. The problem can be stated as:“how particles have to
move in order to be found in an area at a speci�c timetsp ?” . We propose to answer this question
by using the density observation operator. The control issue then states how to bend the modelM
in order to �nd a speci�c concentration of particles attsp . We will consider the aggregation case
illustrated in Fig.9(a), where the swarm has to be located at areaA then areaB while heading East.
These locations have been chosen with high inconsistencies regarding the model dynamics in order
to highlight the contribution of the control approach. As shown in Fig.9, we add to these setpoints
a density gradient in order to also control the way particles are aggregated.

swarm

A

B

(a) Aggregation problem (b) for areaA,tsp = 12 s (c) for areaB,tsp = 20 s

Figure 9.Aggregation problem Instead of being driven only by the evolution modelM, we also impose the swarm
to reach areasA andB. The two observations A and B are horizontally symmetric, and maximum value in red reaches

1:3 ptl:m � 2 . Grid C is only displayed here for further clarity's sake.

The pitch of the grid (1m) provides the �nest relevant standard deviation that we note� 1. This
value is de�ned as the high resolution and is used for the Gaussian kernel needed by the density
observation operator of Eq.21. One can understand thanks to Fig.9 that this value is low as
compared to the distance between the initial swarm trajectory and aggregation areas. Therefore,
the Gaussian derivative driving the density adjoint linearised observation operator (see Tab.II ) is of
low intensity in the �rst control iterations, and is not able to provide enough power to the adjoint
model (see Eq.39) in the scope of attracting the swarm to aggregation areas. It will in fact be the
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most ef�cient for particles being at a1m distance of aggregation information. Consequently, we
suggest embedding the process of sensing with the following technique.

A Multiresolution framework is achieved using a spectrum of standard deviation, instead
of the unique usage of� 1. This allows the particles to capture information at different ranges
where the setpoint remains unful�lled. The spectrum is taken as� r = f 1m; 2m; 4m; 8m; 16mg,
guaranteeing the distance from a particlepj to a meshcm always varies in the range of two
standard deviations:2� r < ky j � x cm k < 2� r +1 . We also convolute the setpointY of Fig. 9 for
these resolutions in order to provide reachable data to the assimilation process, since the input
densities provided for the setpoints are not reachable for a Gaussian kernel convolution, and more
widely by any kernel whose derivation is not null. Fig.10shows these convolutions.

(a) � = 1 m (b) � = 2 m (c) � = 4 m (d) � = 8 m (e) � = 16 m

Figure 10.Y for different resolutions. Setpoint for theA area attsp = 12 s

So far, the multiresolution operators and the adjoints of their linearisation correspond to a �ltering,
whose power is diffused essentially between distances0m and 2� r . In the same purpose, if we
consider the observed density after the integration of modelM, shown in Fig.11, and consider the
difference between maps of Figs.10(e)and11(e), we observe that the differenceY � H(X ) is of
low intensity, and we easily presume this difference will be much higher for high resolutions once
the swarm has reached the areaA and its neighborhood.

(a) � = 1 m (b) � = 2 m (c) � = 4 m (d) � = 8 m (e) � = 16 m

Figure 11.H(X ) for different resolutions right after model integration .

In fact the covarianceR of the setpoint error� H strongly depends on the observation operator
H(X ). It is meant to amplify the intensity of the adjoint linearised observation operator(@X H) � .
Indeed, the con�dence in the observation is necessarily higher for low resolutions and we suppose
it proportional to the mean density squaredz. Therefore we state:

R = k2
R G � (0)2I M , (63)

with kR being a user coef�cient same for every resolution. We present in Fig.12 a global behavior
of multiresolution adjoint linearised observation operator(@X H) � ampli�ed by R� 1 by plotting
G0

� (x)G � (0) � 2 for the considered standard deviation.
Results. We present in Fig.13 the results of the experiment by showing the evolution of

trajectories of the particles (13(a)- 13(c)) through the control. One can see that the initial trajectories

zWe remind the reader that the covariance de�nition states among others:[R] = [ H]2 , with [:] being the quantity
dimension operator
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Figure 12.Behavior of multiresolution density adjoint linearised observation operatorG 0
� (x )G � (0) � 2 ampli�ed

by R � 1 . Peak of power is reached at� and intensity grows as resolution decreases

are straight, the swarm has no other purpose than heading East with particles pushing each other
back. After 10 assimilation iterations, the trajectories are bended. It is dif�cult for the swarm to be
present at areaA and only8 seconds later at areaB. Therefore, the 'bending' of the model is hard and
requires more control loops in order to ful�ll reasonably the input densities. After 300 iterations, the
swarm has clearly reached the desired areas and the density gradient appears. The particles which
were the farthest from the areas managed to get a little closer toA andB but did not reach it sinceY
is almost ful�lled.The error is by then too low to bend their trajectories enough. This is the concern
of the lowest resolution adjoint observation operators, and we see in Figs.13(d) to 13(e)that the
observations are reached faster at these resolutions than at the highest one. In Figs.13(f) to 13(j) it
can be seen that the densities observed at near convergence are very close to the demanded setpoints
in Figs. 10(a)to 10(e). In addition, it is remarkable that the dynamic has been preserved as much as
possible: particles still repulse each other, even if the swarm is asked to be more concentrated than
usual.

This experiment demonstrates the ability of the approach to generate consistent trajectories with
speci�c constraints on densities. Let us now turn to constraints on divergence and vorticity.

