Effects of a high protein diet on food intake and some aspects of gut and liver nitrogen metabolism
C. Jean, G. Fromentin, J.-F. Huneau, V. Mathe, Daniel Tomé

To cite this version:

HAL Id: hal-00900172
https://hal.archives-ouvertes.fr/hal-00900172
Submitted on 1 Jan 1998

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
tion with riboflavin deficiency. Therefore,
EMA might be used as a parameter for
following acyl-CoA DH activities through
AN refeeding.

METABOLIC EFFECTS OF
UNSATURATED FATTY ACIDS

Effects of a high protein diet on food
intake and some aspects of gut and liver
nitrogen metabolism. C. Jean, G. Fro-
mentin, J.-F. Huneau, V. Mathe, D. Tome
(Unité Inra de nutrition humaine et de
physiologie intestinale, Institut national
agronomique de Paris-Grignon, 16, rue
Claude Bernard, 75231 Paris cedex 05,
France).

The consequences of feeding a high
protein diet for several weeks have not
been studied much. This study was
designed to characterize the mechanisms
of adaptation to a high protein diet in the
intestine and the liver (transport and intra-
cellular metabolism).

Materials and methods: Two groups of
male Wistar rats were fed two protein diets
(20 and 50 % casein) for 3 weeks. Liver
cells were isolated using collagenase dis-
sociation and amino acid transport was
measured after adherence to plastic dishes.
Brush-border membrane vesicles were
prepared to measure the amino-acid trans-
port rate in the small intestine.

Results: Feeding a 50 % casein diet
resulted in a significant reduction in both
food intake (-7 %) and growth rate
(-20 %). Amino acid transport rate
through system BO and XA, in the gut
and system ASC in the liver were unaf-
fected by the diet. In contrast, system A
and XA,G- activities were increased in the
liver of rats fed the high protein diet. An
increase in liver alanine aminotransferase,
arginase, serine-threonine dehydratase
activities was also observed in rats fed the
50 % casein diet, indicating that transam-
inations, ureogenesis and gluconeogenesis
were increased by the high protein diet.

Conclusion: A high protein diet induces
amino acid transport and metabolism adap-
tations in the liver. However, these
changes appear to be insufficient to restore
normal food intake and growth rate over
the study period.

The effects of including soy protein con-
centrate in diets fed to rainbow trout
on the activities of trans-deaminating
enzymes. M. Mambriniaa, C. Vachotb, S.J.
Kaushikb (aLaboratoire de génétique des
poissons, Inra, 78352 Jouy-en-Josas
Cedex; bLaboratoire de nutrition des pois-
sons, Inra, 64 310 St-Pée-sur-Nivelle,
France).

In fish the importance of amino acid
oxidation for energetic purposes – mainly
due to trans-deamination reactions –
explains their large dependence on dietary
proteins. As part of a programme under-
taken to measure the consequences of
including soy protein concentrate (SPC)
in diets fed to rainbow trout, we measured
the activities of alanine amino transferase
(AAT) and glutamate dehydrogenase
(GDH) in the liver. Fish were fed for 3
months (mean final body weight 368 g),
with six isonitrogenous diets where fish
meal was progressively replaced by SPC,
supplemented or not with DL-methion-
ine. The liver was then sampled after fish
were fasted for 48 h for the enzymatic
assays.

GDH and AAT activities increased
with the incorporation level of SPC, and
those variations were not explained by
any modification of glutamate intake. A
negative linear relationship existed
between GDH activity and whole body
protein retention for the diets which were
not deficient in DL-methionine (R =
-0.995). These results are in agreement