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Abstract – Mucosal vaccination is proving to be one of the greatest challenges in modern vaccine
development. Although highly beneficial for achieving protective immunity, the induction of
mucosal immunity, especially in the gastro-intestinal tract, still remains a difficult task. As a result,
only very few mucosal vaccines are commercially available for domestic animals. Here, we
critically review various strategies for mucosal delivery of vaccines in domestic animals. This
includes live bacterial and viral vectors, particulate delivery-systems such as polymers, alginate,
polyphosphazenes, immune stimulating complex and liposomes, and receptor mediated-targeting
strategies to the mucosal tissues. The most commonly used routes of immunization, strategies for
delivering the antigen to the mucosal surfaces, and future prospects in the development of mucosal
vaccines are discussed. 
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1. INTRODUCTION

Infectious diseases remain the major cause
of death and economic losses in animals.
One way to reduce this is by vaccination.
Although immunization has had a great
impact on the economics of livestock pro-
duction and on animal suffering, today’s
vaccines produced by conventional means
are less than optimal in many respects
including virulence, safety and efficacy.
Moreover, there is a need to develop new
vaccines for new emerging diseases. Thus,
novel vaccines and alternative routes of
immunization are needed to meet future
challenges in the control of human and live-
stock diseases. Here we will review current
strategies for mucosal vaccination and recent
progress in this field. 

2. RATIONALE FOR MUCOSAL 
VACCINATION

The primary reason for using a mucosal
route of immunization is that most infec-
tions affect or initiate the infectious process
at the mucosal surfaces, and that in these
infections, mucosal application of a vaccine
is often required to induce a protective immune
response [69]. Prime examples of such
infections include gastrointestinal infections
with enterotoxigenic E. coli (ETEC), rota-
virus or calicivirus, and respiratory infections
with Mycoplasma, influenza virus or respi-
ratory syncytial virus. For most of these
infections the induction of local immunity
at the site of infection is crucial for optimal
protection. The induction of secretory IgA
(S-IgA) represents the main effector mech-
anism of the local adaptive immune response
and thus, represents the primary goal for
most mucosal vaccines. In addition to S-IgA
other immunoglobulins, such as IgG are
transudated across the mucosal surface.

This is especially important for respiratory
and genital infections since the transudation
of antibodies is more easily facilitated at
these mucosal surfaces than for example in
the intestinal tract [69]. In addition to humoral
immunity, the induction of cytotoxic T cells
(CTL) represents another important goal of
mucosal vaccines. However, to date only
very few experimental vaccines have been
demonstrated to induce CTL so far, most of
these vaccines being live attenuated vac-
cines. Interestingly, it was recently demon-
strated that transcutaneous immunization
resulted in the induction of mucosal CTL in
mice [14]. More research will be necessary
to confirm this observation in domestic ani-
mals. Other reasons for using mucosal
routes of immunization include the practi-
cability of administering the vaccine with-
out injections, and therefore the reduction
of injection site reactions, and the possibil-
ity of vaccination at a very early age of life
in the presence of passively acquired mater-
nal antibodies (Tab. I) [15].

3. GENERAL CONSIDERATIONS 
FOR MUCOSAL VACCINES

Immunity at the mucosal surfaces is medi-
ated by the mucosa-associated lymphoid

Table I. Advantages of mucosal routes of immu-
nization.

Induces protective immunity at the site of infection

Induces both systemic and mucosal immunity

Effective in the presence of maternal antibodies

No injection site reaction, no needles required

Readily administered (i.e. oral vaccines combined 
with feed)
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tissues (MALT), which represent the largest
immune compartment within the body. The
main functions of the MALT are to (i) pro-
tect the mucosal membranes against infec-
tion and colonization with pathogenic micro-
organisms, (ii) to tolerate antigens derived
from ingested food, airborne matter and com-
mensal microorganisms, and (iii) to prevent
the development of any potentially harmful
immune responses against these antigens in
case they breach the mucosal lining [69]. To
achieve these functions, the MALT are
equipped with highly specific mechanisms,
which are discussed in greater detail through-
out this special issue of Veterinary Research.
However, certain mechanisms are of rele-
vance for the development of mucosal vac-
cines. For example, it is clear that an early
interplay between innate and adaptive
immunity is essential for effective immu-
nity against invading pathogens [68]. In
fact, it is the first contact between pathogen
and innate immune system, for example
through recognition via Toll like receptors
(TLR), complement receptors (CR), C-type
lectins, or nucleotide-binding oligomeriza-
tion domain (NOD) receptors NOD 1 or
NOD 2, that determines the outcome of the
immune response [54, 98, 127]. Pattern rec-
ognition molecules (PRM) for these highly
conserved pathogen-associated molecular
patterns (PAMP) are found on various types
of immune cells including antigen-present-
ing cells, lymphocytes, and epithelial cells
within the mucosal tissues. Of special
importance, however, are mucosal den-
dritic cells (DC), which express a wide vari-
ety of PRM [30, 92, 99]. Signaling through
these receptors leads to recruitment and
activation of DC, which then can either
sample antigen directly from the external
surfaces or receive it from highly special-
ized M cells [78, 96, 115, 131, 132]. Within
the lymphoid follicle the matured DC then
present the antigen to lymphocytes to induce
a mucosal immune response. Depending on
the initial innate stimulus, the DC can
“imprint” the effector cells to selectively
home back to certain mucosal sites and shift
the type of the immune response to a either

Th1 or Th2 type of immune response [30,
99]. Interestingly, the ability of intestinal
DC to polarize the immune response is con-
ditioned by IL-10 and IL-6 secreting epi-
thelial cells. In the intestine, this typically
results in promotion of a Th2-type of an
immune response. Thus, mucosal DC are
essential in the early decision making proc-
ess at the mucosa and in controlling home-
ostasis versus inflammation [132]. Although
not demonstrated in domestic animals yet,
it is clear that the stimulation of DC by cer-
tain components of the vaccine (adjuvant)
represents an important issue to consider for
future vaccine formulations (Tab. II). 