6.3.2. Divergence and vorticity controlIn addition to the aggregation problem, we propose
Eulerian setpoint of even higher level based on the divergence and vorticity. As mentioned above,
these quantities are specially interesting to study since they embed key dynamic properties.
Moreover, producing a vector �eld starting from divergence and vorticity maps is not immediate
since it requires solving Poisson equations (for instance with the help of the Fourier transform)
which is a tricky task. Producing consistent trajectories where speci�c values of divergence and
vorticity are targeted, without explicitly computing the motion �eld, is then a very appealing and
original task that we suggest to solve by using the assimilation process.

In this example we seek to create a swarm dipole made of symmetric homogeneous vorticity and
null divergence. Fig.14(a,b) shows an overview of the control.

For the experiment, we use the adaptive density based evaluation presented in part4.5. We present
in Fig. 14 the results of the experiment by showing again trajectories of the particles, the evolution
of error � H and the observed Eulerian values. Fig.14(b) shows the setpointY for vorticity which
is not homogeneous. Indeed, the kernel function used for estimation being the Gaussian function,
the setpoint has to be pre-smoothed (as for density observation) to stick with an homogeneous
Lagrangian vorticity. The divergence setpoint, being null, is located in the same area as vorticity. The
observed vorticityH(X ) (Fig. 14(g)) after 150 assimilation iterations clearly stick to the setpoint
Y (Fig. 14(b)). Divergence is also maintained to a low value as showed in Fig.14(h). The error
on vorticity exponentially decreases (Fig.14(c)), except in the early iterations while the swarm is
not located yet in the setpoint area. One can also notice this experiment has a behavior similar to
the aggregation experiment. The swarm looks attracted to the observation area, without any other
speci�cation than vorticity and divergence. Actually, the less costly way for particles to create
vorticity somewhere is to have a low velocity in the demanded area, instead of high velocity far



21

(a) Model Integration (b) Control after 10 assimilation
iterations

(c) Control after 300 assimilation iterations
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(d) RMS for tsp = 12 s
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(e) RMS fortsp = 20 s
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Figure 13.Aggregation experimentation. Green dots represent con�guration att = 12 s, red dots att = 20 s, and
blues att0 = 0 s. Figs. 13(f) to 13(j) showH(X ) after 470 assimilation iterations.
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from it. Lastly, it is of prime importance to note that the axis of vorticity (low velocity value in
Fig. 14(i)) is not located in the middle of each sub-swarm, which would cause the average velocity
to be null. Instead, the axis is naturally set on the periphery to maintain the initial average velocity
of the swarm (1m:s� 1 East).

The initial and targeted divergence being both very low, the evolution of the error along iterations
is not relevant, and is essentially consequence of vorticity control.

7. CONCLUSION AND DISCUSSION

In this paper we have proposed a complete framework to deal with the control of dynamic particle
swarm using the variational assimilation theory. This theoretical framework is able to manage both
an evolution model and setpoints related to the environment, making it possible to produce complex
swarm behaviors while conserving the particle dynamics.

As the usual data assimilation formalism can become heavy in a Lagrangian space, we have
proposed an enhanced graph formalism to deal with numerous data, operators and spaces in a
uni�ed, compact and generic way. This last part is in itself, to our opinion, a key contribution since
it opens new convenient ways to deal with Lagrangian-Eulerian interactions.

The proposed setpoints in this paper are related to common issues essentially based on spatial
con�guration like formation or aggregation of the swarm. We have also introduced higher level
observation operators like velocity divergence and vorticity that are de�ned in an Eulerian space in
order to demonstrate the ability of the method to deal with highly complex demands.

The variety of experimented observation operators, and the ability of the method to reach the
associated setpoints while still preserving as much as possible the particle dynamic, suggests that
a large spectrum of other swarm behavior can be reached. This paper also proposes insights on the
management of potentially tricky operators like density, by introducing a multiresolution approach.
A re�exion on covariance has also been conducted, transposable to other types of operators that
were not considered in this paper.

If the particle swarm control by assimilation has proved to be powerful, there exists nonetheless
some drawbacks. The �rst one comes from the assimilation theory which is based on gradient
descent. The control is therefore strongly exposed to local minima and we have no assurance to
extracting an optimal solution. This is specially true in the Lagrangian space as compared to the
Eulerian initial background of assimilation, where particle interaction can impede each other and
create energy walls impossible to overcome. The presented results also suggest that the Lagrangian
control essentially acts as bending dynamics if referring to the evolution of trajectories along the
control loops. Indeed, one can consider them as thin rigid material on which setpoints act as external
forces, and particles interactions as internal forces. In addition, the minimization rate depends on
covariances which can be tricky to parameterize. For instance, it is hard to compare the model
error's covariance with those of the setpoints errors which do not lie in the same quantity space. As
a consequence, applying the control privileging one of them with a meaningful factor and with a
given minimization speed is almost unfeasible.

In the scope of future work, this approach can be extended to diverse situations and domains. For
example, a derivable environment potential can simply be added to the model to guide the swarm
instead of having a constant source term. In a larger scope, the state can be composed of more
abstract data as compared to position and velocity, and the model can be more advanced than a
simple drive-repulse evolution. It can also be considered as perfect, the control thus providing an
estimation of unknown model parameters using various real world observations in place of user-
de�ned setpoints.

As for the different applications, our approach can be applied to diverse situations where the
management of graph data is of high importance. One can for instance mention the environmental
sciences (meteorology or oceanography) where it is sometimes useful to represent a scalar quantity
with Lagrangianparticles that correspond to a key event (like a vortex). In that case, as the
underlying dynamics is continuous and as some local observations are available with dedicated
probes, the proposed framework is well adapted. Lastly, the presented technique dealing with
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