In vitro fertilization in cattle: a review
T Greve, V Madison

To cite this version:

HAL Id: hal-00899399
https://hal.archives-ouvertes.fr/hal-00899399
Submitted on 1 Jan 1991

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
In vitro fertilization in cattle: a review

T Greve *, V Madison

Royal Veterinary and Agricultural University, Department of Reproduction and Animal Biotechnology Research Centre, 3 Bülowsvæj, DK-1870 Frederiksberg C, Denmark

(4th Franco-Czechoslovak Meeting, Prague 1990)

Summary — In vitro maturation and fertilization of cattle oocytes and subsequent in vitro culture of zygotes and embryos is discussed in the context of recent encouraging data. Mass production of embryos produced in this way in the future will have a great impact on animal production and animal breeding plans, for example the so-called MO-ET (multiple ovulation and embryo transfer) plan which aims at establishing nucleus breeding herds.

INTRODUCTION

The natural in vivo process of fertilization and early embryonic development involves innumerable factors, both well-studied and unexplored, which interact to affect each event of the process. Therefore, it is not surprising that results obtained using the techniques of in vitro maturation (IVM), in vitro fertilization (IVF) and in vitro culture (IVC) are neither optimum nor predictable. Several groups have reported the occurrence of pregnancies and the birth of calves following IVM and IVF (Critser et al, 1986; Lu et al, 1987, 1989; Xu et al, 1987; Goto et al, 1988; Sirard et al, 1988; Stubbings et al, 1988; Utsumi et al, 1988; Greve et al, 1989a; Pavlok et al, 1989; Pollard et al, 1989; Gordon and Lu, 1990), but the total number of offspring on a worldwide basis is still limited (Polge, personal communication, 1988). All data clearly reflect the difficulty of applying in vitro techniques toward research and reproduction, and indicate that a much better understanding of the many processes involved in reproduction must be gained before the in vitro system can successfully be used at an optimal level.

* Correspondence and reprints

IN VITRO MATURATION

Cumulus oocyte complexes

The morphological events associated with in vitro oocyte maturation very closely resemble those occurring in vivo (Hyttel et al, 1989c), except that the process in vitro proceeds more quickly than in vivo (King et al, 1986). From the onset it must be emphasized that in vitro maturation, by and large, yields oocytes with a lowered potential for developmental capacity in comparison to in vivo matured oocytes (Leibfried and First, 1979; Fukui and Sakuma, 1980; Grimes and Ireland, 1986) or even to be fertilized in vitro (Leibfried-Rutledge et al, 1985). Recent evidence suggests, however, that oocytes which have not completed their growth, and therefore have not synthesized adequate amounts of RNA, possess a reduced capacity for early embryonic development (Crozet et al, 1986; Crozet, 1989). Since the effect of follicle and oocyte size on IVF and IVM has still not been sufficiently studied and understood, one should, as emphasized by Staigmiller (1988), attempt to use medium-sized follicles as the origin of oocytes to be used for maturation in vitro. This concept has recently been substantiated by Tan and Lu (1990).

The macroscopic appearance of the follicle may also be used to select oocytes capable of maturation and development. Oocytes originating from translucent follicles (Grimes and Ireland, 1986) have reduced potential because of advanced atresia.

Assessment of characteristics of the cumulus oocyte complexes acquired by aspiration of follicles has been used by many research groups to estimate oocyte quality. Oocytes surrounded by a tight, complete, multilayered cumulus investment and with an ooplasm void of rough granules seem to be most capable of undergoing normal maturation and fertilization in vitro (Leibfried and First, 1979; Fukui and Sakuma, 1980; Greve et al, 1984; Hensleigh and Hunter, 1985; Xu et al, 1987; Shioya et al, 1988; Greve et al, 1989b; Sirard, 1989; Younis et al, 1989; Kruip et al, 1990; Gordon and Lu, 1990; Yang and Lu, 1990).