Following their priming in lymphoid tis-
sues, effector cells leave the site of induc-
tion and migrate to the effector site, which
is generally the lamina propria at the mucosal
surfaces. Effector cell trafficking is crucial
for the communication among the various
compartments of the mucosal immune sys-
tem leading to the concept of the “common”
mucosal immune system. However, it is
clear that beyond the “common” level indeed
the mucosal immune system is highly com-
partimentalized. In fact, some of the mucosal
compartments favor the trafficking of effec-
tor cells from some inductive sites to certain

Table II. Characteristics of an ideal mucosal
vaccine.

Safe, no side effects in adult and newborn animals

Stable in gastrointestinal microenvironments

Readily dissolved and administered (spray, 
injector, oral), small volume

Cross mucosal barrier

Retain antigen at the mucosal surface by targeting 
to mucosal epithelial cells

Stimulate both innate and adaptive immunity at the 
mucosa

Contain delivery-systems that greatly enhance 
vaccine uptake

Ensure homing of effector cells to the site of 
infection

Induce long term immunity
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effector sites. Cell trafficking between com-
partments is facilitated by a complex net-
work of interactions mediated by mucosal
addressins, integrins, and chemokines (CC)
allowing the tissue-specific migration of
immune cells from the inductive to the
effector site [85]. Chemokine receptors (CCR)
and mucosal homing molecules, such as the
α4β7-integrin, are found on effector lym-
phocytes, and in fact the expression of these
receptors is controlled by the imprinting by
mucosal DC. For example, in mice only DC
derived from Peyer’s patches and mesenteric
lymph nodes were able to induce expression
of α4β7+ and CCR9+ on CD8+ T cells lead-
ing to site specific homing of these effector
cells to the small intestinal lamina propria
[74, 109]. CCR9, the receptor for the thy-
mus-expressed chemokine (TECK, CCL
25), is expressed on effector B and T cells
and mediates the selective migration of
these effector cells to the small intestine in
humans and mice [19, 87, 120]. Interestingly,
CCR9–/– knockout mice display reduced
numbers of plasma cells in the small intes-
tinal lamina propria and impaired ability to
respond to oral vaccination [119]. Thus,
chemokines and their receptors are impor-
tant molecules in linking inductive sites
with particular effector sites (“compart-
mentalization” of the mucosal immune sys-
tem). As a result, certain routes are more
favorable for inducing immunity at the
desired effector site (Tab. III). This knowl-
edge should be taken into consideration for
the design of every novel type of vaccine
that is to be used for mucosal immunization. 

4. TYPES OF VACCINES 
FOR MUCOSAL DELIVERY

Almost all types of current vaccines
including live attenuated, inactivated, sub-
unit and DNA vaccines have been tested for
their effectiveness as a mucosal vaccine in
a wide variety of species. However, only
about 20 vaccines are currently licensed for
mucosal delivery. Examples are listed in
Table IV. Numerous vaccines are currently
in an experimental stage of development,
and it is expected that many of them will hit
the market in the near future. In general,
vaccines containing live microorganisms
(live attenuated or vector vaccines) are
more effective for mucosal delivery since
they rely on the viral or bacterial mecha-
nisms of invasion. However, because of the
perceived lower safety profile of these live
vaccines and the chance of reversion to vir-
ulence via recombination between vaccine
and wild type strains [103, 157], novel types
of vaccines such as DNA vaccines or
recombinant proteins are currently being
tested in animal models. It should be
emphasized that genetic deletions in viru-
lence genes provides a safer vaccine than
conventional attenuation. However, since
the effectiveness of these types of vaccines
is expected to be much lower than live vac-
cines, potent adjuvants and delivery sys-
tems are needed to enhance the uptake of the
vaccine antigen and to increase the induc-
tion of immunity. Promising candidates for
mucosal adjuvants include bacterial toxins
and their non-toxic mutants, bacterial cell
wall components, CpG oligonucleotides

Table III. Compartmentalization of the mucosal immune system in mice and humans.

Route Effective response in Non-effective response in

Oral Small intestine (proximal), ascending colon, 
mammary and salivary glands

Distal large intestine, genital 
mucosa, tonsils

Rectal Rectum Small intestine, proximal colon

Nasal or tonsilar Upper airway, regional secretions, genital mucosa Gut

Vaginal Genital mucosa

Skin Gut (?)
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(CpG ODN), and antimicrobial peptides,
also called cationic host defense peptides.
However, the broad variety of mucosal
adjuvants and their mechanisms of action
are discussed in another paper of the special
issue of Veterinary Research [32]. 

5. ROUTES OF IMMUNIZATION

The observation that the various com-
partments of the mucosal immune system
are in permanent contact with each other
resulted in a wide variety of possible routes
of immunization including oral, intranasal,
rectal, vaginal, and intraocular (Tabs. III and
IV). Nevertheless, immunization of live-
stock species and poultry is often limited to
oral and intranasal immunization for rea-
sons of practicability. Companion animals,
however, and even dairy cattle could be the-
oretically immunized via all of these routes.
As outlined above, immunization via some
of the routes favors the accumulation of
effector cells in certain compartments. For
example, oral vaccination results in strong-
est immunity in the small intestinal tract,
whereas intranasal immunization results in
optimal immunity in the respiratory tract
(Tab. III). Although some of these observa-
tions have not been confirmed yet in domes-
tic animals, one can assume that the com-
partments of the mucosal immune systems

are connected to each other in a similar fash-
ion in domestic species. Thus, depending on
the disease and the species to be vaccinated,
future mucosal vaccines should be admin-
istered according to the site where maximal
immunity is needed, and the practicability
of vaccination via that specific route. 

6. STRATEGIES FOR MUCOSAL 
DELIVERY

One of the greatest challenges in vacci-
nology today is the development of novel
mucosal vaccines and vaccine formulations
that are safe, effective, and yet cost effective
(Tab. III). A variety of delivery systems
including live vectors, microparticles, and
liposomes have been developed for this pur-
pose. Combined with novel strategies to tar-
get vaccines to the mucosal surfaces these
provide tremendous opportunities to address
this challenge. Here we will summarize
recent progress on live vectors, micropar-
ticulate delivery systems, and novel strate-
gies to target vaccines to the intestinal
mucosa. 

