Influence of febrile disease on the pharmacokinetics of veterinary drugs
Asjpm Van Miert

To cite this version:
Asjpm Van Miert. Influence of febrile disease on the pharmacokinetics of veterinary drugs. Annales de Recherches Vétérinaires, INRA Editions, 1990, 21 (suppl1), pp.11s-28s. <hal-00901989>

HAL Id: hal-00901989
https://hal.archives-ouvertes.fr/hal-00901989
Submitted on 1 Jan 1990

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Influence of febrile disease on the pharmacokinetics of veterinary drugs

ASJPAM van Miert

Department of Veterinary Basic Sciences, Division of Pharmacology, Pharmacy, Toxicology and Therapy, Faculty of Veterinary Medicine, Utrecht University, PO Box 80176, 3508 TD Utrecht, The Netherlands

(Pharmacokinetics of Veterinary Drugs, 11–12 October 1989, Fougères, France)

Summary — In mammals, tissue damage, inflammation or invasion of pathogenic microorganisms induces systemic changes, collectively known as the ‘acute phase response’. Among the varied alterations, which together produce this response, are: fever, inappetence, inhibition of gastric function, synthesis of hepatic acute phase proteins and changes in blood flow to various organs. The intensity of these different reactions may vary depending upon the type of invading microorganism or bacterial toxin given. Considerable attention has been paid to the involvement of pyrogenic cytokines derived from reticuloendothelial cells and phagocytes in the host responses to infection. These cytokines include interleukins, interferons and tumor necrosis factor. In the present paper, attention has been focused on the role of cytokines and the effects of the acute phase response on drug disposition in disease states (including the effect of anorexia on medicated feed intake and drug bioavailability). From the disease-induced changes in pharmacokinetics, it follows that more attention should be paid to drug disposition in patients in relation to efficacy, side effects and drug residues in food products. In relation to good veterinary practice, it is also recommended that the route of administration, dosage and withdrawal time be adjusted according to the severity of the disease.

disease / pharmacokinetics / fever / dosage regimen / efficacy / withdrawal time

Résumé — Influence des maladies fébriles sur la pharmacocinétique des médicaments vétérinaires. Chez les mammifères, les lésions cellulaires, les inflammations et les infections par des micro-organismes pathogènes induisent des modifications systémiques dénommées collectivement sous le terme de « réponse primaire ». Parmi les modifications qui participent à cette réponse on retrouve la fièvre, l'inappétence, l'inhibition des fonctions gastriques, la synthèse de marqueurs (protéines hépatiques) et des altérations du débit sanguin régional. L'intensité de ces différentes réactions varie avec le type de micro-organisme ou de la toxine bactérienne. Une attention particulière a été portée aux cytokines pyrogènes produites par les cellules réticuloendothéliales et les phagocytes. Ces cytokines comprennent les interleukines, les interférons et les facteurs de nécrose tumorale. Le présent article précise le rôle des cytokines et les effets de la réponse primaire sur la disposition des médicaments dans les états pathogènes (y compris les effets de l'anorexie sur l'ingestion des aliments médicamenteux et sur la biodisponibilité des médicaments). Compte tenu des modifications pharmacocinétiques induites par les processus pathogènes, une attention particulière doit être portée sur l'efficacité et les effets secondaires des médicaments et sur la présence de résidus dans les tissus consommables. En relation avec les bonnes pratiques vétérinaires, il est également recommandé que la voie d'administration, la posologie et le délai d'attente soient modulés en fonction de la sévérité de la maladie.

maladie / pharmacocinétique / fièvre / posologie / efficacité / délai d'attente
INTRODUCTION

