THE EXPERIMENTAL PRODUCTION OF DIARRHOEA IN COLOSTRUM DEPRIVED AXENIC * AND GNOTOXENIC CALVES WITH ENTEROPATHOGENIC ESCHERICHIA COLI, ROTAVIRUS, CORONAVIRUS AND IN A COMBINED INFECTION OF ROTAVIRUS AND E. COLI

To cite this version:

HAL Id: hal-00901024
https://hal.archives-ouvertes.fr/hal-00901024
Submitted on 1 Jan 1978

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THE EXPERIMENTAL PRODUCTION OF DIARRHOEA IN COLOSTRUM DEPRIVED AXENIC * AND GNOTOXENIC CALVES WITH ENTEROPATHOGENIC ESCHERICHIA COLI, ROTAVIRUS, CORONAVIRUS AND IN A COMBINED INFECTION OF ROTAVIRUS AND E. COLI

** Laboratoire de Microbiologie - I.N.R.A. - C.R.Z.V. de Theix - 63100 Beaumont - France
*** Station de Virologie-Immunologie - I.N.R.A. - Route de Thiverval - 78850 Thiverval Grignon - France

Résumé

REPRODUCTION EXPERIMENTALE DE LA DIARRHEE CHEZ DES VEAUX AXENIQUES OU GNOTOXENIQUES PRIVES DE COLOSTRUM, PAR UN ESCHERICHIA COLI ENTEROPATHOGENE, UN ROTAVIRUS, UN CORONAVIRUS, ET L'ASSOCIATION DU ROTAVIRUS- E. COLI. — La reproduction expérimentale du syndrome diarrhéique du veau nouveau-né a été tentée par infection orale de 17 veaux gnotoxéniques privés de colostrum avec deux sérotypes d'E. coli Ent" K99+, un rotavirus et un coronavirus.
Avec E. coli seul, une dose de 2 x 10⁸ bactéries à l'âge de 24 heures provoque une légère diarrhée seulement, alors que 1 x 10¹⁰ bactéries, conduisent à la mort avec déshydratation.
Avec le rotavirus l'inoculation est suivie d'un syndrome diarrhéique plus ou moins prononcé, le déclenchement de la maladie correspond toujours à l'apparition de grandes quantités de virus dans les matières fécales. Ces animaux ont présenté une phase d'anorexie mais aucun n'est mort ni n'a été déshydraté.
Le coronavirus a provoqué une diarrhée aqueuse très abondante suivie de la mort de l'animal déshydraté.
L'inoculation du rotavirus, non léthale en elle-même, suivie d'une inoculation d'E. coli aux doses non létales de 3 x 10⁸ à 2 x 10⁹ a entraîné la mort avec déshydratation.
Les auteurs concluent que la mort de l'animal avec déshydratation peut être provoquée par des doses importantes d'E. coli ou de coronavirus ou par l'absorption successive de deux doses non létales de rotavirus et E. coli.

Introduction

Research carried out in recent years has done much to increase our knowledge into the etiology of diarrhoea in the newborn calf. The presence of rotavirus and coro-

* Terminology used is from Raibaud et al. (1966): axenic = germfree, gnotoxenic = axenic animals inoculated with known bacteria, holoxenic = conventional animals, oligoxenic = animals with few bacterial species.
navirus which has been confirmed in a high proportion of faeces from diarrhoeic animals (Mebus et al., 1969, Stair et al., 1972, Woode and Bridger, 1975, Scherrer et al., 1976), and the experimental production from these same viruses of diarrhoea, in colostrum-deprived gnotoxenic animals (Mebus et al., 1969, 1971, 1973, Woode et al., 1974), leave no doubt as to their importance in etiology.

The presence of E. coli in the blood and the organs of sick newborn calves and the high number in the jejunum are factors which have long been recognised (Smith-Orcutt 1925, Gay 1965). Much more recently it has been discovered that most of these strains possess a common antigen (K99) which enables them to attach themselves to the intestinal mucosa (Orskov, 1975) and to settle in the small intestine. These strains secrete an exclusively heat stable enteropathogenic toxin (enterotoxin) [Kaeckenbeck et al., 1977] which causes diarrhoea (Dubourguier, 1977). The syntheses of the K99 antigen and the enterotoxin are coded by plasmids (Gyles, 1974). These facts leave no room for doubt as to the importance of these E. coli strains in the etiology of neonatal diarrhoea (Kaeckenbeck, 1977).

