Extended Source-Filter Model of Harmonic Instruments
for Sound Synthesis, Transformation and Interpolation

Henrik Hahn Axel Röbel
henrik.hahn@ircam.fr

IRCAM - CNRS - UMR 9912 - STMS, Paris, France

14 July 2012
Introduction

Extended Source Filter Model

Model Results

Subjective Evaluation

Conclusions
Introduction

Extended Source Filter Model

Model Results

Subjective Evaluation

Conclusions
Sample Based Synthesis (Overview)

- an electronic instrument
- based on ‘playback’ of prerecorded instrument sounds
- playback is triggered by some input device (MIDI Keyboard)

- instrument characteristics are discretized
- synthesis sounds static
- no expressive control
Sample Based Synthesis (Overview)

- an electronic instrument
- based on 'playback' of prerecorded instrument sounds
- playback is triggered by some input device (MIDI Keyboard)

- instrument characteristics are discretized
- synthesis sounds static
- no expressive control
Sample Based Synthesis (Overview)

- an electronic instrument
- based on 'playback' of prerecorded instrument sounds
 - playback is triggered by some input device (MIDI Keyboard)
 - instrument characteristics are discretized
 - synthesis sounds static
 - no expressive control
Sample Based Synthesis (Overview)

- an electronic instrument
- based on 'playback' of prerecorded instrument sounds
- playback is triggered by some input device (MIDI Keyboard)

- instrument characteristics are discretized
- synthesis sounds static
- no expressive control
Sample Based Synthesis (Overview)

- an electronic instrument
- based on 'playback' of prerecorded instrument sounds
- playback is triggered by some input device (MIDI Keyboard)

- instrument characteristics are discretized
- synthesis sounds static
- no expressive control
Sample Based Synthesis (Overview)

- an electronic instrument
- based on 'playback' of prerecorded instrument sounds
- playback is triggered by some input device (MIDI Keyboard)

- instrument characteristics are \textit{discretized}
- synthesis sounds \textit{static}
- no expressive control
Sample Based Synthesis (Overview)

- an electronic instrument
- based on ‘playback’ of prerecorded instrument sounds
- playback is triggered by some input device (MIDI Keyboard)

- instrument characteristics are *discretized*
- synthesis sounds *static*
- no expressive control
Sample Based Synthesis (Overview)

- an electronic instrument
- based on 'playback' of prerecorded instrument sounds
- playback is triggered by some input device (MIDI Keyboard)

- instrument characteristics are \textit{discretized}
- synthesis sounds \textit{static}
- no expressive control
Sample Based Synthesis (State of the art)

- recordings on a semitone scale
- recordings at several intensities
- transformations based on local Source-Filter approach

- soundspace is does not contain knowledge about intermediate values.
- transformations do not account for real instrument characteristics.
Sample Based Synthesis (State of the art)

- recordings on a semitone scale
- recordings at several intensities
- transformations based on local Source-Filter approach

- soundspace is does not contain knowledge about intermediate values.
- transformations do not account for real instrument characteristics

\[X_{a,b} : \text{Sound Sample} \]
\[I : \text{Intensity } \{a=1...A\} \]
\[P : \text{Pitch } \{b=1...B\} \]
Sample Based Synthesis (State of the art)

- recordings on a semitone scale
- recordings at several intensities
- transformations based on local Source-Filter approach

- soundspace is does not contain knowledge about intermediate values.
- transformations do not account for real instrument characteristics.

\[X_{a,b} : \text{Sound Sample} \]
\[I : \text{Intensity } \{a=1...A\} \]
\[P : \text{Pitch } \{b=1...B\} \]
Sample Based Synthesis (State of the art)

- recordings on a semitone scale
- recordings at several intensities
- transformations based on local Source-Filter approach

- soundspace is does not contain knowledge about intermediate values
- transformations do not account for real instrument characteristics

\[X_{a,b} : \text{Sound Sample} \quad F : \text{Filter} \]
\[I : \text{Intensity} \{a=1\ldots A\} \]
\[P : \text{Pitch} \quad \{b=1\ldots B\} \]
Sample Based Synthesis (State of the art)

- recordings on a semitone scale
- recordings at several intensities
- transformations based on local Source-Filter approach