6.1. Live vectors

One of the most effective ways to deliver
vaccines to mucosal surfaces is with live
vectors that actually infect the mucosal sur-
faces. Both viral and bacterial vectors have

Table IV. Currently licensed mucosal vaccines in domestic animals (in North America).

Species Diseases/pathogens

Bovine BHV-1 (i.n.); rotavirus (oral); coronavirus (oral)

Ovine – 

Porcine Transmissible gastroenteritis virus (i.n.); rotavirus (oral); Bordetella bronchiseptica (i.n.)

Equine Equine influenza virus (i.n.); Streptocoocus equi (i.n.)

Canine Canine adenovirus 2 (i.n.); parainfluenza virus (i.n.); Bordetella bronchiseptica (i.n.)

Feline Feline calicivirus (i.o.); feline rhinotracheitis (i.o.)

Poultry Turkey adenovirus (oral); infectious bronchitis virus (oral, i.n., i.o., spray); Newcastle 
virus (oral, i.n., i.o., spray); infectious bursitis virus (oral, i.n., i.o., spray); chicken 
herpesvirus (oral, i.n., i.o., spray); turkey herpesvirus (oral, i.n., i.o., spray); reovirus 
(oral, i.n., i.o., spray); Bordetella avium (oral, spray); Pasteurella multocida (oral) 
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been developed for vaccine delivery in
humans and animals. In general, live vec-
tors allow the delivery of recombinant pro-
teins expressed within the vector itself, or
genetic information either integrated into
the genome or as plasmid DNA. Genomic
and proteomic approaches have helped in
understanding the structure and function of
a wide variety of infectious agents and
through the use of genetic engineering, we
are now able to generate a select number of
live vaccines that are safer and possibly
more effective than conventional vaccines
(Tab. IV). By introducing multiple gene
deletion mutations in a directed way in the
genome of an infectious agent, one can vir-
tually eliminate the agent’s ability to cause
disease and reversion to virulence, as well
as make room for the insertion of genes
encoding multiple vaccine antigens. Once
an agent is attenuated it can be used to carry
genes or plasmid DNA for other pathogens
and immunomodulators (e.g. cytokines)

thus making it possible to immunize ani-
mals to produce protective immunity to var-
ious disease organisms at one time.

An ideal live vector would have the fol-
lowing features: (i) non-pathogenic to animals
and humans, (ii) easy to manipulate, (iii) rel-
atively easy and cost effective to produce,
(iv) contain stable genome, (v) contain well
defined sites for insertion of foreign genes,
(vi) easy to deliver, (vii) no integration into
the host genome, (viii) induce both mucosal
as well as systemic immune responses when
delivered orally or intranasally. While these
are very stringent criteria one can hope that
because of the rapid progress in this field
these will be achievable in the near future.
Indeed many live vectored vaccines are
already licensed (Tab. V).

6.1.1. Bacterial vectors

Live bacterial carrier vaccines also have
great potential as novel mucosal vaccines,

Table V. Licensed vector vaccines.

Product Backbone Technology Indication Company

Raboral Vaccinia Vector Rabies MERIAL

TROVAC/NDV Fowlpox Vector NDV MERIAL

TROVAC/AIV H5 Fowlpox Vector AIV H5 MERIAL

Recombitek Canarypox Vector Distemper MERIAL

Purevax Canarypox Vector Rabies MERIAL

Eurifel FeLV Canarypox Vector FeLV MERIAL

Eurifel RCCP FeLV Canarypox Vector Feline Combo MERIAL

ProteqFlu Canarypox Vector Equine Flu MERIAL

ProteqFlu-Te Canarypox Vector Equine Flu/tetanus MERIAL

Recombitek WNV Canarypox Vector WNV MERIAL

Purevax FeLV NF Canarypox Vector FeLV (transdermal) MERIAL

Gallivac IBDV Canarypox Vector IBDV MERIAL

HVT-MDV HVT Vector MDV Intervet

HVT-MDV-NDV HVT Vector MDV/NDV Intervet

HVT-IBDV HVT Vector IBDV Biomune

MeganVac-1 Salmonella Deletion mutant Salmonella Avant

NDV (Newcastle disease virus); AIV (avian influenza virus); FeLV (feline leukemia virus); WNV (West
Nile virus), MDV (Marek’s disease virus); IBDV (infectious bursal disease virus), HVT (turkey herpes-
virus). This table was presented by MERIAL at the Marker Vaccine Meeting, Sheman Conference Centre,
Ames, IA, April 4–6, 2005. We are thankful to Drs R. Nordgren, J.-C. Audonnet, and H. Hughes, MERIAL. 
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with attractive advantages over present-day
injectable vaccines [53, 158]. For example,
live attenuated bacteria such as Salmonella
or Shigella can target mucosal tissues and
deliver the antigen specifically to antigen-
presenting cells via bacterial secretion sys-
tems [4, 55, 57]. Other bacterial vectors
have been demonstrated to carry plasmid
DNA across the mucosal surfaces [34, 37,
94, 147] and more recently, bacterial ghosts
were demonstrated to represent effective
means to deliver plasmid DNA [40]. The
first live attenuated bacterial vectors such as
Salmonella spp. and Shigella spp. were cre-
ated by inserting transposon mutations into
the bacterial genomes [151]. These muta-
tions resulted in safer bacteria for delivering
a variety of foreign antigens to animals [53,
151, 158]. However, since these initial
“proof of concept”-studies various bacterial

delivery systems have been optimized for
the delivery of recombinant antigens as well
as plasmid DNA (Tab. VI) [53]. 

In general, live recombinant bacteria
appear to be attractive vehicles of vaccine
delivery as they (i) are inexpensive and can
be easily produced economically, (ii) can be
delivered orally or intranasally, (iii) can
accommodate many different foreign genes,
thus protecting animals against several
pathogens simultaneously, (iv) can induce
both humoral and cellular immune responses
and (v) adverse effects can be controlled
with antibiotics if necessary. However, one
of the major concerns regarding the use of
bacterial vectors particularly those derived
from attenuated strains is the stability of the
recombinant phenotype and the potential
reversion to full virulence [101]. In addi-
tion, although a number of bacterial vectors

Table VI. Examples of live bacterial vectors.