Attempts at producing diarrhoea experimentally, have been carried out using different serotypes of E. coli, however both the methods, on the one hand, and the results obtained on the other are often questionable, on account of the possibility of complications caused by other bacterial species of the intestinal microflora. Furthermore, the frequent co-occurrence of the virus and E. coli might suggest that a combined infection is responsible for the diarrhoea. Thus Stair et al. (1972, 1973) make a disputable claim, that E. coli may aggravate the outcome of the sickness brought on by the rotavirus.

The object of our present work was to produce diarrhoea by experimentally infecting colostrum-deprived gnotoxenic newborn calves. Using animals of different ages, we have administered orally or intra-duodenally several doses of the following pathogenic agents, either separately or in combination: 2 major serotypes of E. coli which have been established as enteropathogenic (Ent K99 +), rotavirus and coronavirus. We have recorded the clinical observations, the length of survival and the establishment of pathogenic E. coli in the digestive tract.

Material and methods

1. ANIMALS

Most of the calves used in these experiments were delivered and reared according to gnotobiotic techniques (see terminology, foot note at the beginning of the article).

— Eight axenic calves (group A) were delivered by asceptic caesarian section into an isolator according to a technique which has already been described (Riou et al., 1977) and three axenic calves (group B) delivered by normal caesarian section, were transferred immediately into a sterile isolation unit.

— Five oligoxenic calves (group C) were delivered under normal conditions and then transferred into the isolators through a germicidal liquid lock according to the technique used for lambs, described by Ducluzeau et al. (1976). These calves, having been thoroughly washed and rubbed down in the isolator with a one fifth concentration of iodined antiseptic (Bétadine gynecologic solution, Sarget Laboratories, Mérignac, France), received the following mixtures of antibiotics during the three days following birth: 4 g of bacitracin + 2 g of neomycin in the morning and 3 g of ampicillin + 4 g of streptomycin in the evening, diluted each time with one liter of milk. The first dose of antibiotics was administered one hour after birth and the second divided into 3 or 4 parts and given after four hours.

— Four calves (group D) were delivered normally and, having been bathed immediately in the iodined antiseptic, were transferred into a cleaned and disinfected room where they received 0.5 g of each of the antibiotics throughout the entire duration of the experiments.

The animals of groups A, B and C, were fed with sterilised condensed milk diluted with two parts distilled water and those of group D received whole commercial U.H.T. milk.

The animals of groups C and D receiving antibiotics were used solely for the viral infections.

Bacteriological examinations were performed regularly on the faeces from animals of groups A, B and C, according to the techniques used by Riou et al. (1977).
2. PREPARATION OF THE INOCULA

E. coli

The strains of *E. coli* used have the serotypes \(a = 0101:K99:H^-\) and \(b = 09:K(A),K99: H^-\). The inocula were obtained after 18 hours growth on a Minca medium (Guinee 1976). A direct microscopic count with a Petroff-Hausser cell counter gives an idea of the number of bacterial cells present in the preparation of the bacterial inoculum, whereas the precise number of living bacteria actually administered is calculated "a posteriori" on a DCA (Difco) medium in Petri dishes.

Rotavirus

The virus used in this work was obtained from the "Fumades" experimental farm (Puy-de-Dôme), where it was isolated from a six days old diarrhoeic calf which was excreting large quantities of rotavirus. The first inoculum was prepared by the following technique: the faeces were clarified first by dilution with three parts distilled water and centrifugation at 5,000 g for 30 min. (Scherrer et al., 1976), and then the supernatant filtered through successive Millipore membranes (8 \(\mu\), 2.2 \(\mu\), 0.8 \(\mu\), 0.45 \(\mu\), 0.22 \(\mu\)): 20 ml of the filtrate was used to inoculate calf C2, which, in its turn, excreted large quantities of rotavirus. All the other inoculations were subsequently performed from the faeces of calf C2, by the same method.

All the inocula of rotavirus used were shown to be free of bacteria and they were kept at -70°C up to the time of use.

Coronavirus

The virus used was isolated from a calf which died from natural diarrhoea at the "Fumades" experimental farm. The calf's faeces were clarified by dilution and centrifugation as described above for rotavirus. Calf B1 was inoculated with 10 milliliters of the non-filtered crude supernatant and calf D2 was inoculated with 10 ml of filtered supernatant (Millipore membranes 8 \(\mu\) to 0.22 \(\mu\)). The intestine of calf B1, which died from experimentally induced diarrhoea, was rinsed with distilled water, and this solution was used to infect two other calves (D3, D4). These inocula were likewise filtered and kept at -70°C.