The optimal time and temperature for ovary transport from the abattoir and until initiation of culture has been examined by Yang et al (1990). These authors found that ovaries can be stored for up to 8 h at 25 °C without a reduction in the rate of fertilization or in the capacity of early embryos to develop to blastocysts in vitro.
Storage for over 4 h at 37 °C or at 4 °C reduced the viability. It is known that periods of reduced temperature during maturation result in chromosomal abnormalities in sheep oocytes (Moor and Crosby, 1985). Katska and Smorag (1985) suggested that incubation temperatures of 35–37 °C assure a higher viability of bovine oocytes as judged by fluorescent staining. However, the results of Ball et al (1982) and Lenz et al (1983a) clearly indicate that the penetration rate of cattle oocytes in vitro is significantly correlated with the temperature during IVM; penetration rates of 36% and 58% result following IVM at 37 °C and 39 °C, respectively. Presently, virtually all groups are performing IVM/IVF at 39 °C. The time period of incubation required to complete meiotic maturation ranges from 18-27 h (King et al, 1986; Xu et al, 1986a; Süss et al, 1988) and is somewhat dependent on the thickness of the cumulus mass (Xu et al, 1986a).

It has been demonstrated that culture of follicle-enclosed oocytes leads to a higher rate of maturation and fertilization than culture of aspirated oocytes (Fukui et al, 1987; Staigmiller, 1988). However, most research groups use oocytes either aspirated directly from ovarian follicles or released from the follicles after dissection.

Media, supplementation and culture conditions

A variety of media have been used for IVM. Bavister (1989) emphasized the importance of proper media preparation and the use of the hamster sperm bioassay to test water, media, filters, etc for toxicity. For review articles concerning quality control in the laboratory, see Boone and Shapiro (1990) and Schiewe et al (1990).

Although Ham's F-10, Ham's F-12, Brinsters BMOC-3, KRB and MEM have been used successfully in many studies (Staigmiller, 1988; Leibfried-Rutledge et al, 1989), both TCM 199 and TALP (Parrish et al, 1986; Sirard et al, 1988) seem to emerge as the media of choice for IVM/IVF work. In our laboratory we initially used Ham's F-10, but have recently changed to TCM 199, which we found to give a nuclear maturation rate of 80%. The pH and osmolarity should be 7.2 to 7.4 and 285-300 mOsm, respectively, and in most cases the oocytes were cultured in 5% CO₂ in air.

In vivo, the LH surge triggers final maturation and ovulation of the selected oocytes. A delicate and well balanced hormonal microenvironment ensures that the signaling between the oocyte and its surrounding is kept within certain well defined limits (Callesen et al, 1986). It seems to be of paramount importance that the hormonal environment (particularly the steroids) is well-balanced during the maturation process (Baker and Hunter, 1978; Moor, 1978; Moor et al, 1980; Osborn and Moor, 1983; Moor and Seamark, 1986). In order to achieve this goal a variety of hormones, such as FSH, LH, estradiol-17β and even progesterone, were added to the medium. It is generally believed that the addition of hormones provides oocytes with higher viability, i.e. oocytes which undergo normal fertilization and embryonic development at a higher rate (Fukui et al, 1982a, b; Fukushima and Fukui, 1985; Fukui, 1989; Younis et al, 1989). However it must be realized that the initial hormonal environment of the maturation medium changes during incubation if the oocytes are cultured in medium under oil (Xu et al, 1988a). In a recent study no beneficial effect of the addition of hormones was observed with regard to subsequent embryo development (Sirard et al, 1988). In our laboratory and many others, addition of hormones has been substituted by estrous cow serum (ECS), which has proven to be very efficient for attaining oocytes with high
developmental competence (Lu et al., 1987, 1988; Xu et al., 1987; Fukui and Ono, 1988, 1989; Lu et al., 1989; Fukui et al., 1989). This may be due to the presence of hormones in ECS that may support the oocyte maturation.