In mammals, tissue damage, inflammation or invasion of pathogenic microorganisms induces systemic changes, collectively known as the acute phase response. Among the varied alterations, which together produce this response, are: fever, increased lassitude or sleep, inappetence, inhibition of gastric function, tachycardia, a negative nitrogen balance, synthesis of hepatic acute phase proteins, activation of lymphocytes, neutrophilic leukocytosis, mobilization of phagocytes, decreased plasma iron and zinc levels, and changes in the metabolism of carbohydrates, lipids and proteins (Beisel, 1984; Dinarello, 1984, 1985; van Miert, 1985, 1987; Lohuis et al, 1988). The intensity of these different reactions may vary depending upon the type of invading microorganism or bacterial toxin given (van Miert and van Duin, 1974, 1979; van Miert et al, 1982, 1983b, 1984a, 1984b; Koot et al, 1989; Lohuis et al, 1989). Therefore, the effect of the acute phase response upon the pharmacokinetic behavior of a drug is not standardized (Abdullah and Baggot, 1986). Over the last three decades, considerable attention has been paid to the involvement of cytokines derived from reticuloendothelial cells and phagocytes in the host responses to infection. These cytokines include interleukins (IL-1, IL-2, IL-6), interferons (IFNα, IFNβ, IFNγ) and tumor necrosis factor (TNFα, TNFβ) or cachectin (Dinarello, 1984; Kluger, 1986; Beutler and Cerami, 1986; Dinarello et al, 1988a, 1988b; Tracey et al, 1989). Once released into the circulation, these pyrogenic cytokines travel from peripheral sites of infection, inflammation or injury to the brain, where they act on structures in the thermoregulatory center of the hypothalamus to initiate fever. TNF causes fever through a direct effect on this center, and through induction of IL-1 biosynthesis (Dinarello et al, 1986, 1988b). By itself, neither IFNα nor IFNβ induces IL-1 (Ackerman et al, 1984; Dinarello et al, 1984), however, IL-1 induces IFNβ (Dinarello et al, 1988b). Nevertheless, it is clear that IFNα is an endogenous pyrogen and induces fever via the same mechanism as that shown for IL-1: synthesis of brain prostaglandin E2 (PGE2) (Milton, 1982; Coceani et al, 1986, 1988; Nakamura et al, 1988). In dwarf goats, both IL-1 (crude preparation) and recombinant human IFNα2a induced shivering, monophasic febrile responses, tachycardia and a slight inhibition of forestomach contractions (fig 1). Intravenous infusion of endotoxin, a potent IL-1- and TNF-inducer (Dinarello, 1984; Beutler et al, 1985), caused marked increases in the plasma levels of prostaglandins in rabbits and sheep (Philipp-Dornston and Siegert, 1974; Emau et al, 1985; Lohuis et al, 1988). In goats, iv infusion of PGE2 induced tachycardia and a moderate inhibition of forestomach contractions, whereas intracerebroventricular injection of PGE2 caused vasoconstriction, intense shivering, a sharp increase in body temperature, and a longer-lasting inhibition of ruminal contractions (Veenendaal et al, 1980; van Miert et al, 1983a). Thus, there is considerable evidence that PGE2 is the major arachidonic metabolite associated with rises of the hypothalamic thermostat to febrile levels. Furthermore, these results suggest that both fever and inhibition of forestomach contractions result from PGE2 interference with receptors in the same region of the brain.

In the present article, attention will be focused on the effects of the acute phase response on drug pharmacokinetics in disease states.
One of the more common signs of febrile diseases is inappetence (Phillips, 1984; van Miert et al, 1986; Langhans and Scharrer, 1986; van Miert, 1987). In laboratory animals, pyrogenic cytokines, such as IL-1 (McCarthy et al, 1985a, b; 1986; Otterness et al, 1988; Plata-Salaman et al, 1988) and TNF (Plata-Salaman et al, 1988; Kettelhut and Goldberg, 1988; Socher et al, 1988; Tracey et al, 1988; Grunfeld et al, 1989), suppress feed intake, whereas the therapeutic use of IFN-α2a in man in-

![Graph showing changes in heart rate (HR), rumen motility (RF and RA), and body temperature (T) of dwarf goats after iv infusion of crude interleukin-1 (O: 5 ml/kg body weight equivalent to 2 x 10^8 leukocytes/kg; n = 4) and recombinant human interferon-α2a (●: 5 x 10^4 IU/kg body weight; n = 5). Heart rate and rumen contractions are expressed as percentages of the preadministration values; RF = frequency of contraction/15 min; RA = summation derived from 15 min intervals of amplitude. Only mean values are shown. Horizontal bars (IL-1 open; IFN-α2a black) indicate periods of intense shivering (partly based on van Miert and van Duin, 1974).]
duces side effects including fever and inappetence (Fent and Zbinden, 1987). In dwarf goats, iv injection of IFN-inducers and im injection of human recombinant (hr) IFN-α2a both resulted in increased rectal temperatures and significant reductions in feed consumption (Koot et al, 1988, 1989). Similar results were obtained after iv injection of *Escherichia coli* endotoxin (Baile et al, 1981; van Miert et al, 1986), which is a potent IL-1 and TNF inducer (Dinarello, 1984; Beutler et al, 1985). However, appetite suppression has been shown to be independent of PGE2 induction (McCarthy et al, 1984; van Miert et al, 1986; Kettelhut and Goldberg, 1988; O'Reilly et al, 1988). Interestingly, anorexia in gastrointestinal helminth infection seems to be mediated by increased cholecystokinin secretion (Symons and Hennessy, 1981). Cholecystokinin is one of the hormones controlling appetite (de Jong, 1987). Although the exact mechanisms are still unknown, febrile anorexia may complicate the oral treatment of patients suffering from acute infectious diseases. Therefore, we studied feed intake and water consumption in pigs before and after infection with *Haemophilus (Actinobacillus) pleuropneumonia*. Infection and iv injection of *H pleuropneumonia* toxins (Pijpers et al, 1990) both resulted in fever (fig 2), anorexia and significant reductions in drinking water consumption (fig 3). These results suggest that disease states may have a negative influence on medicated feed intake and on medicated water consumption. Therefore, parenteral drug administration is to be preferred in these patients.

FEBRILE CONDITIONS AND DRUG BIOAVAILABILITY

Parenteral injection of exogenous pyrogen, such as staphylococcal enterotoxins (van Miert et al, 1983b, 1984b), endotoxins from *E coli* or *Salmonella typhimurium* (van Miert et al, 1977, 1982), Newcastle's disease virus (van Miert and van Duin, 1974), poly I:poly C (van Miert and van Duin, 1979; Koot et al, 1989), hr IFN-α2a (Koot et al, 1989), sodium nucleinate from yeast (van Miert and van Duin, 1979), or johnin challenge after vaccination with *Mycobacterium johnnei* (van Miert and van Duin, 1974), induced fever, changes in heart rate and inhibition of forestomach contractions, although there were differences in latency time, the shape of the temperature curves and the shape of the rumen motility curves. Similar observations have been made in goats infected with tick-borne fever (van Miert et al, 1984a) and *Trypanosoma vivax* (Veenendaal et al, 1976), or cattle infected with bovine ephemeral fever (Burgess and Spradbrow, 1977; Uren and Murphy, 1985) or with *E coli* mastitis (Louwui et al, 1989).

