Weak convergence of the empirical process of intermittent maps in L2 under long-range dependence

Abstract : We study the behavior of the empirical distribution function of iterates of intermittent maps in the Hilbert space of square inegrable functions with respect to Lebesgue measure. In the long-range dependent case, we prove that the empirical distribution function, suitably normalized, converges to a degenerate stable process, and we give the corresponding almost sure result. We apply the results to the convergence of the Wasserstein distance between the empirical measure and the invariant measure. We also apply it to obtain the asymptotic distribution of the corresponding Cramér-von-Mises statistic.
Type de document :
Article dans une revue
Stochastics and Dynamics, World Scientific Publishing, 2015, 15 (2), 29pp
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00903837
Contributeur : Jérôme Dedecker <>
Soumis le : vendredi 22 novembre 2013 - 17:22:07
Dernière modification le : jeudi 12 janvier 2017 - 17:33:06
Document(s) archivé(s) le : dimanche 23 février 2014 - 03:00:28

Fichiers

tightnessH_10november2013.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00903837, version 1
  • ARXIV : 1311.5873

Collections

Citation

Jérôme Dedecker, Herold G. Dehling, Murad Taqqu. Weak convergence of the empirical process of intermittent maps in L2 under long-range dependence. Stochastics and Dynamics, World Scientific Publishing, 2015, 15 (2), 29pp. <hal-00903837>

Partager

Métriques

Consultations de
la notice

168

Téléchargements du document

135