Oocyte maturation in vivo is arrested by follicular substances that are not well-defined. Follicle-enclosed oocytes remain arrested in the dictyate stage of meiosis until the endogenous or exogenous exposure to gonadotropins causes the resumption of meiosis. By contrast, oocytes removed from their follicles spontaneously resume meiosis. For in vitro purposes, attempts have been made to arrest or at least delay maturation of bovine aspirated oocytes. Liehman et al. (1986) showed that addition of dbc-AMP did not prevent oocyte maturation, but had a beneficial effect on the sperm penetration rate. Sirard and First (1988) showed that dbc-AMP, IBMX and hypoxantine transiently (up to 21 h) prevent resumption of meiosis; an effect that was also observed when the oocytes were cultured with bovine follicular fluid (BFF) and NaF + BFF (Sirard, 1990). This last observation has resulted in addition of BFF to maturation medium, but so far neither of the above substances have been added to media on a routine basis.

The somatic cells surrounding an oocyte facilitate production of nutrients and their transport into an oocyte. In addition they generate signals which control and regulate oocyte metabolism, as well as nuclear and cytoplasmic maturation (Osborn and Moor, 1982; Moor and Seamark, 1986). Supplementation of maturation media with additional granulosa cells has been performed in a number of studies and has been found to be absolutely essential for achieving full developmental competence (Staigmiller and Moor, 1984; Critser et al., 1986; Lu et al., 1987; Lutterbach et al., 1987; Fukui and Ono, 1988; Fukui et al., 1988; Leibfried-Rutledge et al., 1989). In our system cumulus oocyte complexes were cultured without supplementary granulosa cells (Madison et al., 1991).

Addition of serum to maturation medium is one of the requirements for achievement of cumulus expansion and complete oocyte maturation, and attainment of normal embryonic development in cattle. Fetal calf serum (FCS) has been shown to be superior to bovine serum albumin (BSA) (Leibfried-Rutledge et al., 1986b). As mentioned earlier, ECS is now the serum of choice and seems to increase cleavage rate in comparison to FCS (Fukui, 1989), probably because of the content of hormones. Serum collected around the time of onset of estrus improves in vitro development after IVF (Sanbuissho and Threlfall, 1989; Younis et al., 1989).

The size of the droplets in which the oocytes are cultured and the number of oocytes per droplet varies from lab to lab. In our laboratory 10 oocytes were cultured in 100-μl droplets under paraffin oil.

IN VITRO FERTILIZATION

Semen and semen treatment

For practical purposes ejaculated semen is used for bovine IVF and seems to give rise to more normal eggs than epididymal spermatozoa (Pavlok et al., 1988).

The first calf born following in vitro fertilization of cattle oocytes matured in vivo was the result of using fresh semen treated with high ionic strength solution (HIS) (Brackett et al., 1982). Since then, this technique has also been used successfully by other groups (Greve et al., 1984; Sirard and Lambert, 1985, 1986), and also for frozen/thawed semen (Bondioli and Wright, 1983).
Later, Fukui et al (1983) performed studies which revealed that semen treatment with bovine follicular fluid (BFF) resulted in a higher fertilization rate than treatment with HIS, probably due to a proteoglycan in the BFF known to enhance the acrosome reaction (Lenz et al, 1982).

Subsequent detailed studies have clearly shown that 1) certain glycosaminoglycans (GAGs) which are present in the female genital tract will induce the capacitation/acrosome reaction (Lenz et al, 1982, 1983b) and 2) the GAG, heparin, appears to be superior to chondroitin sulphate (Parrish et al, 1985) in terms of fertilization rates. The proportion of oocytes penetrated by sperm is greatest when fresh semen is incubated with heparin for at least 4 h (Parrish et al, 1988) and frozen-thawed semen for 15 min (Parrish et al, 1986) prior to mixing sperm with oocytes. The concentration of heparin varies according to the type of semen and between bulls (Leibfried-Rutledge et al, 1989). The mechanisms behind the induction of capacitation have been thoroughly described by First and Parrish (1987). In general, changes occur in the spermatozoa plasma membranes which allow uptake of Ca²⁺ activation of a c-AMP dependent protein kinase. In this context it is worthwhile emphasizing that glucose will inhibit the effect of heparin-induced capacitation (Parrish et al, 1985, 1989). Combined with a swim up technique which separates motile from immotile spermatozoa, treatment with 10 μg/ml heparin gives rise to repeatable and predictable fertilization rates of bovine oocytes matured in vivo, as well as in vitro (Parrish et al, 1986). Presently, this system seems to be the predominant treatment used to prepare sperm for fertilization in vitro. However, Fukui et al (1990) recently found that the optimal heparin dosage ranges from 25 to 100 μg/ml.