In monogastric species, the first observations in this field appear to be those of Meyer and Carlson (1917) and Meyer et al (1918). They observed that dogs with distemper or pneumonia refused food and showed complete atony of the stomach with absence of hunger contractions. In addition, they performed some experiments in which fever was evoked by pyrogens, such as sodium nucleinate and a killed culture of *Serratia marcescens*. The authors concluded that gastric secretion and hunger contractions were absent in marked fever and that these effects were associated with anorexia as long as the fever was present. Since that time, other investigators have confirmed these observations, although the exact mechanisms involved are still unknown. In our experiments with rats, *E coli* endotoxin induced inhibition of gastric secretion and gastric emptying rate (table I). Pretreatment with non-steroidal anti-inflammatory agents, which inhibit prosta-
glandin synthesis, was ineffective to antagonize these endotoxin-induced effects (van Miert and van Duin, 1980).

Although the stomach is not itself an important site of drug absorption, the rate of gastric emptying can markedly influence the rate of intestinal drug absorption. Furthermore, the gastric pH increase during endotoxin-induced fever is important, as the solubility of some drugs, such as tetracyclines, is reduced with increasing pH (van Miert, 1983). Several investigators have reported that the rates of drug absorption after oral administration to veal calves (Groothuis et al, 1978), pigs (Ladefoged, 1979a) and rabbits (Ladefoged, 1978a, 1979b) were reduced during endotoxin-induced fever. In pigs, we recently studied the effect of Haemophilus (Actinobacillus) pleuropneumonia (HPP) toxins on the rate of oxytetracycline absorption administered on an empty stomach (fig 2). During the febrile state, the maximal concentration of oxytetracycline in plasma was

Fig 2. Mean concentrations of oxytetracycline (OTC, μg/ml) in plasma of pigs (n = 8) following oral administration of the drug (50 mg/kg body weight) on an empty stomach with (●), or without (○) Actinobacillus pleuropneumonia toxin-induced fever. Mean body temperature responses are shown in the upper curve (Pijpers et al, 1990).
Fig 3. Feed intake (g/kg\(^{0.756}\)) and water consumption (ml/kg\(^{0.756}\)) in pigs (n = 8) before and after (↑) injection of *A. pleuropneumonia* toxins. The animals were fed 750 g of pelleted concentrate twice daily; water was provided ad libitum (Pijpers et al, 1990).

Table I. The effect of *E. coli* endotoxin (LPS) on gastric function in the rat.

<table>
<thead>
<tr>
<th></th>
<th>Saline</th>
<th>LPS (0.1 μg/100 g bw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastric secretion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of rats</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>volume (ml/kg bw)</td>
<td>27 ± 3</td>
<td>12 ± 1(^b)</td>
</tr>
<tr>
<td>pH</td>
<td>2.4 ± 0.7</td>
<td>4.8 ± 0.6(^b)</td>
</tr>
<tr>
<td>acid output (meq/100 g bw)</td>
<td>218 ± 31</td>
<td>59 ± 8(^b)</td>
</tr>
<tr>
<td>acid concentration (meq/l)</td>
<td>80 ± 7</td>
<td>53 ± 13(^b)</td>
</tr>
</tbody>
</table>

Gastric emptying rate		
number of rats	36	39
retention (%)\(^a\)	19 ± 4.7	81 ± 4.0\(^b\)

Parameters for secretion and emptying rate were determined 3 h after intravenous LPS administration (in the controls: saline 0.1 ml/100 g bw). Mean values ± SEM are given (based on Leenen and van Miert, 1969; van Miert and de la Parra, 1970; van Miert and van Duin, 1980).

\(^a\) Number of beads as the percentage of the number of beads administered (gelatin capsules no 5, filled with 20 stained glass beads (2 x 1 mm) each).

\(^b\) \(P < 0.05\); Wilcoxon's two sample test.
attained 4 times more slowly than during the healthy state (T_{max} in h: 7.00 ± 1.5 vs 1.74 ± 0.53), whereas the mean plasma peak concentration was twice as low as the corresponding concentration in the control experiment (C_{max} in mg/l: 0.87 ± 0.45 vs 1.87 ± 0.29). Furthermore, the elimination half-life of the drug was prolonged after HPP toxin administration ($t_{1/2\beta}$ in h: 14.12 ± 5.83 vs 5.92 ± 1.09); due to the increased $t_{1/2\beta}$, area under the curve (AUC) values were significantly higher (AUC in mg/h/l: 26.2 ± 12.7 vs 13.7 ± 3.3). The clinical significance of delayed absorption depends upon the circumstances. It may be important if rapid onset of action is required or if elimination is so rapid that effective plasma concentrations cannot be achieved. Also, some drugs, such as erythromycin, are degraded in the stomach and if emptying is delayed, the amount of active drug available for absorption is reduced. To avoid any detectable drug residue in meat, withdrawal times should be increased in cases similar to those described above (in our pig experiment at least 3 times).