Coronavirus was characterized by electron microscopy after negative staining and polypeptide composition analysis (Laporte, 1978).

3. ADMINISTRATION OF THE INOCULA

With the exception of calf B1, all the animals were inoculated orally from a feeding-bottle containing the bacterial or viral inoculum. Calf B1 was anaesthetised inside the isolator and the preparation of coronavirus was directly injected into the duodenum. The ages of the calves and the order in which the inocula were administered are shown in figure 1.

4. PARAMETERS MEASURED

The amount of milk consumed by each infected animal was noted; for the first three days the faeces were collected once or twice a day, and then again on the 5th, 7th, 14th and 30th days, in order to assess the quantity of virus in the excreta.

The quantity of virus excreted was estimated by examining the faeces by electron microscopy according to a technique previously described (Scherrer et al., 1976).

The consistency of the faeces from all the animals was classified as normal, mucoid, or liquid.

Finally, on the death of the animal, which had been under constant observation, the viscera and the samples were examined for a bacterial flora and viral content.

Results

The outcome of the infections and the stages in the development of the sickness in each animal are shown in figure 1.

1. INFECTIONS BY *E. coli*

Four calves (A) and one calf (B) received orally a dose of \(1 \times 10^6\) to \(2.1 \times 10^{10}\) *E. coli*, 24 hours after birth.

Calves A2 and A3 which were inoculated 24 hours after birth with \(2 \times 10^9\) *E. coli*, had an attack of diarrhoea, but it was not fatal;
Figure 1.—Evolution and consistency of feces after inoculation by:

E. coli (a) 0101:K99:H Ea
Rotavirus Rv
Feces normal
Death ▼
E. coli (b) 09:K(A),K99:H Eb
Coronavirus Cv
Mucoid
Liquid
Calf B2 which received 3.6×10^9 E. coli also survived, but suffered very severe diarrhoea. A dose of 1×10^{10} E. coli (calves A4 and A5) produced a particularly severe attack of diarrhoea and proved fatal.

Reductions in appetite of varying duration occurred simultaneously with the establishment of these strains in the digestive tract. Thus, calf A3 was anorectic for ten hours prior to the onset of diarrhoea. Calf B2 showed a reduction in appetite while the diarrhoea lasted (2 liters of milk a day instead of 4), but recovered at the end of diarrhoea. Calf A5 consumed approximately 3 liters of milk during the 3 days of very severe diarrhoea and it died in a state of dehydration.

An analysis of the bacteria in the intestine revealed very few E. coli in the abomasum (3/gram), whereas 2.5×10^5/gram were counted in the jejunum, 1.2×10^8/gram in the ileum and 8.1×10^9/gram in the caecum. An examination of the blood showed that in this case there was a septicaemia in the final stage (more than 1×10^4 E. coli/ml of blood).

2. VIRAL INFECTIONS

2.1. Rotavirus

A total of seven calves were infected with rotavirus:
C5 and C6: 2 hours after birth
A1, C2, C3, D1: between 24 and 36 hours after birth
CA: 4 days after birth

Diarrhoea occurred after each of these inoculations and was of varying degrees of severity and duration (2 to 4 days). There was an excellent correlation between the onset of the sickness and the appearance of large quantities of virus in the faeces. Rotavirus was excreted throughout the entire duration of runny or mucoid diarrhoea and in some cases (A1, C1, C3) beyond this period (1 to 4 days).

Calves C5 and C6 which had been inoculated immediately after birth, produced very runny diarrhoea between 20 and 24 hours after inoculation. In all the other calves which had been inoculated more than 24 hours after birth the diarrhoea occurred later, between approximately 48 and 72 hours after infection. Out of these calves, some produced runny diarrhoea (A1, D2, C3). None of these animals showed any signs of dehydration and they all survived. All the animals were anorectic for the first 24 hours.

With the exception of calves A1 and D1, all were free from bacteria when they were infected with the virus. Calves C2 and C3 were infected with a Streptococcus 24 and 36 hours respectively after the onset of diarrhoea. Calves C1, C5 and C6 remained sterile beyond the time of diarrhoea.