- soundspace is does not contain knowledge about intermediate values.
- transformations do not account for real instrument characteristics

\[X_{a,b} : \text{Sound Sample} \quad F : \text{Filter} \]
\[I : \text{Intensity} \{a=1...A\} \]
\[P : \text{Pitch} \quad \{b=1...B\} \]
Sample Based Synthesis (State of the art)

- recordings on a semitone scale
- recordings at several intensities
- transformations based on local Source-Filter approach

- soundspace is does not contain knowledge about *intermediate* values.
- transformations do not account for *real instrument characteristics*

\[X_{a,b} : \text{Sound Sample} \quad F : \text{Filter} \]
\[I : \text{Intensity} \{a=1...A\} \]
\[P : \text{Pitch} \quad \{b=1...B\} \]
Sample Based Synthesis (Proposed Method)

- usage of **State of the Art** databases
- **parametric** model to describe the whole instrument sound characteristic along **pitch** / **global intensity**
- account for **temporal evolution** of a sound (**ASR**) denoted **local Intensity**
- separately treat **harmonic** and **noise** components
- model shall **learn** its parameters from the database

\[X_{a,b} : \text{Sound Sample} \]
\[I : \text{Intensity} \{a=1...A\} \]
\[P : \text{Pitch} \quad \{b=1...B\} \]
Sample Based Synthesis (Proposed Method)

- usage of **State of the Art** databases
- parametric model to describe the whole instrument sound characteristic along pitch / global intensity
- account for **temporal evolution** of a sound (ASR) denoted **local Intensity**
- separately treat **harmonic** and **noise** components
- model shall **learn** its parameters from the database

\[X_{a,b} : \text{Sound Sample} \]
\[I : \text{Intensity } \{a=1...A\} \]
\[P : \text{Pitch } \{b=1...B\} \]
Sample Based Synthesis (Proposed Method)

- usage of **State of the Art** databases
- **parametric** model to describe the whole instrument sound characteristic along **pitch** / **global intensity**
- account for **temporal evolution** of a sound (ASR) denoted **local intensity**
- separately treat **harmonic** and **noise components**
- model shall **learn** its parameters from the database

\[X_{a,b} : \text{Sound Sample} \]
\[I : \text{Intensity \{a=1...A\}} \]
\[P : \text{Pitch \{b=1...B\}} \]
Sample Based Synthesis (Proposed Method)

- usage of **State of the Art** databases

- parametric model to describe the whole instrument sound characteristic along **pitch / global intensity**

- account for **temporal evolution** of a sound (ASR) denoted **local intensity**

- separately treat **harmonic** and **noise** components

- model shall **learn** its parameters from the database

\[X_{a,b} : \text{Sound Sample} \quad \text{S} : \text{Partial Function} \]
\[I_G : \text{Global Intensity} \quad k : \text{Partial Index} \]
\[I_L : \text{Local Intensity} \quad R : \text{Resonance Filter} \]
\[P : \text{Pitch} \quad F : \text{Filter} \]
Sample Based Synthesis (Proposed Method)

- usage of **State of the Art** databases
- **parametric** model to describe the whole instrument sound characteristic along **pitch / global intensity**
- account for **temporal evolution** of a sound (ASR) denoted **local intensity**
- separately treat **harmonic** and **noise** components
- model shall **learn** its parameters from the database

\[
\begin{align*}
X_{a,b} & : \text{Sound Sample} & S & : \text{Partial Function} \\
I_G & : \text{Global Intensity} & k & : \text{Partial Index} \\
I_L & : \text{Local Intensity} & R & : \text{Resonance Filter} \\
P & : \text{Pitch} & F & : \text{Filter}
\end{align*}
\]
Sample Based Synthesis (Proposed Method)

- usage of **State of the Art** databases
- **parametric** model to describe the whole instrument sound characteristic along pitch / global intensity
- account for **temporal evolution** of a sound (ASR) denoted local intensity
- separately treat **harmonic** and **noise** components
- model shall **learn** its parameters from the database

\[
X_{a,b} : \text{Sound Sample} \quad S : \text{Partial Function} \\
I_G : \text{Global Intensity} \quad k : \text{Partial Index} \\
I_L : \text{Local Intensity} \quad R : \text{Resonance Filter} \\
P : \text{Pitch} \quad F : \text{Filter}
\]
Sample Based Synthesis (Proposed Method)

- Transformations based on actual instrument characteristics
- Sound synthesis with continuous pitch and intensity values
- Interpolation between sounds
- Cross synthesis between different instruments
Sample Based Synthesis (Proposed Method)

- Transformations based on actual instrument characteristics
 - Sound synthesis with continuous pitch and intensity values
 - Interpolation between sounds
 - Cross synthesis between different instruments
 - ...