The effect of heparin may be enhanced by caffeine (Niwa and Ohgoda, 1988). It is also noteworthy that the spermatozoa from different bulls give different frequencies for both fertilization and embryonic development in vitro (Brackett et al, 1982; Sirard and Lambert, 1985; Leibfried-Rutledge et al, 1987; Miller and Hunter, 1987; Ohgoda et al, 1988; and Eyestone and First, 1989b). The research of Ohgoda et al (1988) indicates that this effect is unrelated to the bull's in vivo fertilizing capability. However, heparin at a low concentration (0.05 μg/ml) seems to be optimal for evaluating in vivo fertility of different bulls (Marquant-Le Guienne et al, 1989).

It is therefore necessary to test each bull to ascertain that optimal heparin concentration and/or number of sperm are used for IVF (Leibfried-Rutledge et al, 1989). It is also important to take into consideration that each bull has its own contribution to in vitro fertilization and embryonic development (Hillary et al, 1990; Shi et al, 1990).

Coculture of sperm and oocytes

The fertilization medium used for coculture of sperm and oocytes consists of TALP placed in 50-μl droplets, and overlaid with sterile silicone or paraffin oil (Ball et al, 1983; Leibfried-Rutledge et al, 1987). In general, 10 oocytes are added to each 50 microliter droplet, which also contains 1 x 10⁶ live spermatozoa per ml. Coculture is conducted approximately 20–22 h at 39 °C in an atmosphere of 5% CO₂ in air.

Assessment of fertilization in vitro

Assessment of fertilization is important since it has been established that oocytes
matured both in vivo and in vitro may be pathogenetically activated, therefore leading to invalid conclusions concerning actual fertilization rates (Xu et al, 1986b; King et al, 1988). This activation is apparently an age-dependent process (Ware et al, 1989). It is very important that one can distinguish between an activated oocyte and a fertilized egg; presence of part of the sperm tail (midpiece) and a maternal and paternal pronucleus indicate that fertilization has taken place. Abnormalities (polyspermy and others) are likely to occur (Xu et al, 1988b) due to deviating oocyte maturation and/or fertilization (Hyttel et al, 1989a and 1989b). In this study, fertilization and parthenogenetic activation were approximately 60% and 12%, respectively.

CULTURE OF FERTILIZED EGGS

Until recently, successful culture of fertilized bovine oocytes was limited to the use of sheep oviducts (Lu et al, 1987; Fukui et al, 1989; Leibfried-Rutledge et al, 1989; Lu et al, 1989) or rabbit oviducts (Fukui and Ono, 1988; Fukui et al, 1989). However, methods of in vitro culture that utilize coculture with bovine oviduct epithelial cells (BOEC) (Fukui and Ono, 1988; Fukui et al, 1989; Eyestone and First, 1989a; Gordon and Lu, 1990; Madison et al, 1991), granulosa cells (Goto et al, 1988; Berg and Brem, 1989), trophoblastic vesicles (Heyman and Ménézo, 1987; Aoyagi et al, 1989) or culture in conditioned medium (Eyestone and First, 1989a) are very effective and have become the preferred method for the culture of embryos produced in vitro. The rate of development may be improved by adding estrous cow serum, rather than FCS, to the culture medium and omitting hormones (Fukui, 1989). Culture in domestic chicken eggs has also been carried out successfully, although the method is not commonly used (Blakewood et al, 1989). In vitro results, which are comparable with those in vivo, have been reported by Marquant-Le Guienne et al (1989) who added TGFβ at the beginning of blastocyst formation.

Studies by Gandolfi and Moor (1988) and Gandolfi et al (1989) indicate that at least two proteins from oviductal fluid (92 and 46 kDa) are involved in supporting embryonic development. Future studies will indicate whether these two proteins or other substances, such as growth factors, are secreted by the BOEC and are thus responsible for the positive effect of using coculture with oviduct cells. In our laboratory using BOEC the average rates of cleavage (6- to 16-cells on day 3) and development to the morula/blastocyst stage for the total oocytes exposed to sperm were 40% and 34%, respectively.