Vector Pathogen / Antigen Tested in Reference

Salmonella spp. E. tenella / SO7 :TA4
E. coli / HL Toxin B 

L. monocytogenes
T. parva

Shigella spp.
Corynebacterium diphteriae

PRV

Chicken
Mice
Mice

Calves
Mice
Mice
Mice

[125]
[39]
[33]
[56]

[152, 164]
[118]
[142]

Corynebacterium pseudotuberculosis Anaplasma marginale / ApH
Dichelobacter nodosus / protease

Babesia bovis / 11C5
Tania ovis / 45W

Sheep [107, 108]

Shigella flexneri

Listeria monocytogenes

Bacillus anthracis Clostridium perfringens / Iota toxin Mice [146]

Lactococcus lactis IBDV / VP2
BRV / NSP4

Chicken [38]
[44]

Erysipelothrix rhusiopathiae YS-1 Mycoplasma hyponeumoniae / P97 Pigs [144]

Bacillus Calmette-Guerin PRRSV / GP5; M

Toxoplasma gondii / GRA1

Mice/pigs

Sheep

[10, 11]
[153]

E. coli PRV Mice [143]

IBDV (infectious bursal disease virus), BRV (bovine rotavirus), PRRS (porcine respiratory and repro-
ductive syndrome virus).
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are capable of inducing humoral and cellu-
lar immune responses to passenger anti-
gens, it still remains to be seen if preexisting
immunity to bacterial vector will affect
booster immunization [101]. 

Currently, a number of bacterial vectors
are being evaluated for delivering vaccine
antigens and DNA plasmids to mucosal sur-
faces for inducing potent immune responses
(Tab. VI) [33, 34, 37, 158]. These include
commensal microorganisms such as Lacto-
bacillus, Lactococcus, Staphylococcus, Strep-
tococcus species, and attenuated pathogenic
microorganisms such as Salmonella, Shig-
ella, BCG, Corynebacterium, Bacillus, Yersi-
nia, Vibrio, Erysipelothrix and Bordetella
species [34, 37, 93, 133, 147, 148, 151].
Although significant progress has been
made in developing and evaluating bacte-
rial vectors for inducing protective immune
responses, there are not many reports of their
application to vaccinate veterinary species
(Tab. VI). 

6.1.2. Viral vectors

Viral vectors represent another potential
strategy for efficient delivery of vaccine
antigens across the mucosal surfaces [140,
175]. Today, a number of viruses including

poxviruses, herpesviruses and adenoviruses
have been used as viral vectors for veteri-
nary vaccines (Tabs. V and VII–X) [175].
Efficacy of a viral vector is mainly deter-
mined by its host range and tropism, the abil-
ity to replicate in the target animal, and the
expression of the foreign antigen. Both, the
requirement of post translational modifica-
tions including proper folding and process-
ing of the antigen and the detailed charac-
terization of viral genomes have led to the
development of genetically modified viruses
as vaccine delivery vehicles for use in the
veterinary field [140, 175]. However, in
contrast to the human field, viral vectors for
veterinary application are currently designed
only for the delivery of vaccines, but not for
targeting tumors or delivering genes for
gene-therapy. A number of viral vectors are
currently being evaluated for mucosal deliv-
ery including DNA viruses such as adeno-
viruses, pox viruses and herpesviruses, and
RNA viruses such as Newcastle disease
virus (NDV), Venezuelan equine encepha-
litis (VEE), Semliki forest virus (SFV) and
a few retroviruses (Tabs. V and VII–X). For
example, a recombinant alphaherpesvirus
pseudorabies (PRV) carrying the E1 glyc-
oprotein of the classical swine fever virus

Table VII. Examples of herpesvirus vectors.

Vector Pathogen / Antigen Tested in Reference

BHV-1 PRV / gC 
FMDV / VP1, Cp-epitope

BVDV / E2 
BRSV / G

Swine, Cattle 
Cattle
Cattle
Cattle

[84]
[82, 83] 

[86]
[138, 156]

HVT NDV / HN;F
MDV /

IBDV / VP2

Chicken
Chicken
Chicken

[130]
[130]

[35, 162] 

PRV HCV / E1 Swine [167]

FHV FCV / prCapsid
T. gondii / ROP2

Cats
Cats

[176]
[106]

BHV (bovine herpesvirus)-1, HVT (herpesvirus of turkey), PRV (pseudorabies virus), FHV (feline her-
pesvirus of turkey), FMDV (foot and mouth disease virus), BVDV (bovine viral diarrhea virus), BRSV
(bovine respiratory syncytial virus), NDV (New castle disease virus), MDV (Marek’s disease virus), IBDV
(infectious bursal disease virus), HCV (hog cholera virus), FCV (feline calcivirus), T. gondii (Toxoplasma
gondii).



Mucosal vaccines for domestic animals 495

Table VIII. Examples of poxvirus vectors.

Vector Pathogen / Antigen Tested in Reference

Canary pox virus CDV / HA; F

WNV / PrM; E

Dogs
Siberian polecat

Ferrets
Horses

[121]
[172]
[171]
[105]

Modified vaccinia 
Virus Ankara

FCV / M
EIV / HA; NP

T. gondii / ROP2

Cats
Horses

Cats

[65]
[21]
[134]

Capri pox Pdp ruminants / HA Goats [36]
Fowl pox IBDV / VP2

HEVT / hexon
BVDV / E2

AIV / H7,H1

Chicken
Turkeys

Mice
Chicken

[22, 25, 66]
[41]
[20]

Swinepox virus PRV Pigs [166]

CDV (canine distemper virus), WNV (West Nile virus), FCV (feline coronavirus), EIA ( equine influenza
virus), T. gondii (Toxoplasma gondii), Pdp ruminants (peste des petits ruminants), IBDV (infectious bursal
disease virus), BVDV (bovine viral diarrhea virus), HEVT (hemorrhagic enteritis virus of turkey).

Table IX. Examples of adenovirus vectors.