Henrik Hahn, Axel Röbel
Extended Source-Filter Model of Harmonic Instruments
Sample Based Synthesis (Proposed Method)

- Transformations based on actual instrument characteristics
- Sound synthesis with continuous pitch and intensity values
 - Interpolation between sounds
 - Cross synthesis between different instruments
 - ...
Sample Based Synthesis (Proposed Method)

- Transformations based on actual instrument characteristics
- Sound synthesis with continuous pitch and intensity values
- Interpolation between sounds
 - Cross synthesis between different instruments
- ...

Henrik Hahn, Axel Röbel
Extended Source-Filter Model of Harmonic Instruments
Sample Based Synthesis (Proposed Method)

- Transformations based on actual instrument characteristics
- Sound synthesis with continuous pitch and intensity values
- Interpolation between sounds
- Cross synthesis between different instruments

Henrik Hahn, Axel Röbel
Extended Source-Filter Model of Harmonic Instruments
Sample Based Synthesis (Proposed Method)

- Transformations based on actual instrument characteristics
- Sound synthesis with continuous pitch and intensity values
- Interpolation between sounds
- Cross synthesis between different instruments
- ...

Henrik Hahn, Axel Röbel
Extended Source-Filter Model of Harmonic Instruments
Introduction

Extended Source Filter Model

Model Results

Subjective Evaluation

Conclusions

Henrik Hahn, Axel Röbel

Extended Source-Filter Model of Harmonic Instruments
System Overview

- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
- Yields database of ‘flat’ residual sounds
- Interpolate 2 ‘flat’ residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on ’flat’ residuals

Henrik Hahn, Axel Röbel

Extended Source-Filter Model of Harmonic Instruments
System Overview

- **Harmonic/Noise Segregation**
- **Parameter Analysis**
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaptation for harmonic/noise component
- Remove estimated instrument sound from signal components
- Yields database of 'flat' residual sounds
- Interpolate 2 'flat' residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on 'flat' residuals
System Overview

- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
- Yields database of ‘flat’ residual sounds
- Interpolate 2 ‘flat’ residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on ’flat’ residuals

Henrik Hahn, Axel Röbel
Extended Source-Filter Model of Harmonic Instruments
System Overview

- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
- Yields database of ‘flat’ residual sounds
- Interpolate 2 ‘flat’ residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on ‘flat’ residuals
System Overview

- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaptation for harmonic/noise component
- Remove estimated instrument sound from signal components
- Yields database of ‘flat’ residual sounds
- Interpolate 2 ‘flat’ residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on ’flat’ residuals
System Overview

- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
 - Remove estimated instrument sound from signal components
 - yields database of 'flat' residual sounds
 - Interpolate 2 'flat' residuals (harmonic / noise separately)
 - Apply any parameter change to estimate new envelopes to use on 'flat' residuals
System Overview

- Harmonic/Noise Segregation
 - Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
 - Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
 - yields database of 'flat' residual sounds
- Interpolate 2 'flat' residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on 'flat' residuals
System Overview

- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
- Yields database of 'flat' residual sounds
 - Interpolate 2 'flat' residuals (harmonic / noise separately)
 - Apply any parameter change to estimate new envelopes to use on 'flat' residuals
System Overview

- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
- Yields database of 'flat' residual sounds
- Interpolate 2 'flat' residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on 'flat' residuals
System Overview

- Harmonic/Noise Segregation
- Parameter Analysis
 - Global Intensity / Pitch
 - Local Intensity (ASR scheme)
- Model adaption for harmonic/noise component
- Remove estimated instrument sound from signal components
- Yields database of ‘flat’ residual sounds
- Interpolate 2 ‘flat’ residuals (harmonic / noise separately)
- Apply any parameter change to estimate new envelopes to use on ‘flat’ residuals
Signal Analysis