Endotoxins (Beutler et al., 1985) and staphylococcal enterotoxins (Tracey et al., 1989) are potent inducers of TNF. Beutler and Cerami (1986) suggested that the enhanced TNF concentrations in plasma might be responsible for the various pathological effects observed during endotoxemia, including diarrhea. The goat is a species very susceptible to intravenous staphylococcal enterotoxin-B (van Miert et al., 1983b, 1984b). Among other changes, this toxin induces fever, anorexia, inhibition of forestomach contractions and profuse watery diarrhea. The ruminal stasis and watery diarrhea had a profound negative effect on the oral bioavailability of sulfadimidine (van Gogh et al., 1984). In the swine industry, most drugs are administered orally and there is remarkably little information on the effects of diarrhea on their absorption. Therapeutic failure is less spectacular than drug toxicity and is more likely to go unnoticed by practitioners. It may be due to failure of sufficient absorption of the administered drug. Therefore, parenteral drug administration is to be preferred in these cases.

During rising fever, blood flow in sheep and goats shifts away from heat loss tissues (eg, skin) to heat production tissues (eg, shivering muscles) (van Miert et al., 1983a), whereas cardiac output increases (Blatteis et al., 1988). During rising fever, induced with E coli endotoxin, the rate of absorption of ampicillin from shivering muscles was faster, resulting in significantly higher serum concentrations of the antibiotic than in control non-febrile goats (Groothuis et al., 1980). In contrast, the absorption rate of ampicillin from non-shivering muscles (eg, neck muscles) was slower, resulting in significantly lower serum concentrations of the antibiotic than in control non-febrile veal calves (Groothuis et al., 1978). On the basis of these findings, it is difficult to speculate on the effect 'clinical' fever may have on the efficacy of antibiotic suspensions in disease states. Endotoxin-induced fevers are of rather short duration in contrast to fevers observed during natural infections caused by Gram-negative bacteria such as Salmonella and Pasteurella species.

FEBRILE CONDITIONS AND DRUG DISTRIBUTION

Distribution is a physicochemical interaction between a drug and the body. Therefore, the pattern of this distribution is determined by the properties of these two partners. On the one hand, the physicochemical properties of the drug, such as pK_a value or ionization degree, lipid solubility or polarity and molecular weight, play a
major role. On the other hand, factors, such as pH values, tissue composition, permeability of membrane barriers, blood flow and capillarization of the body, have the same importance (Benet, 1976; Klotz, 1976). In sheep, the blood flows to most organs of the gastrointestinal system (including the forestomachs) were reduced significantly during endotoxin-induced fever, whereas blood flows increased to the adrenal glands but decreased to the thyroid (Blatteis et al, 1988). The change in adrenal blood flow probably reflects the IL-1-induced glucocorticoid production (Bese dovsky et al, 1986). Physical stress may alter the hydration of the body and subsequently distribution volume. Changes in thyroid function may also be responsible for differences in tissue distribution. Changes in the permeability of membrane barriers and/or tissue–plasma pH may alter the distribution pattern of drugs as well. These changes may be important in patients suffering from infectious encephalitis, prostatitis, arthritis or mastitis. For example, in pony mares with endotoxin-induced arthritis (associated with fever), ampicillin and kanamycin entered the synovial fluid of the inflamed joints more quickly and attained higher concentrations than in the uninflamed joints (Firth et al, 1988). In cattle with E coli endotoxin-induced mastitis (associated with fever), increased milk/plasma concentration ratios have been reported for weak acidic drugs, such as methicillin (Ziv et al, 1983) and amoxicillin (Blanchflower, 1983). For weak basic drugs, decreased milk/plasma concentration ratios have been found (Ziv, 1980).

Although plasma drug concentrations are usually measured as total (free + bound) concentrations, it is only the free non-protein-bound drug that is available to equilibrate with the receptor sites in tissues. Several disease states may alter the free drug fraction and by doing so may disrupt the usual relationship between total drug concentration and response. Disease states may affect drug protein binding through two main mechanisms: 1) by altering the concentration of protein available for drug binding, and 2) by altering the affinity of drugs for plasma proteins (Perucca et al, 1985). The most important drug-binding proteins are albumin and the acute phase reactant α1-acid glycoprotein (AGP). AGP binds mainly basic drugs, while albumin is responsible primarily for the binding of acidic drugs. Since serum AGP concentrations frequently increase in response to inflammatory disease, lower free drug concentrations can be measured than in healthy states (Belpaire et al, 1987; Dello et al, 1988). Impairment in drug binding related to pathological conditions (trypanosomiasis, infections caused by helminths) is often related to hypoalbuminemia (Abdullah and Baggot, 1986). Increases in plasma concentrations of free fatty acids are another important determinant in the albumin binding of acidic drugs. For example, the reduced protein-binding of sulfathiazole in pigs during endotoxin-induced fever might be due to altered plasma concentrations of free fatty acids under these conditions (Friis and Ladefoged, 1979). Moreover, high bilirubin levels can also increase the free fraction of certain highly albumin-bound drugs (Perucca, 1980).