Vector Pathogen / Antigen Tested in Reference

BAdV-3 BHV-1 / gD
BVDV / E2 

Cattle, Cotton rats
Cotton rats 

[129, 178]
[12, 177]

OAV Tinea ovis / 45W Sheep [135]
PAdV-3

PAdV-5

CSFV / E2
PRV / gD
TGEV / S

Swine
Swine
Swine

[62] 
[63]
[163]

CAdV-2 CDV / HA; F Dogs [47]
CELO IBDV / VP2 Chicken [49]
FAdV-8 FAdV-10 IBV / S1

IBDV / VP2
Chicken
Chicken

[75]
[141]

HAdV-5 PRCV / S
TGE / S

Rabies / G
Rabies / G
BCV / HE
FIV / env
PRV / gD 
PRV / gD 

BVDV / E2
BHV-1 / gD

PRRSV / GP5

Swine
Swine
Skunk
Dogs

Cotton rats
Cats

Swine
Rabbit / Mouse

Cattle
Pigs
Pigs

[23]
[161]
[174]
[126]
[5] 
[60]
[2]

[43]
[42]
[59]
[52]

BAdV (bovine adenovirus)-3, PAdV (porcine adenovirus)-3;-5, CAdV (canine adenovirus) -2, CELO (cell
associated lethal orphan), FAdV (fowl adenovirus)-8;-10, HAdV (human adenovirus)-5, BHV (bovine her-
pesvirus)-1, BVDV (bovine viral diarrhea virus), BRSV (bovine respiratory syncytial virus), CSFV (clas-
sical swine fever virus), PRV (pseudo- rabies virus), TGEV (transmissible gastroenteritis virus), CDV
(canine distempervirus), IBDV (infectious bursal disease virus), IBV (infectious bronchitis virus), PRCV
(porcine respiratory coronavirus), BCV (bovine coronavirus), FIV (feline immuno deficiency virus), PRV
(pseudorabies virus), BVDV (bovine viral diarrhea virus), BHV (bovine herpesvirus)-1, PRRSV (porcine
respiratory and reproductive syndrome virus).
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(CSFV) was used by van Zijl et al. [167] to
protect pigs against challenge infection
with CSFV. Kit et al. [82] used the bovine
herpesvirus type 1 (BHV-1) to deliver the
viral protein (VP) 1 of foot-and-mouth dis-
ease virus (FMDV) to young calves, and
Kweon et al. [86] used BHV-1 as a vector
for delivering the glycoprotein E2 of the
bovine virus diarrhea virus (BVDV) to
calves. A recombinant BHV-1 vector was
also used by Schrijver et al., who delivered
the bovine respiratory virus glycoprotein G
to calves [138]. Other examples for herpes-
viral vectors include the herpesvirus of tur-
keys (HVT), which has been used to deliver
glycoproteins from Newcastle disease virus
(NDV) and Marek disease virus (MDV)
[130] and the infectious bursal virus
(IBDV) VP2 [35] [162]. The feline herpes-
virus 1 (FHV) was used for delivering anti-
gens from the feline calicivirus (FCV;
[176]) or Toxoplasma gondii [106]. Poxvi-
ruses represent another type of promising
viral vectors. Indeed, canary pox based vac-
cines have been licensed already or are in
the process of getting licensed (Tab. V).
Thus, live viral vectors represent powerful
tools for delivering vaccine antigens across
mucosal surfaces. However, concerns
regarding their use are related to safety and
stability of the vaccines, the applicability,
as well as their effectiveness in the presence
of pre-existing immunity. Thus, other strat-
egies for inducing protective immunity at
the mucosal surfaces such as particulate

delivery systems may prove to be very com-
plementary for vaccinating livestock.

6.2. Particulate delivery systems

In general, non-replicating antigens such
as proteins and killed vaccines are poorly
immunogenic when given mucosally. This
has been attributed to degradation of anti-
gen or inefficient uptake by APC in the
mucosae. Studies in laboratory animals have
clearly demonstrated that particulate deliv-
ery systems can significantly improve the
immunogenicity of mucosally administered
antigens. However, there are only limited
studies in domestic animals and the poten-
tial of mucosal immunization with killed
antigen remains largely unexploited in vet-
erinary medicine. We will briefly review
the delivery of antigens to mucosae using
particulate delivery systems (microparticles,
immune stimulating complex (ISCOM) and
liposomes), and where possible highlight
investigations in domestic animals or where
antigens from pathogens of veterinary
importance have been used.

6.2.1. Microparticles

The enhanced immune responses observed
with the use of microparticles for mucosal
delivery is related to protecting the antigen
from degradation and increasing antigen
uptake into specialized mucosa-associated
lymphoid tissues [116]. Also, microparti-
cles facilitate presentation by APC via both

Table X. Examples of other viral vectors.

Vector Pathogen / Antigen Tested in Reference

VEE EAV / G(L); M
Anthrax / PA

Horses
Mice

[8]
[88]

SFV LIV / ME; NS
IBDV / VP2; VP2,4,3

Sheep
Chickens

[112]
[124] 

NDV IBDV / VP2 Chicken [71] 

FFV FCV / capsid Pr Cats [139]

VEE (Venezuelan equine encephalitis), SFV (Semliki forest virus), NDV (Newcastle disease virus),
FFV (feline foamy virus), EAV (equine arteritis virus), LIV (Looping ill virus), IBDV (infectious bursal
disease virus), FCV (feline calcivirus). 
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MHC class I and MHC class II restricted
processing and presentation pathways [102].
Uptake of microparticles occurs predomi-
nantly by M cells in the follicle-associated
epithelium overlying the Peyer’s patches in
mice and domestic animals [13, 81]. Inter-
estingly, DC extend their dendrites between
epithelial cells to sample antigen in the
lumen [131], but the significance of this
pathway in particle uptake is unclear. How-
ever, the poor uptake of microparticles is a
major limitation of all microparticle deliv-
ery systems which results in suboptimal
responses. Approaches such as targeting
microparticles to M cells using lectins [48]
as well as incorporating adjuvants such as
CpG ODN can improve the potency of
microparticles as delivery vehicles. 