Harmonics/Noise Segregation
Signal Analysis

Harmonics/Noise Segregation

- Partials are modeled as amplitude and frequency function per partial k over time n:

$$A(k, n) \mid f(k, n)$$
Signal Analysis

Harmonics/Noise Segregation

- Partials are modeled as amplitude and frequency function per partial k over time n:

\[A(k, n) \mid f(k, n) \]

- Noise is modeled as envelope using its smoothed Short Time Cepstrum $C(l, n)$

\[C(l, n) \]
Parameter Analysis

Global Intensity / Pitch Analysis

- Obtained from meta data provided by the Database

Local Intensity

- Local intensity reflects amplitude envelope over time: $I_L(n)$.
- Threshold method to determine attack/release time frames n_A, n_R

Temporal Segmentation

- Segmentation using an overlapping scheme to define $n_s = \{n_a, n_r\}$
Parameter Analysis

Global Intensity / Pitch Analysis

- Obtained from meta data provided by the Database

Local Intensity

- Local intensity reflects amplitude envelope over time: $I_L(n)$.
- Threshold method to determine attack/release time frames n_A, n_R

Temporal Segmentation

- Segmentation using an overlapping scheme to define $n_s = \{n_a, n_r\}$
Parameter Analysis

Global Intensity / Pitch Analysis

▶ Obtained from meta data provided by the Database

Local Intensity

▶ Local intensity reflects amplitude envelope over time: \(I_L(n) \).
▶ Threshold method to determine attack/release time frames \(n_A, n_R \)

Temporal Segmentation

▶ Segmentation using an overlapping scheme to define \(n_s = \{ n_a, n_r \} \)
Parameter Analysis

Global Intensity / Pitch Analysis

- Obtained from meta data provided by the Database

Local Intensity

- Local intensity reflects amplitude envelope over time: $I_L(n)$.
- Threshold method to determine attack/release time frames n_A, n_R

Temporal Segmentation

- Segmentation using an overlapping scheme to define $n_s = \{n_a, n_r\}$
Harmonic Model

Features by partial index k
- function for each k depending on pitch m (MIDI) and both intensities I_G and I_L
- separate functions s for attack-sustain and sustain-release
- may refer to a vibrating string / air pipe

Partial function $S^{k,s}(I_G, I_L, m)$

Features by frequency f
- invariant filter
- refers mainly to the instrument corpus

Resonance filter $R(f)$
Harmonic Model

Features by partial index k

- function for each k depending on pitch m (MIDI) and both intensities I_G and I_L
- separate functions s for attack-sustain and sustain-release
- may refer to a vibrating string / air pipe

Partial function

$S^{k,s}(I_G, I_L, m)$

Features by frequency f

- invariant filter
- refers mainly to the instrument corpus

Resonance filter

$R(f)$
Harmonic Model

Features by partial index k

- function for each k depending on pitch m (MIDI) and both intensities I_G and I_L
- separate functions s for attack-sustain and sustain-release
- may refer to a vibrating string / air pipe

Features by frequency f

- invariant filter
- refers mainly to the instrument corpus
- using log-domain values

Partial function

$S^{k,s}(I_G, I_L, m)$

Resonance filter

$R(f)$
Harmonic Model

Features by partial index k

- function for each k depending on pitch m (MIDI) and both intensities I_G and I_L
- separate functions s for attack-sustain and sustain-release
- may refer to a vibrating string / air pipe

Partial function

\[S^{k,s}(I_G, I_L, m) \]

Features by frequency f

- invariant filter
- refers mainly to the instrument corpus
- using log-domain values

Resonance filter

\[R(f) \]
Harmonic Model

Features by partial index k
- function for each k depending on pitch m (MIDI) and both intensities I_G and I_L
- separate functions s for attack-sustain and sustain-release
- may refer to a vibrating string / air pipe

Partial function $S^{k,s}(I_G, I_L, m)$

Features by frequency f
- invariant filter
- refers mainly to the instrument corpus

Resonance filter $R(f)$

Henrik Hahn, Axel Röbel
IRCAM - CNRS - UMR 9912 - STMS, Paris, France
Extended Source-Filter Model of Harmonic Instruments
Harmonic Model

Features by partial index k

- function for each k depending on pitch m (MIDI) and both intensities I_G and I_L
- separate functions s for attack-sustain and sustain-release
- may refer to a vibrating string / air pipe