2.2. Coronavirus

All the animals which had been inoculated with coronavirus in the first 48 hours after birth (B1 intraduodenally, D2 and D3 orally) produced large quantities of watery diarrhoea and died in a state of extreme dehydration. Calf D4, which had received the virus when it was 10 days old, was the only one to survive, after it had produced mucoid diarrhoea for 6 days.

The temperature of the animals rose steadily as the sickness progressed and 48 hours after infection it reached 39.5 °C. It dropped suddenly just before death. The period of hyperthermia was accompanied by a loss of appetite.

Observation by electron microscopy showed that the virus first appeared in the faeces at the onset of diarrhoea. These was a large number present in the few hours before death.

Calf D4 produced the maximum number of virus particles on the 3rd and 4th day; on the seventh day there was no trace of virus in the faeces. Calf B1, which had been sterile, was carrying 4 types of bacteria including E. coli, after inoculation with crude coronavirus preparation.

3. COMBINED INFECTIONS WITH ROTAVIRUS AND E. COLI

A total of five calves (4 of group A, and 1 of group B) were infected with both a rotavirus and E. coli.

Calves A7, A8 and B3 which received the inoculum of rotavirus 2 to 3 hours after birth, and then respectively 3×10^9, 5×10^9 and 2×10^9 E. coli at the age of 24 hours, died with very severe diarrhoea and in a state of dehydration, within 31 and 78 hours after the administration of E. coli. In the abomasum of calf A7, which was autopsied a few minutes after it died, we counted 2×10^7 cells of E. coli per gram, with 6×10^8 in the
jejenum and more than 1×10^3 per ml of blood. The death from diarrhoea was thus accompanied by septicaemia.

Animal A6 was not infected until it was 4 days old, when it received the rotavirus and 2×10^5 E. coli simultaneously; it died in a state of extreme dehydration 60 hours after the inoculation. We did not observe diarrhoea because of intestinal occlusion. The gut was swollen with fluid in front of the occlusion. We counted 1×10^9 E. coli per gram in the jejunum; the sample taken from the abomasum was free from bacteria.

Calf A3 was inoculated first at 24 hours after birth with 2×10^8 E. coli and then with the rotavirus on the sixth day. Diarrhoea followed the establishment of E. coli, then the faeces reverted to their normal consistency. 40 hours after the administration of the rotavirus there was a slight loosening of the faeces, but no other special observations were made.

Calf A7 consumed little milk in the 36 hours it was sick. Calf A8 was anorectic for a short time when the diarrhoea appeared and finally, calf B3 was feeding more or less normally. We did not observe any abnormalities in the feeding behaviour of calves A6 and A3 during the period of combined infection.

Discussion

In experimentally producing diarrhoea it was necessary to use colostrum-deprived calves in order to avoid passive immunity against the pathogenic agents we were using. Additionally, we had to protect the animals against any risk of infection from outside contaminants. Hence we resorted either to the techniques for rearing gnotobiotic animals (calves in isolators), or to the isolation of the animals under continuous antibiotic treatment in a cleaned and disinfected room.

1. INFECTIONS WITH E. COLI

The discrepancies noted in the attempts at experimentally producing diarrhoea with E. coli (Soikja, 1965) are largely due to the use of animals with an unknown bacteriological status as well as to the use of strains of bacteria of whose pathogenic potentialities was little known.

It is becoming increasingly evident that susceptibility to the infection decreases rapidly during the first 24 hours after birth. The serotype of E. coli used, the culture medium (Guinee, 1976) and the number of bacterial cells administered are, like the microbiological status of the animal, predisposing factors, which, if not specified, can lead to totally contradictory results. Contrepois et al. (1977) had already shown with axenic lambs that the same inoculum would produce a more severe experimental infection the earlier it was administered, and that, depending on the dose, it was possible to induce a moderate attack of diarrhoea which was not fatal, or else the rapid death of the animals, sometimes, even without diarrhoea. In the present work it is evident that on its own, a small dose (1×10^8) of E. coli Ent$^+$ K99$^-$ will induce a passing attack of diarrhoea, and a large dose (1×10^{10}) will induce fatal diarrhoea and dehydration. These results emphasise the importance of selecting the strain of E. coli and might explain the failure of Stair et al. (1972, 1973) who were unable to bring on the characteristic diarrhoea with their strain of E. coli. Finally it has been shown that « non-septicaemic » E. coli K99$^-$ may be present in large numbers in the blood and the organs.