6.2.1.1.  Polymers 

A variety of polymers can be made into
microparticles including Poly-lactide-co-
glycolide (PLG), alginate, polyphosphazenes
and starch. PLG is a biodegradable aliphatic
polyester used in humans as suture materi-
als and has been extensively investigated
for the delivery of micro-encapsulated vac-
cines. A variety of antigens have been
encapsulated in PLG microparticles with
successful induction of protective immune
responses [117, 165]. Interestingly, oral
immunization of mice with ovalbumin
(OVA) encapsulated in PLG microparticles
induced serum IgG and intestinal IgA
responses to a level similar to that induced
with cholera toxin (CT) adjuvants [117].
This is significant given that CT is the most
potent and widely investigated mucosal
adjuvant. Mucosal immunization with anti-
gens encapsulated in PLG microparticles
protected animals against challenge with
mucosal pathogens. Mice orally immunized
with antigen in PLG microparticles were
better protected against oral challenge with
S. typhimurium, than those immunized intra-
peritoneally (IP) with antigen in Freund’s
adjuvant [3, 45]. Interestingly, a single oral
immunization with fimbriae from Borde-
tella pertussis encapsulated in PLG micro-

particles protected mice from intranasal
challenge with the bacteria [76], indicating
that the microparticle delivery system
effectively stimulated the common mucosal
immune system to protect against infection
at a distant mucosal site. PLG microparti-
cles have also been evaluated with DNA
vaccines. Mice orally immunized with rota-
virus VP4, VP6 and VP7 DNA vaccines in
PLG microparticles elicited both rotavirus-
specific antibodies and protection against
challenge with rotavirus [28, 67]. Since
encapsulation of plasmid DNA causes sig-
nificant damage to the DNA as a result of
shear, adsorption of DNA on the surface of
PLG microparticles can circumvent this
problem. Intranasal (IN) immunization of
mice with DNA encoding HIV-1 gag
adsorbed on the surface of cationic PLG
microparticles induced antibody and cell-
mediated immune responses locally and
systemically, but no responses were seen
with naked DNA [145]. A single IN immu-
nization of mice with synthetic malaria
SPf66 vaccine in PLG microparticles greatly
improved and sustained systemic Th1 and
Th2 responses over conventional alum
adjuvant [24]. This suggests that mucosal
immunization with microparticles has the
potential to deliver the next generation of
vaccines against many different diseases.
Besides mice, PLG microparticles have
also been evaluated in other species. Three
of ten adult humans immunized via an intes-
tinal tube with enterotoxigenic E. coli (ETEC)
antigen (CFA/II) in PLG microparticles
were protected, but all ten unimmunized
controls developed clinical disease [154].
In contrast, oral immunization of pigs with
ETEC antigens in PLG microparticles did
not induce any significant antibody response
or reduction in E. coli shedding, perhaps
reflecting differences in immunization pro-
cedures [46]. Torche et al. [159, 160] dem-
onstrated phagocytosis of PLG-particles by
porcine macrophages in vitro, and assessed
their uptake in the intestine via M cells. A
single oral immunization in 2-week-old chick-
ens with formalin-inactivated S. enteritidis
in PLG microparticles elicited a significant
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intestinal S-IgA antibody response and pro-
tected birds against oral and intramuscular
challenge [91]. The use of PLG micropar-
ticles may be limited by the fact that PLG
is soluble only in organic solvents, which
may denature critical epitopes required for
inducing protection. Poly-ε-caprolactone
(PEC) microparticles, like PLG, are biode-
gradable polyesters. Oral immunization of
mice with an antigen from Brucella ovis in
PEC microparticles protected mice against
IP challenge while antigens in PLG did not
[114]. However, a study by [9] using Schis-
tosoma mansonii antigens did not support
this conclusion. 

6.2.1.2.Alginate 

Alginate is a naturally occurring carbo-
hydrate (kelp) which polymerizes into par-
ticles upon contact with divalent cations.
Oral immunization of cattle with the model
antigen OVA in alginate microparticles
enhanced IgA- and IgG-immune responses
in the respiratory tract, providing evidence
that oral immunization with microparticles
can stimulate the common mucosal immune
system in a large animal [17]. Calves immu-
nized IN with porcine serum albumin (PSA)
in alginate microparticles developed high
level of anti-PSA IgG1 antibodies in serum,
nasal secretions and saliva [128]. In con-
trast, oral immunization did not induce any
significant responses, suggesting that IN
was more efficient for induction of nasal
and serum responses. Rabbits orally immu-
nized with P. multocida antigens encapsu-
lated in alginate microparticles developed
significantly higher nasal IgA responses
[18]. Increased protection against P. haemo-
lytica and Streptococcus pneumoniae chal-
lenge in mice was demonstrated by encap-
sulating antigens in alginate microparticles
following oral immunization [80]. These
studies clearly show that alginate micropar-
ticles are effective for mucosal delivery of
vaccines in small and large animals. 

6.2.1.3.Polyphosphazenes 

Polyphosphazenes are synthetic biode-
gradable and water-soluble polymers (no

need for organic solvents) with potential as
vaccine delivery systems. Procedures for
the preparation of poly[di(carboxylatophe-
noxy)phosphazene] (PCPP) microparticles
appear to be relatively simple [122]. IN
immunization of mice with tetanus toxoid
or influenza antigens in PCPP microparti-
cles induced significant increases in serum
IgG in mice [122, 123]. Considering that
PCPP microparticles are relatively easy to
produce in an aqueous environment, and the
polymer has adjuvant activity as well, inves-
tigations in large animals are warranted. 

6.2.1.4.Other biodegradable polymers

Antigens from Mycoplasma hyopneu-
moniae and Actinobacillus pleuropneumo-
niae coated with acrylic resins (cellulose
acetate phthalate and methacrylic acid) to
protect them from the low pH of the stom-
ach and released in intestines have been
tested and shown efficacy when given
orally to swine [89, 90]. Fimbriae of ETEC
in a cellulose-based delivery system reduced
disease in experimentally infected pigs [150]. 