Partial function

$S^{k,s}(I_G, I_L, m)$

Features by frequency f

- invariant filter
- refers mainly to the instrument corpus

Resonance filter

$R(f)$
Harmonic Model

Features by partial index k
- function for each k depending on pitch m (MIDI) and both intensities I_G and I_L
- separate functions s for attack-sustain and sustain-release
- may refer to a vibrating string / air pipe

Partial function
$S_{k,s}^{k}(I_G, I_L, m)$

Features by frequency f
- invariant filter
- refers mainly to the instrument corpus

Resonance filter
$R(f)$
Harmonic Model

Features by partial index k
- function for each k depending on pitch m (MIDI) and both intensities I_G and I_L
- separate functions s for attack-sustain and sustain-release
- may refer to a vibrating string / air pipe

Partial function
$$S^{k,s}(I_G, I_L, m)$$

Features by frequency f
- invariant filter
- refers mainly to the instrument corpus
- using log-domain values

Resonance filter
$$R(f)$$
Harmonic Model

\[\hat{A}^{k,s}(I_G, I_L, m, f(k, n)) = S^{k,s}(I_G, I_L, m) + R(f(k, n)) \]
Harmonic Model

\[\hat{A}^{k,s}(I_G, I_L, m, f(k, n)) = S^{k,s}(I_G, I_L, m) + R(f(k, n)) \]

▶ Model of partial function using tensor-product B-splines:

\[S^{k,s}(I_G, I_L, m) = \sum_{p,q,t} B_p(I_G)B_q(I_L)B_t(m) \cdot \gamma_{p,q,t}^{k,s} \]

B-Spline functions for \(B_p(I_G), B_q(I_L), B_t(m)\)

Henrik Hahn, Axel Röbel
Extended Source-Filter Model of Harmonic Instruments
Harmonic Model

\[\hat{A}^{k,s}(l_G, I_L, m, f(k, n)) = S^{k,s}(l_G, I_L, m) + R(f(k, n)) \]

model of resonance filter using one-dimensional B-splines
Harmonic Model

\[\hat{A}^{k,s}(l_G, l_L, m, f(k, n)) = S^{k,s}(l_G, l_L, m) + R(f(k, n)) \]

- model of resonance filter using one-dimensional B-splines

\[R(f(k, n)) = \sum_{v} B_v(f(k, n)) \cdot \lambda_v \]

B-Spline functions for \(B_v(f(k, n)) \)
Noise Model

- Cepstral coefficients are described using a single tensor-product B-spline model:

\[
\hat{C}_{k,s}(I_G, I_L, m) = \sum_{p,q,t} P_{p,q,t} B_p(I_G)B_q(I_L)B_t(m) \cdot \delta_{p,q,t}
\]

B-Spline functions for \(B_p(I_G), B_q(I_L), B_t(m) \)
Parameter Estimation

Iterative method using Conjugate Gradient

\[\mathcal{O}_h = \frac{1}{2} \sum_{s=1}^{2} \sum_{k,n_s}^K N_s |A(k, n_s) - \hat{A}^{k,s}(I_G, I_L(n_s), m, f(k, n))|^2 \]

\[\mathcal{O}_n = \frac{1}{2} \sum_{s=1}^{2} \sum_{l,n_s}^L N_s |C(l, n_s) - \hat{C}^{k,s}(I_G, I_L(n_s), m)|^2 \]
Introduction

Extended Source Filter Model

Model Results

Subjective Evaluation

Conclusions
Model Results: Trumpet

$S^{k,s}$, $k = 1$

$S^{k,s}$, $k = 40$

$R(f)$:
Introduction

Extended Source Filter Model

Model Results

Subjective Evaluation

Conclusions
Subjective Evaluation

Tests have been made for trumpet and clarinet

- Interpolation between different pitches (12st and 24st)
- Interpolation between different intensities (pp-mf, mf-ff, pp-ff)

Sequence of 3 sounds has always been presented, framing the interpolated by their original sounds.

Each sequence was presented twice. Once containing the transformed and once the original counterpart.

Participants were asked to judge for any audible artifacts and convincingness.