Since many factors can affect drug plasma levels in disease states, one must be very cautious in explaining changes in drug distribution. For example, an increased volume of drug distribution for penicillin G has been reported in dogs suffering from a generalized streptococcal or Pseudomonas aeruginosa infection, and for quinine during febrile episodes in patients with malaria. Similar results were found in rabbits, pigs and dogs during en-
dotoxin-induced fever (for a review see van Miert, 1985) and in goats with tick-borne fever (Knoppert et al, 1988). On the other hand, pigs, dogs, rabbits and horses showed higher blood concentrations of sulfathiazole, sulfadimidine and gentamicin during endotoxin-induced fever (van Miert, 1985), whereas unchanged drug distribution has been reported in calves suffering from salmonellosis (table II) or pneumatic pasteurellosis (Burrows et al, 1986; Groothuis and van Miert, 1987).

FEBRILE CONDITIONS AND DRUG BIOTRANSFORMATION

During infectious diseases, the liver often shows biochemical and pathological evidence of tissue damage, and therefore the possibility of impaired drug metabolism arises. Several investigators have reported increased parent drug/metabolites ratios during febrile conditions, suggesting impaired hepatic drug metabolism (Song et al, 1972; Trenholme et al, 1976; van Miert et al, 1976; Anika et al, 1986b; van Gogh et al, 1989). However, the exact mechanisms involved are not quite clear, since many factors can affect drug biotransformation (Benet, 1976; Ladefoged, 1978b; Thiessen and Poon, 1979). Both inappetence and a change in liver blood flows may alter parent drug/metabolites ratios. It has recently been shown that food deprivation decreased body clearance of certain drugs in horses (Engelking et al, 1987) and goats (Abdullah and Baggot, 1988). The reductions in clearance of these compounds were not entirely due to reductions in hepatic blood flow (Engelking et al, 1987). After endotoxin injection, sheep showed a decreased hepatic blood flow during the rise in body temperature which remained low at fever peak. However, there was a significant increase in liver flow during the recovery episode (Blatteis et al, 1988). These changes may be associated with the increased activity of the reticuloendothelial system under these conditions. In sheep, endotoxin injection increased hepatic oxidation of [14C]serine and the net

<table>
<thead>
<tr>
<th></th>
<th>t_{1/2}β (h)</th>
<th>Cl (l/hr/kg)</th>
<th>Vd(β) (l/kg)</th>
<th>AUC (mg/hr/l)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>2.49 ± 0.06^a</td>
<td>0.45 ± 0.02</td>
<td>0.89 ± 0.06</td>
<td>73.3 ± 3.0</td>
<td>5</td>
</tr>
<tr>
<td>infected (60 h)</td>
<td>3.35 ± 0.20^b</td>
<td>0.49 ± 0.01</td>
<td>1.09 ± 0.04</td>
<td>64.8 ± 5.6</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>1.18 ± 0.08</td>
<td>1.45 ± 0.22</td>
<td>2.38 ± 0.33</td>
<td>3.10 ± 0.43</td>
<td>5</td>
</tr>
<tr>
<td>infected (36 h)</td>
<td>1.63 ± 0.27^b</td>
<td>1.00 ± 0.12^b</td>
<td>2.20 ± 0.15</td>
<td>4.53 ± 0.76^b</td>
<td></td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>7.31 ± 0.39</td>
<td>0.130 ± 0.004</td>
<td>1.45 ± 0.02</td>
<td>346 ± 11.4</td>
<td>6</td>
</tr>
<tr>
<td>infected (60 h)</td>
<td>13.56 ± 0.62^b</td>
<td>0.078 ± 0.003^b</td>
<td>1.38 ± 0.04</td>
<td>618 ± 20.9^b</td>
<td></td>
</tr>
</tbody>
</table>

^a Mean values ± SEM. (Partly based on Groothuis and van Miert, 1987.)
^b P < 0.05, paired t test.

Table II. Some pharmacokinetic parameters for amoxicillin-Na (30 mg/kg iv), trimethoprim (4.5 mg/kg iv), and chloramphenicol (50 mg/kg iv) in healthy and Salmonella dublin-infected (2 x 10^7 bacteria) veal calves.
incorporation of $^{[14C]}$serine carbon and $^{[14C]}$alanine carbon into hepatic proteins (Southorn and Thompson, 1987). This probably reflects the increased synthesis of hepatic acute phase proteins by pyrogenic cytokines. Apart from these indirect effects, pyrogenic cytokines can also affect hepatic parenchymal cells directly (West et al, 1985; Ghezzi et al, 1986; Peterson and Renton, 1986a, b).