6.2.2. ISCOM

ISCOM is a small 40 nm nanoparticle
composed of saponin (adjuvant), lipids and
antigen, and has been described as an anti-
gen delivery system because it not only has
adjuvant activity and but also the ability to
target APC [111]. ISCOM is a versatile
delivery system that allows incorporation of
additional adjuvants and targetting mole-
cules. The mechanisms whereby ISCOM
are so effective in inducing immunity is
related to the ability to stimulate innate
immunity by producing cytokines such as
IL-12 and modulation of antigen uptake via
recruitment of APC [51, 149]. Furthermore,
ISCOM target antigens to both the endo-
somal and cytosolic pathways resulting in
both MHC class I and MHC class II
restricted immune responses [110]. Numer-
ous studies indicate that ISCOM enhance
immune responses to a variety of vaccine
antigens in laboratory and domestic ani-
mals, and ISCOM are now included in
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injectable commercial veterinary vaccines
[18, 111]. However, there is also evidence
that ISCOM have great potential in the
delivery of antigens to the mucosae. Mowat
et al. [97, 113] showed OVA incorporated
into ISCOM given orally induced serum
antibodies, mucosal IgA, Th1 and Th2 CD4
T cell responses and MHC I restricted CTL
activity. Mice fed OVA in ISCOM prior to
feeding with tolerogenic doses of OVA had
elevated OVA-specific antibody responses,
indicating that ISCOM may deviate immune
response in favor of immunity rather than
tolerance [97, 113]. Additionally, OVA in
ISCOM induced the recruitment of DC
and macrophages into the mesenteric lymph
nodes and recruitment of macrophages
and B cells in Peyer’s patch tissues [51].
Lovgren et al. [95] showed that mice immu-
nized IN with influenza ISCOM were pro-
tected against subsequent challenge with
influenza virus.

Intranasal immunization with respira-
tory syncytial virus (RSV) antigens in
ISCOM induced high levels of IgA in the
upper respiratory tract and in the lungs of
mice [70]. Antigens from Mycoplasma
mycoides subspecies mycoides, a cause of
severe lung disease in cattle, were incorpo-
rated in ISCOM and induced mucosal and
systemic IgG1, IgG2a and IgG2b antibody
responses in mice [1]. Dogs immunized IN
with Echinococcus granulosus antigens in
ISCOM induced high mucosal IgA responses
but no systemic antibody responses [26].
Based on these reports it appears that
ISCOM fulfill some important attributes of
an effective mucosal delivery system; it
contains an adjuvant (saponin) and allows
incorporation of additional adjuvants, stim-
ulates the innate immune system and
recruits and targets antigen to DC. By incor-
porating targeting molecules into the ISCOM
it should be possible to further enhance their
utility as mucosal delivery systems [111].
Further investigations in domestic animals
using relevant antigens are warranted to
fully exploit the potential of this technology
in veterinary medicine. 

6.2.3. Liposomes 

Liposomes are phospholipid vesicles
which enhance immune responses prima-
rily by increasing antigen uptake and pres-
entation [61]. Liposomes have been used
extensively in oral and IN delivery of anti-
gens in mice [104]. Since uptake of lipo-
somes by the GALT following oral delivery
is a major concern [179], some recent inves-
tigations have focused on improving uptake
of liposomes and the co-delivery of adju-
vants as a way of improving mucosal
responses. In this regard, conjugation of
liposomes with recombinant B subunit of
cholera toxin (rCTB) significantly enhanced
mucosal IgA and serum IgG compared to
responses in mice immunized orally with
unconjugated liposomes [64]. Similarly,
the presence of IgA on liposomal surfaces
increased uptake of liposomes into the PP
mucosa, and the local rectal and colonic IgA
responses to ferritin following rectal immu-
nization of mice was about 5-fold higher
than those induced by uncoated liposomes
[180]. The addition of CT to a liposome-
antigen formulation also enhanced responses
to ferritin [180]. Addition of the adjuvant
monophosphoryl lipid A to VTEC antigen
formulated in liposomes induced signifi-
cant systemic and mucosal antibody
responses in mice immunized orally [155].
IN immunization of mice with a commer-
cial inactivated Yersinia pestis vaccine in
liposomes resulted in significant enhance-
ment of IgG and IgA titers in lung and nasal
washes of immunized mice [7]. Interest-
ingly, IN immunization of mice with lipo-
some-encapsulated plasmid DNA encoding
influenza hemagglutinin conferred com-
plete protection while all mice immunized
with naked plasmid died [169]. Chickens
immunized by intraoccular, oral and IN
delivery with liposome-associated whole
cell extract of Salmonella enterica serovar
enteritidis developed significant serum and
intestinal IgG and IgA antibody responses
whereas those immunized with antigen
alone had no detectable antibody responses.
Interestingly, intraoccular immunization of
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chickens elicited better responses than both
IN and oral immunization [50]. Apparently
intraocular immunization circumvents acids,
enzymes and dilution effects encountered
by antigen in the respiratory and gastroin-
testinal tracts. 

Liposomes have been successfully used
to co-deliver antigen and IL-12 by IN deliv-
ery [6]. An alternative to co-delivering
cytokines is to use liposomes containing
cytokine-inducing immune modulators such
as CpG ODN. This would reduce the poten-
tial toxicity often associated with large doses
of cytokines. Indeed, the adjuvant activity
of CpG ODN was augmented by liposomal
delivery in mice immunized IN against
influenza and hepatitis B viruses [77]. 

6.3. Other strategies to enhance vaccine 
uptake

6.3.1. Lectin-mediated targeting 

The efficacy of mucosal vaccines is cur-
rently limited by very inefficient delivery of
the antigen to the mucosal surfaces. Thus,
various strategies to selectively target anti-
gens to M cells or enterocytes have been
developed in small rodents [73]. One of the
most promising current strategies is the use
of lectins that specific recognize sugar-res-
idues on the apical surfaces of M cells. For
example, the Ulex europeus 1 (UEA1), a
lectin specifically for α-L-fucose residues,
binds almost exclusively to the apical sur-
face of mouse Peyer’s patch M cells. UEA1-
coated antigens (OVA) were specifically
targeted to the M cells in murine Peyer’s
patches after administration into ligated
intestinal loops [48], and resulted in
enhanced immunity against OVA. Simila-
rily, incorporation of wheat germ agglutinin
lectin (WGA) also enhanced uptake of pol-
ymerised liposomes by Peyer’s patch, albeit
at lower levels than UEA1 [27]. Giannasca
et al. reported that an M cell selective lectin
administered via the intranasal route tar-
geted to and was endocytosed by respira-
tory hamster M cells in vivo [58] and Roth-

Walter et al. showed that lectins from Aleu-
ria aurantia can be used to target M cell for
oral allergen immunotherapy [136, 137].
Novel strategies for targeting DNA vac-
cines to intestinal and respiratory M cells
are based on using the M cell specific reo-
virus protein σ1 as a carrier [170, 173].
Yersinia pseudotuberculosis invades via M
cells in vivo and this is mediated by inter-
action between bacterial invasin with cell
surface β1-integrins on M cells [29]. Hus-
sain and Florence mimicked this microbial
strategy and showed that Yersinia adhesion
protein invasion could be used to improve
uptake of nanoparticles [72]. However, it
remains to be formerly proven whether this
strategy can result in significant enhance-
ment of immune responses.