Clarinet: \textit{mf}-ff
Trumpet \textit{pp}-ff
 Clarinet A\#3-A\#5
Subjective Evaluation

- Tests have been made for **trumpet** and **clarinet**

- Interpolation between different pitches (12st and 24st)
- Interpolation between different intensities (pp-mf, mf-ff, pp-ff)

Sequence of 3 sounds has always been presented, framing the interpolated by their original sounds.

Each sequence was presented twice. Once containing the transformed and once the original counterpart.

Participants were asked to judge for any audible artifacts and convincingness.
Subjective Evaluation

- Tests have been made for **trumpet** and **clarinet**

- Interpolation between different pitches (**12st** and **24st**)

- Interpolation between different intensities (**pp-mf, mf-ff, pp-ff**)

Sequence of 3 sounds has always been presented, framing the interpolated by their original sounds.

Each sequence was presented twice. Once containing the transformed and once the original counterpart.

Participants were asked to judge for any audible artifacts and convincingness.

Clarinet: **mf-ff**

Trumpet **pp-ff**

Clarinet **A#3-A#5**
Subjective Evaluation

▶ Tests have been made for trumpet and clarinet

▶ Interpolation between different pitches (12st and 24st)
▶ Interpolation between different intensities (pp-mf, mf-ff, pp-ff)

Sequence of 3 sounds has always been presented, framing the interpolated by their original sounds.

Each sequence was presented twice. Once containing the transformed and once the original counterpart.

Participants were asked to judge for any audible artifacts and convincingness.

Clarinet: mf-ff

Trumpet pp-ff

Clarinet A#3-A#5

Henrik Hahn, Axel Röbel

Extended Source-Filter Model of Harmonic Instruments
Subjective Evaluation

- Tests have been made for **trumpet** and **clarinet**

- Interpolation between different pitches (**12st** and **24st**)
- Interpolation between different intensities (**pp-mf**, **mf-ff**, **pp-ff**)

Sequence of 3 sounds has always been presented, framing the interpolated by their original sounds.

Each sequence was **presented twice**. Once containing the **transformed** and once the **original** counterpart.

Participants were asked to judge for any **audible artifacts** and **convincingness**.

- Clarinet: **mf-ff**
- Trumpet: **pp-ff**
- Clarinet: A#3-A#5
Subjective Evaluation

- Tests have been made for trumpet and clarinet

- Interpolation between different pitches (12st and 24st)

- Interpolation between different intensities (pp-mf, mf-ff, pp-ff)

Sequence of 3 sounds has always been presented, framing the interpolated by their original sounds.

Each sequence was presented twice. Once containing the transformed and once the original counterpart

Participants were asked to judge for any audible artifacts and convincingness

Clarinet: mf-ff Trumpet pp-ff Clarinet A#3-A#5
Subjective Evaluation

- Tests have been made for trumpet and clarinet
- Interpolation between different pitches (12st and 24st)
- Interpolation between different intensities (pp-mf, mf-ff, pp-ff)

Sequence of 3 sounds has always been presented, framing the interpolated by their original sounds.

Each sequence was presented twice. Once containing the transformed and once the original counterpart.

Participants were asked to judge for any audible artifacts and convincingness.

Clarinet: mf-ff, Trumpet pp-ff, Clarinet A#3-A#5
Subjective Evaluation

- Tests have been made for trumpet and clarinet

- Interpolation between different pitches (12st and 24st)
- Interpolation between different intensities (pp-mf, mf-ff, pp-ff)

Sequence of 3 sounds has always been presented, framing the interpolated by their original sounds.

Each sequence was presented twice. Once containing the transformed and once the original counterpart.

Participants were asked to judge for any audible artifacts and convincingness.

Clarinet: \textit{mf-ff} Trumpet \textit{pp-ff} Clarinet A#3-A#5
Subjective Evaluation: Results

- Measured the **Mean Opinion Score** for both instruments at once.
- **Org** represents original samples, **Mod1** and **Mod2** represent synthesized ones.

- MOS for original value way too low. Need for a new test with different setup.
Subjective Evaluation: Results

- Measured the **Mean Opinion Score** for both instruments at once
- Org represents original samples, Mod1 and Mod2 represent synthesized ones.

![Graphs showing MOS for different conditions](image)

Pitch Interpolation:
- 12st
- 24st

IG Interpolation:
- Mod1: *pp-mf* and *mf-ff*
- Mod2: *pp-ff*

MOS for original value way too low. Need for a new test with different setup.
Subjective Evaluation: Results

- Measured the **Mean Opinion Score** for both instruments at once
- **Org** represents original samples, **Mod1** and **Mod2** represent synthesized ones.