Hepatic cytochrome P-450 is important in the metabolism of many drugs. Multiple factors, such as ingestion of inducing agents, nutritional state (including development of the forestomach system), treatment with anabolic hormones and liver diseases, influence hepatic levels of cytochrome P-450 (Baggot, 1988; Davey, 1988; van Miert et al, 1988; van Miert, 1989). Induction of the acute phase response by endotoxin (Gorodischer et al, 1976; Egawa and Kasai, 1979; McGivney and Bradley, 1980; Ghezzi et al, 1984, 1986; Shedlofsky et al, 1987) or direct administration of cytokines, such as IL-1 (Ghezzi et al, 1986; Shedlofsky et al, 1987) and IFNs (Ghezzi et al, 1984; Descotes, 1985; Taylor et al, 1985; Manering and Deloria, 1986; Dolphin et al, 1987), depresses hepatic cytochrome P-450 activity in laboratory animals. Furthermore, mice infected with Trypanosoma brucei showed decreased total hepatic cytochrome P-450 levels and reduced mixed-function oxidase activity (Shertzer et al, 1981). There is some evidence which suggests that increased amounts of TNF are produced by the host in response to T brucei infection (Rouzer and Cerami, 1980; Beutler et al, 1985; Beutler and Cerami, 1986). Moreover, decreased levels of liver cytochrome P-450 have been found in mice after treatment with TNF (Ghezzi et al, 1988). Recently, we found decreased sulfadimidine plasma clearances and increased sulfadimidine half-lives in T brucei-infected dwarf goats (van Gogh et al, 1989).

In human beings, viral upper-respiratory tract infections appear to alter theophylline pharmacokinetics (Chang et al, 1978; Renton, 1978), whereas influenza vaccination impaired the elimination of theophylline and amidopyrine metabolism in healthy volunteers (Renton et al, 1980; Kramer and McClain, 1981). Although RNA viruses are potent IFN inducers, the administration

Table III. Some pharmacokinetic parameters for ampicillin-Na (20 mg/kg iv), trimethoprim (20 mg/kg iv), aditoprim (10 mg/kg iv), chloramphenicol (50 mg/kg iv), sulfadimidine (50 mg/kg iv) and oxytetracycline (10 mg/kg iv) in healthy and tick-borne fever-infected dwarf goats.

<table>
<thead>
<tr>
<th></th>
<th>$t_{1/2\beta}$ (h)</th>
<th>Clearance (l/h/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>before</td>
<td>after (90 h)</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>0.92 ± 0.08a</td>
<td>1.10 ± 0.05</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.84 ± 0.06</td>
<td>0.90 ± 0.06</td>
</tr>
<tr>
<td>Aditoprim</td>
<td>8.00 ± 0.31</td>
<td>10.28 ± 0.67b</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>1.49 ± 0.16</td>
<td>1.94 ± 0.25b</td>
</tr>
<tr>
<td>Sulfadimidine</td>
<td>2.9 ± 0.31</td>
<td>5.1 ± 0.70b</td>
</tr>
<tr>
<td>Oxytetracycline</td>
<td>6.1 ± 0.58</td>
<td>7.3 ± 0.33b</td>
</tr>
</tbody>
</table>

a Mean values ± SEM. (Anika et al, 1986a, 1986b; Knoppert et al, 1988).

b $P < 0.05$, paired t test.
of equine influenza vaccine did not change the elimination of theophylline in horses (Short et al, 1986). The authors suggested that the failure of vaccination to substantially increase plasma IFN concentrations, and thereby alter theophylline elimination, was related to the use of an inactivated viral vaccine.

Although most of the drug biotransformation capacity of the liver is contained in the hepatocytes, the status of non-parenchymal cells of the reticuloendothelial system (RES) appears to play an important role in the maintenance of cytochrome P-450 levels in the hepatocytes. Whenever animals are inoculated with microorganisms or agents that are phagocytized by the RES, the level of drug biotransformation in the liver appears to decrease simultaneously (West et al, 1985; Peterson and Renton, 1986a). After the process of phagocytosis (in vivo or in vitro) by Kupffer cells in the liver, a factor is released which depresses cytochrome P-450 and related drug biotransformation in the adjacent parenchymal cells. The loss which occurs by this mechanism – probably due to IL-1 (Ghezzi et al, 1986; Shedlofski et al, 1987) – is in addition to the loss of cytochrome P-450 and related drug metabolism that occurs following the induction of IFNs (Peterson and Renton, 1986b). Therefore, the decreases in drug biotransformation that occur during infections are likely to occur via both mechanisms.

FEBRILE CONDITIONS AND DRUG EXCRETION

For drugs that are to be administered to food-producing animals, withdrawal times are generally based on pharmacokinetic studies and measurements of drug residues in healthy animals. This is not always acceptable, since pathophysiological conditions may delay the excretion of drugs. Several investigators have shown that renal dysfunction (Nouws and Ziv, 1978; Gallazzi, 1983) and liver damage (Williams and Mamelok, 1980; Davey 1988) may alter the elimination rates of drugs.