6.3.2. Antibody-mediated targeting

Other strategies for targeting the mucosal
surfaces include antibody-mediated target-
ing to mucosal homing molecules such as
the mucosal-addressin cellular adhesion
molecule (MAdCAM-1). Mc Kenzie et al.
vaccinated mice with OVA and demon-
strated that even after parenteral immuni-
zation the targeting to MadCAM enhanced
OVA-specific antibody responses in gut
and serum [100]. Bonifaz et al. [16] recently
reported that antibody-mediated targeting
of antigens to maturing dendritic cells via
the DEC-205 receptor increased the effi-
ciency of mucosal and systemic immunity
in mice. 

6.3.3. Receptor-mediated targeting

Another strategy of targeting intestinal
surfaces is to use antigen-specific receptors.
For example, the E. coli fimbriae protein
(F4) binds to the F4 receptor (F4R) on the
surface of porcine intestinal cells [31].
Interaction between ligand and receptor is
required for pathogenesis, and only F4R+
pigs develop disease, and interestingly also
immunity against E. coli. Thus, a possible
strategy for mucosal vaccines would be to
fuse a vaccine antigen to the F4 in order to
retain the antigen within the intestinal tract
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and facilitate antigen uptake via M cells and
dendritic cells. In fact, Verdonck et al.
recently demonstrated that chemically con-
jugated F4 to human serum albumin (HAS)
resulted in enhanced HSA-specific IgA-
and IgG responses [168]. Finally, it has also
been possible to express a fragment of the
non-glycosylated E2 antigen of classical
swine fever in E. coli and administer the
inclusion bodies orally to mice. All vacci-
nated mice developed IgG and IgA antibod-
ies against the E2 [79]. This is an interesting
observation since systemic immunization
with inclusion bodies generally is ineffec-
tive in inducing immune responses. It is
possible that the proteolytic cleavage in the
intestine combined with the particulate
nature of the inclusion bodies allows uptake
and processing of the antigen suitable for
induction of immunity. 

7. CONCLUSION

The advent of molecular biology and our
understanding of the critical antigens involved
in inducing protection from infectious dis-
eases has allowed researchers and compa-
nies to identify and produce large quantities
of putative protective antigens from almost
any pathogen. However, the major chal-
lenge to effective vaccination now lies in
formulation and delivery of these antigens.
Our thesis is that even with the best antigen
identification production systems, the vac-
cines will not reach their full potential
unless they are formulated and delivered
properly. Thus, economic losses and animal
suffering will continue.

Since over 90% of all pathogens, regard-
less of which species, enter and initiate
infection at mucosal surfaces, the best target
for effective vaccines is the mucosal surface
to reduce the ability of the pathogen to get
established. Thus, the mucosal surface should
be our site for immunization since systemic
immunization rarely induces mucosal
responses. As a result, systemic immunity,
if effective, can only prevent disease but
have little impact on the initial infection

process. Even if mucosal immunization
does not totally eliminate infection, mucosal
antibody limits the degree of replication and
shedding of the pathogen, thereby, reducing
the pathogen load in the environment and
consequently dramatically reducing the rate
of herd infection and transmission of dis-
ease through the herd. 

The recent advances in mucosal immu-
nization, especially in rodents are very encour-
aging since they demonstrate that mucosal
immunization is feasible. Whether all vac-
cines will be given mucosally is debateable
since some management systems will make
intranasal immunization very difficult.
However, one could envisage initial sys-
temic immunization followed by intranasal
boosting, thereby, achieving the full benefit
of mucosal immunization with only half the
challenge of intranasal immunization. A
second challenge is the duration of immu-
nity at mucosal surfaces. Since mucosal
immunization induces both mucosal and
systemic immunity even if mucosal immu-
nity wanes upon exposure to a mucosal
pathogen, there will be a rapid response
both systemically and mucosally.

Possibly the most exciting development
in the past few years is the knowledge that
the most effective antigen-presenting cells
have specific cell markers. This is allowing
us to directly link antigens to antibodies or
lectins that specifically bind to the dendritic
cell, thereby ensuring that the quantity of
antigen needed to induce immunity is
extremely small. This makes the production
of expensive antigens feasible for livestock
vaccine due to the extremely low quantities
of antigen acquired (antigen sparing). We
envisage that such approaches will become
common place in livestock vaccines being
developed over the next decade. Thus, we
will not only be able to target the vaccines
to mucosal surfaces, but ensure that these
vaccines are further targeted to the antigen-
presenting cells that are monitoring the
events occurring at these mucosal surfaces.
It is interesting that such targeting can occur
with live vectored vaccines, as well as with
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subunit and even DNA-based vaccines.
Furthermore, by designing formulation
delivery systems which focus the immune
response to either give a balanced immune
response or one skewed to either Th1 or Th2
depending on the pathogen of interest, we
can target the response as needed for max-
imum protection and reduce the conse-
quences of infection from most pathogens.
As a result of the recent advances, we are
on the brink of unprecedented opportunities
to reduce animal suffering, improve the
economics of livestock production, and
reduce the spread of many infectious dis-
eases from animals to humans. This latter
factor is becoming extremely important as
the livestock industry finds itself at the
crossroads with our continued urbaniza-
tion. Historically, over 50% of all human
diseases were considered zoonotic, how-
ever, currently, a full 80% of the new
emerging diseases are zoonotic. As our glo-
bal population increases, there will be more
pressure on the agricultural industry to
reduce all types of contaminants arising
from livestock including infectious diseases. 
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