Pitch Interpolation:
- **12st**
- **24st**

l_G Interpolation:
- **Mod1**: $pp-mf$ and $mf-ff$
- **Mod2**: $pp-ff$

<table>
<thead>
<tr>
<th>MOS</th>
<th>Org</th>
<th>Mod</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOS for original value way too low. Need for a new test with different setup.
Subjective Evaluation: Results

- Measured the **Mean Opinion Score** for both instruments at once
- **Org** represents original samples, **Mod1** and **Mod2** represent synthesized ones.

Pitch Interpolation:
- 12st

Pitch Interpolation:
- 24st

\[l_G \] Interpolation:
- Mod1: \textit{pp-mf} and \textit{mf-ff}
- Mod2: \textit{pp-ff}

▶ MOS for original value way too low. Need for a new test with different setup
Introduction

Extended Source Filter Model

Model Results

Subjective Evaluation

Conclusions
We presented

- A parametric model for harmonic instruments
- A model which separately represents harmonic and noise components utilizing tensor-product B-splines
- An harmonic model separately representing features by partial index and frequency
- An objective function to estimate model parameters iteratively
- A subjective evaluation showing promising results

- More instruments need to be addressed (Strings, Piano, Guitar, ...)
- A subjective evaluation needs to be repeated with a different setup
We presented

- A parametric model for harmonic instruments
 - A model which separately represents harmonic and noise components utilizing tensor-product B-splines
 - An harmonic model separately representing features by partial index and frequency
 - An objective function to estimate model parameters iteratively
 - A subjective evaluation showing promising results

- More instruments need to be addressed (Strings, Piano, Guitar, ...)
- A subjective evaluation needs to be repeated with a different setup
Conclusions

We presented

- A parametric model for harmonic instruments
- A model which separately represents harmonic and noise components utilizing tensor-product B-splines
- An harmonic model separately representing features by partial index and frequency
- An objective function to estimate model parameters iteratively
- A subjective evaluation showing promising results

- More instruments need to be addressed (Strings, Piano, Guitar, ...)
- A subjective evaluation needs to be repeated with a different setup
We presented

- A parametric model for harmonic instruments
- A model which separately represents harmonic and noise components utilizing tensor-product B-splines
- An harmonic model separately representing features by partial index and frequency
- An objective function to estimate model parameters iteratively
- A subjective evaluation showing promising results

- More instruments need to be addressed (Strings, Piano, Guitar, ...)
- A subjective evaluation needs to be repeated with a different setup
We presented

- A parametric model for harmonic instruments
- A model which separately represents harmonic and noise components utilizing tensor-product B-splines
- An harmonic model separately representing features by partial index and frequency
- An objective function to estimate model parameters iteratively
- A subjective evaluation showing promising results

- More instruments need to be addressed (Strings, Piano, Guitar, ...)
- A subjective evaluation needs to be repeated with a different setup
We presented

▶ A parametric model for harmonic instruments
▶ A model which separately represents harmonic and noise components utilizing tensor-product B-splines
▶ An harmonic model separately representing features by partial index and frequency
▶ An objective function to estimate model parameters iteratively
▶ A subjective evaluation showing promising results

▶ More instruments need to be addressed (Strings, Piano, Guitar, ...)
▶ A subjective evaluation needs to be repeated with a different setup
Conclusions

We presented

- A parametric model for harmonic instruments
- A model which separately represents harmonic and noise components utilizing tensor-product B-splines
- An harmonic model separately representing features by partial index and frequency
- An objective function to estimate model parameters iteratively
- A subjective evaluation showing promising results

- More instruments need to be adressed (Strings, Piano, Guitar, ...)
- A subjective evaluation needs to be repeated with a different setup
Conclusions

We presented

- A parametric model for harmonic instruments
- A model which separately represents harmonic and noise components utilizing tensor-product B-splines
- An harmonic model separately representing features by partial index and frequency
- An objective function to estimate model parameters iteratively
- A subjective evaluation showing promising results

- More instruments need to be addressed (Strings, Piano, Guitar, ...)
- A subjective evaluation needs to be repeated with a different setup
Thanks for listening