First of all, if the rate of drug elimination is abnormal, then the time to reach steady-state (ie, about 5 half-lives) may be importantly altered. Furthermore, in patients with renal insufficiency associated with uremia, a marked decrease in the affinity of many acid drugs for plasma albumin has been reported (Perucca et al, 1985). Because renal clearance is blood flow-dependent, drug elimination by the kidney can be impaired when reduced cardiac output compromises renal blood flow. Fortunately, creatinine and inulin clearances provide valuable indicators of the efficacy of elimination for many drugs that are primarily excreted by the kidneys. In sheep treated with Salmonella typhi endotoxin, cardiac outputs rose significantly during rising fever but were near basal levels at fever peak and during the recovery period. Renal blood flow was unchanged during fever but was significantly reduced during the recovery period (Blatteis et al, 1988). In dogs, Pseudomonas endotoxin induced fever, tachycardia, increased total renal blood flow and polyuria, whereas cardiac output and creatinine clearance were not significantly altered. Despite increased renal blood flow, distribution of blood flow within the renal cortex did not change significantly during fever (Cronenwett and Lindenauer, 1979). In spite of the unchanged inulin clearance, pigs showed a marked decrease in sulfathiazole clearance during E coli endotoxin fever (Friis and Ladefoged, 1979). In addition to glomerular filtration, both active tubular secretion and back diffusion are involved in the renal handling of this drug. In goats infected with tick-borne fever, renal tubular function was impaired to the extent that sulfadimidine
metabolites normally secreted by renal tu-
bules were retained in plasma (van Gogh
et al, 1989). Moreover, the glomerular fil-
tration rate, as monitored by creatinine
clearance, was diminished in these goats.
Furthermore, there was additional evi-
dence of renal dysfunction in some ani-
mals which had azotemia and dilute urine
(Watson et al, 1988). A low urine flow and
a shift to a more acidic pH favor the pas-
sive tubular reabsorption of lipophilic weak
acids. In tick-borne fever-infected goats,
urine pH varied between 5.5 and 6.5, while
urine pH was approximately 9 before inoc-
ulation (van Gogh et al, 1989). These find-
ings might explain the reduced sulfadimi-
dine plasma clearance and the associated
increased plasma half-life of the drug in af-
fected goats (table III). In pigs treated with
endotoxin, urine pH tended to be more
acidic as well, whereas urine flow was un-
changed (Friis and Ladefoged, 1979). On
the basis of these different data, it is diffi-
cult to speculate on the effect 'clinical' fe-
ver may have on renal function. At the
present time, sufficient data are not availa-
ble to permit a clear understanding of how
fever (pyrogenic cytokines) affects drug
excretion.

CONCLUSIONS

From the 'acute phase response'–
associated changes in pharmacokinetics,
it follows that more attention should be
paid to the disposition of a drug in patients
in relation to its efficacy, drug-induced side
effects and residues of the parent com-
pound and its metabolites in food prod-
ucts. We have now reached the stage in
the control of animal disease where more
thought must be given by the practitioner
to the proper use of the range of drugs in
all fields of disease control. Because there
is often relatively poor communication be-
tween scientists, practitioners and farmers,
 misuse of drugs is possible and this can
lead to ill-informed criticism of the value of
therapy in the veterinary field by public
health and medical authorities. It is impor-
tant now to ensure that, where possible, ef-
eective routines of therapy are properly de-
defined for all the major disease areas, so
that it will be clear both to the farmer and
to the veterinarian how drugs should be
used and how it is possible to minimize
both the dangers of drug resistance in
farms and the likelihood of persistent tis-
sue residues in meat, milk and eggs sold
for human consumption (Brander, 1982).
Good practices in the use of veterinary
drugs means the selective and proper us-
age including withdrawal periods – ap-
proved by national authorities – of author-
ized veterinary drugs under practical
conditions after a proper diagnosis has
been made (based on anamnesis and clini-
cal investigation (van Miert, 1988)). From
the disease-induced changes in pharma-
cokinetics, it follows that, in relation to
good veterinary practice, route of adminis-
tration, dosage and withdrawal time should
be adjusted according to the severity of the
disease.

REFERENCES

Abdullah AS, Baggot JD (1986) Influence of in-
duced disease states on the disposition kinet-
ics of imidocarb in goats. J Vet Pharmacol
Ther 9, 192-197
Abdullah AS, Baggot JD (1988) The effect of
food deprivation on the rate of sulphametha-
zine elimination in goats. Vet Res Commun
12, 441-446
Ackerman SK, Hochstein HD, Zoon K et al
leukocytic pyrogen response to recombinant
α-interferon. J Leukocyte Biol 36, 17-25
Febrile diseases and drug disposition

Dinarello CA, Cannon JG, Endres S et al (1988a) Interleukin-6 is an endogenous pyrogen: comparison with IL-1 and TNF. Eur J Clin Invest 18, A50

Fräis C, Lademoged O (1979) Renal clearance of sulfathiazole in pigs with E. coli endotoxaemia. Zentralbl Veterinaermed A 26, 146-151

Therapy in Food Producing Animals (Simon F, ed) Univ Vet Sci, Budapest, 323

Ladefoged O (1978b) Endotoxin-induced changes in the pharmacokinetics of warfarin in rabbits. Acta Vet Scand 18, 479-486

Ladefoged O (1979b) The absorption half-life, volume of distribution and elimination half-life of trimethoprim after peroral administration to febrile rabbits. Zentralbl Veterinaermed A26, 580-586

Peterson TC, Renton KW (1986a) Kupffer cell factor mediated depression of hepatic parenchymal cell cytochrome P-450. Biochem Pharmacol 35, 1491-1497

Peterson TC, Renton KW (1986b) The role of lymphocytes, macrophages and interferon in the depression of drug metabolism by dextran sulfate. Immunopharmacology 11, 21-28