2. VIRAL INFECTIONS

Experiments done on gnotoxenic calves with a rotavirus and a coronavirus, which had been isolated in France, indicate clearly, as Mebus et al. have already shown (Mebus et al., 1969, 1971, 1973) that these agents on their own can cause diarrhoea, accompanied by a loss of appetite in the newborn calf. Most of our observations on the development of the sickness in animals inoculated with one or the other virus are, moreover, very similar to those described by these authors. Like them, we have noted the comparatively mild nature of certain forms of diarrhoea caused by rotavirus. In our experiments all the animals, passed through a phase of diarrhoea spread over 2 to 3 days, which in all cases was concomitant with the excretion of a large number of viral particles, but all the animals survived and none showed any signs of real dehydration. Since a single isolate of rotavirus was used all the way through this work, we cannot conclude
that other wild strains of the virus all act in the same way.

Some experiments done in the USA and in Great Britain (Mebus et al., 1969, Woode et al., 1974) indicate the possible existence of wild, distinctly more pathogenic strains. Moreover, the severity of the infections might depend also on the amount of the input virus in the absence of any other determining factor. We must also bear in mind that, on account of the very fact that our isolate of rotavirus did not induce mortality, it was particularly well-suited to the experiments aimed to show that there was a synergy between rotavirus and \textit{E. coli}.

The results obtained with a coronavirus isolated in France confirm that this type of virus might prove to be very pathogenic for the newborn calf. Diarrhoea developed 24 and 36 hours after infection and there was always a large quantity of virus in the faeces. Death occurred between the third and fourth day in animals which have been inoculated within 48 days after birth. The high mortality rate indicates that this virus might have a significant influence on neonatal calf diarrhoea. However it is still difficult to judge at present, for, as yet, we have only a vague idea as to its rate of incidence in the field, on account of the difficulty in detecting this type of virus. Preliminary results (Laporte, 1978) obtained by hemagglutination inhibition test show that our strain of coronavirus is antigenically distinct from the one isolated by Stair et al. (1972).

3. COMBINED INFECTIONS

The results of combined infections from \textit{E. coli} and rotavirus demonstrate unequivocally the synergistic effect of the infection from \textit{E. coli} on the infection from rotavirus: the combination of rotavirus and \textit{E. coli} K99+ in doses not lethal in themselves, induce severe diarrhoea which terminates in dehydration and death. Furthermore, it would be useful to examine the order in which the pathogenic agents are established. Synergy is doubtless most important when there are natural infections from rotavirus, which are, as we know, very common in newborn calves.

Conclusion

Diarrhoea was reproduced in colostrum-deprived newborn calves by rotavirus, coronavirus or enteropathogenic \textit{E. coli} K99+. Dehydration and death can be caused either by a large dose of \textit{E. coli} or coronavirus, or by the inoculation of rotavirus and \textit{E. coli} in two separate doses, not lethal in themselves, administered with a gap of several hours between the two.

Acknowledgements

We are grateful to Mr. Lefaivre, Station de Recherches sur l’Elevage for his capable surgical help, to Mr. Chavarot, Vert, Andant (Laboratoire de Microbiologie, I.N.R.A.) and to Chantal Feynerol and Francoise Rossi (Station de Virologie et d’Immunologie, I.N. R.A.) for their excellent technical assistance. Accepted for publication, March 1st 1978.

Summary

We attempted to produce diarrhoea experimentally in the newborn calf by orally injecting 17 colostrum-deprived calves with two serotypes of \textit{Escherichia coli} Ent+ K99+, a rotavirus and a coronavirus. With \textit{E. coli} alone, a dose of 2×10^8 bacteria administered 24 hours after birth causes a mild attack of diarrhoea, whereas 1×10^{10} bacteria leads to dehydration and death. An inoculation of rotavirus is followed by diarrhoea which always contains large quantities of rotavirus. These animals were anorectic for a time, but none was dehydrated or died. With coronavirus, there were large quantities of watery diarrhoea, which led to dehydration and death. The inoculation of rotavirus, not lethal in itself, followed by a similarly non lethal inoculation of \textit{E. coli} in doses of 3×10^8 to 2×10^9 led to dehydration and death.
The authors conclude that dehydration and death of the animal can be caused by large doses of *E. coli* or coronavirus or by two non-lethal doses of rotavirus and *E. coli* administered one after the other.

References