The advantages of using the in vitro system are as follows: there is no need to maintain live animals in the laboratory vicinity; rates of recovery are higher than after agar embedding, transfer to the oviduct, and flushing 5-6 days later; there are more possibilities for detailed studies of embryonic development; and fertilized oocytes or embryos may be used at various stages for other experimental procedures, such as cloning and gene transfer. The disadvantages are a possible decrease in embryonic development rate and probably reduced viability after transfer to the final recipient, particularly if the embryos are previously frozen or split by micromanipulation.

FINAL COMMENTS

The techniques of in vitro maturation and in vitro fertilization of cattle oocytes and culture of fertilized eggs and embryos have
made tremendous progress during the last 5–10 years. It is now realistic to predict that readily available and inexpensive embryos can be produced from slaughterhouse ovaries and will be on the market for experimental and commercial purposes. The problems are, however, still many and must be solved before the efficiency of producing embryos or offspring with in vitro techniques is greater than achieved with natural procedures.

It may be possible to improve the proportion of transferable embryos by ultrasonically guided transvaginal oocyte aspiration (Kruip et al., 1990). This technique may be performed two to three times during an estrous cycle in a cow for as long as 6 months (Pieterse et al., 1990; Greve, unpublished data, 1990). If this procedure yielded 5–10 oocytes per cycle, it would be possible with the current rates of fertilization and blastocyst formation to achieve 1–2 calves from the aspirations during a 3-week period.

REFERENCES

Baker TG, Hunter RHF (1978) Interrelationships between the oocyte and somatic cells within the graafian follicle of mammals. Ann Biol Anim Biochim Biophys 18, 419-426

Eyestone WH, First NL (1989a) Co-culture of early cattle embryos to the blastocyst stage with oviducal tissue or in conditioned medium. J Reprod Fertil 85, 715-720

Eyestone WH, First NL (1989b) Variation in bovine embryo development in vitro due to bulls. Theriogenology 31, 191

Fukui Y, Uarakawa M, Saeaki C, Chikamatsu N, Ono H (1989) Development to the late morula or blastocyst stage following in vitro maturation and fertilization of bovine oocytes. Anim Reprod Sci 18, 139-148

Gandolfi F, Moor RM (1988) Interactions between somatic and germinal cells during early development. 11th Int Congr Anim Reprod & Al 5, 170

In vivo fertilization in cattle

Liebfried-Rutledge ML, Critser ES, First NL (1985) Fertilization potential of follicular oocytes classified by stage of cycle and size of follicle. Theriogenology 23, 753-759

Lenz RW, Ball GD, Leibfried ML, Ax RL, First NL (1983a) In vitro maturation and fertilization of bovine oocytes are temperature-dependent processes. Biol Reprod 29, 173-179

Lenz RW, Ball GD, Lohse JK, First NL, Ax RL (1983b) Chondroitin sulfate facilitates an acrosome reaction in bovine spermatozoa as evidenced by light microscopy, electron microscopy and in vitro fertilization. Biol Reprod 28, 685-690

Lu KH, MacDonnel HF, Gordon I (1989) Birth of calves after in vitro maturation and fertilization of follicular oocytes. Theriogenology 31, 222

Marquant-Le Guenenne B, Humblot P, Thibier M, Thibault C (1990) Evaluation of bull semen...
fertility by homologous in vitro fertilization tests. Reprod Nutr Dev 30, 259-266

Moor RM (1978) Role of steroids in the maturation of ovine oocytes. Ann Biol Anim Biochim Biophys 18, 477-482

Schiewe MC, Shmidt PM, Wildt DE, Rall WF (1990) Quality control measures in an embryo research program. Theriogenology 33, 9-22

Staigmiller RB, Moor RM (1984) Effect of follicle cells on the maturation and developmental competence of ovine oocytes matured outside the follicle. *Gamete Res* 9, 221-229

Yang NS, Lu KH, Gordon I (1990) In vitro fertilization (IVF) and culture (IVC) of bovine oocytes from stored ovaries. *Theriogenology* 33, 352