Plata-Salaman CR, Oomura Y, Kai Y (1988) Tumor necrosis factor and IL-1β suppression of food intake by direct action in the CNS. Brain Res 448, 106-114

Shedlofsky SI, Swim AT, Robinson JM et al (1987) Interleukin-1 (IL-1) depresses cytochrome P-450 levels and activities in mice. Life Sci 40, 2331-2336

van Gogh H, Watson ADJ, Nouws JFM et al (1989) Effect of tick-borne fever (Ehrlichia phagocytophila) and trypanosomiasis (Trypanosoma brucei 1066) on the pharmacokinet-
ics of sulphadimidine and its metabolites in
goats. Drug Metab Dispos 17, 1-6
van Miert ASJPAM (1983) Medicated feed: prob-
lems and solutions. In: Veterinary Pharmacol-
ogy and Toxicology (Ruckebusch Y, Toutain
PL, Koritz GD, eds) MTP Press, Lancaster,
752-757
van Miert ASJPAM (1985) Fever and associated
clinical haematologic and blood biochemical
changes in the goat and other animal spe-
cies. Vet Q 7, 200-216
van Miert ASJPAM (1987) Fever, anorexia and
forestomach hypomotility in ruminants. Vet
Res Commun 11, 407-422
van Miert ASJPAM (1988) Antibiotics: some
pharmacological and toxicological aspects. J
Roy Neth Vet Assoc 113 (suppl), 89S-91S
van Miert ASJPAM (1989) Influence of age, diet
and febrile conditions on drug pharmacoki-
netics. Proc AVCP winter meeting, London,
6 Jan 1989, in press
van Miert ASJPAM, de la Parra DA (1970) Inhi-
bition of gastric emptying by endotoxin (bac-
terial lipopolysaccharide) in conscious rats
and modification of this response by drugs af-
fected the autonomic nervous system. Arch
Int Pharmacodyn Ther 184, 27-33
van Miert ASJPAM, van Duin CTM (1974) The
effects of bacterial pyrogens and leukocytic
pyrogen upon gastric motility and heart rate
in conscious goats. Zentralbl Veterinaarmed
A21, 692-702
van Miert ASJPAM, van Duin CTM (1979) The
effect of flurbiprofen upon fever and ruminal
stasis induced by E coli endotoxin, poly l:poly
C and sodium nucleinate from yeast in con-
van Miert ASJPAM, van Duin CTM (1980) Endo-
toxin-induced inhibition of gastric emptying
rate in the rat. The effect of repeated admin-
istration and the influence of some antipyretic
agents. Arch Int Pharmacodyn Ther 246, 19-
27
van Miert ASJPAM, van Gogh H, Wit JG (1976)
The influence of pyrogen-induced fever on
absorption of sulpha drugs. Vet Rec 99, 480-
481
van Miert ASJPAM, van der Wal-Komproe LE,
van Duin CTM (1977) Effects of antipyretic
agents on fever and ruminal stasis induced
by endotoxins in conscious goats. Arch Int
Pharmacodyn Ther 225, 39-50
van Miert ASJPAM, van Duin CTM, Verheijden
and associated haematological and blood bio-
chemical changes in the goat. The effect of
repeated administration and the influence of
van Miert ASJPAM, van Duin CTM, Woutersen-
van Nijnanten FMA (1983a) Effect of intrace-
rebroventricular injection of PGE2 and 5-HT
on body temperature, heart rate and rumen
motility of conscious goats. Eur J Pharmacol
92, 143-146
van Miert ASJPAM, van Duin CTM, Verheijden
JHM et al (1983b) Staphylococcal enterotox-
in B and Escherichia coli endotoxin: compar-
ative observations in goats on fever and asso-
ciated clinical haematological and blood
biochemical changes after intravenous and
intramammary administration. Am J Vet Res
44, 955-963
van Miert ASJPAM, van Duin CTM, Schotman
AJH et al (1984a) Clinical, haematological
and blood biochemical changes in goats after
experimental infection with tick-borne fever.
Vet Parasitol 16, 225-233
van Miert ASJPAM, van Duin CTM, Schotman
AJH (1984b) Staphylococcal enterotoxins B
and F (TSST-1): comparative observations in
goats on fever and associated clinical hae-
mnotologic and blood biochemical changes af-
ter intravenous administration. Infect Immun
46, 354-360
van Miert ASJPAM, van Duin CTM, Anika SM
(1986) Anorexia during febrile conditions in
dwarf goats. The effect of diazepam, flurbi-
profen and naloxone. Vet Q 8, 266-273
van Miert ASJPAM, Peters RHM, Basudde CDK
et al (1988) Effect of trenbolone and testos-
terone on the plasma elimination rates of sul-
famethazine, trimethoprim, and antipryine in
female dwarf goats. Am J Vet Res 49, 2060-
2064
Veenendaal GH, van Miert ASJPAM, van den
Ingh TS GAM et al (1976) A comparison of
the role of kinins and serotonin endotoxin-
induced fever and Trypanosoma vivax infec-
Veenendaal GH, Woutersen-van Nijnanten
FMA, van Duin CTM et al (1980) Role of cir-
culating prostaglandins in the genesis of py-
rogen (endotoxin)-induced ruminal stasis in
conscious goats. *J Vet Pharmacol Ther* 3, 59-68

