Preliminary characterization of calcium binding to melanosomes isolated from amphibian oocytes

Annie Cartaud, R. Ozon

To cite this version:
Annie Cartaud, R. Ozon. Preliminary characterization of calcium binding to melanosomes isolated from amphibian oocytes. Annales de biologie animale, biochimie, biophysique, 1979, 19 (1A), pp.103-109. <hal-00897433>

HAL Id: hal-00897433
https://hal.archives-ouvertes.fr/hal-00897433
Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Preliminary characterization of calcium binding to melanosomes isolated from amphibian oocytes

by Annie CARTAUD, R. OZON

Laboratoire de Physiologie de la Reproduction et ERA, CNRS 694, Université P.-et-M. Curie, 9, quai Saint-Bernard, 75005 Paris, France.

Summary. Calcium binding to isolated melanosomes from Xenopus laevis and Rana esculenta oocytes has been assessed by equilibrium dialysis and centrifugation techniques. Calcium binding was a concentration-dependent saturable process, revealing two distinct types of binding sites. In Xenopus dissociation constant and maximum binding capacity were 21 µM and 0.18 nmole/oocyte for the high affinity sites; HCl treatment destroyed the high affinity binding sites. MgCl₂ or MnCl₂ (2 mM) inhibited calcium binding to melanosomes, whereas procaine had no effect. Lanthanum (> 0.1 mM) was also found to be an inhibitor of high affinity sites.

Introduction.

The cytosol concentration of free Ca²⁺ in most eukariotic cells ranges from 10⁻⁶ to 10⁻⁵M. Changes in free Ca²⁺ concentration have been proposed as critical modulators of numerous intracellular physiological and biochemical processes; Rasmussen et al. (1975) have suggested that Ca²⁺ could be an important messenger for the mediation of hormone action.

The steroid hormone, progesterone, induces meiotic maturation of the full-grown amphibian oocyte (Smith, 1975). Recent studies have indicated that Ca²⁺ movements might be involved in the initiation of Xenopus oocyte maturation (Wasserman and Masui, 1975; Marot et al., 1976; Schorderet-Slatkine et al., 1976; Moreau et al., 1976; O'Connor et al., 1977). Evaluation of cellular Ca²⁺ metabolism is difficult because intracellular Ca²⁺ is highly compartmentalized. However, experiments in which the photoluminescent protein, aequorin, was injected into Xenopus oocytes have shown that free Ca²⁺ was less than 10⁻⁷ M and also that the mechanisms regulating its concentration were very efficient (Bellé et al., 1977). The Xenopus oocyte must therefore contain fast Ca²⁺ sequestering equipment. An experimental approach to studying Ca²⁺ metabolism has involved the use of subcellular fractions; Ca²⁺ interactions with subcellular fractions have shown that mitochondria (Carafoli, 1974) plasma membranes (Mc Donald et al., 1976) and microsomes (Meissner et al., 1973) could act as important regulators of intracellular calcium distribution. In the present
communication we demonstrate that calcium binding to isolated melanosomes from *Xenopus laevis* and *Rana esculenta* oocytes is a concentration dependent saturable process; our results, further suggest that melanosomes could act as important regulators of intracellular Ca\(^{2+}\) in melanin containing cells.

Material and methods.

Animals. — *Xenopus laevis* from South Africa (de Rover, Holland) and *Rana esculenta* from Couetard (France) were bred and maintained under laboratory conditions.

Chemicals. — Chemicals were obtained from following sources: \(^{45}\)CaCl\(_2\) (approximately 1 mCi/1.2 \(\mu\)mol) from CEA (France); collagenase (200 U/mg) from Worthington Biochemical Co; procaine from Sigma Chemical Co, St Louis, MO. (USA); pronase B grade from Calbiochem; lanthanum chloride from Prolabo, Rhône-Poulenc (France). Equilibrium dialysis was performed using standard cellulose dialysis membranes (6 mm in diameter) from A. H. Thomas Co, Philadelphia, PA. (USA).

Oocytes preparation.

Experiments with isolated oocytes. — Specimens of *Xenopus laevis* were anesthetized with MS 222 (1 g/l) (Sandoz) Pieces of ovary were removed and the oocytes defolliculated by enzymatic treatment with collagenase (Schorderet-Slatkine and Drury, 1973). They were then equilibrated in Merriam’s solution (Merriam, 1971); full-grown oocytes (>1.2 mm diameter) were selected under stereoscopic microscope.

Cell fractionation. — Isolated oocytes or ovarian tissue were homogenized in medium A (5 ml/g of tissue) containing sucrose 0.25 M, Tris-HCl 0.05 M, KCl 75 mM, pH 7.4 with a Potter Elvehjem homogenizer. After filtration the homogenate was centrifuged at 2 000 g for 15 min. After resuspension in medium B (sucrose 2 M; tris-HCl 0.05 M and KCl 75 mM; potassium citrate 0.3 M, pH 7.4), the resulting pellet was centrifuged for 60 min. at 100,000 g (rotor SW-50.1). Three main fractions were obtained:

I. A black pellet corresponding to the « melanosome » fraction;

II. A solid brown cap at the top of the tube representing the « membrane » fraction;

III. A vitellus fraction between I and II.

The melanosome fraction was washed 3 times in medium B to remove all traces of vitellogenin, and then tested for calcium binding after resuspension in medium C (Tris-HCl 0.05 M; KCl 75 mM, pH 7.4). Before testing the vitellus fraction, the sucrose 2 M and the potassium citrate were removed by dialysis against deionized water for 24 hrs. The 2 000 g supernatant was centrifuged for 60 min. at 100,000 g; the cytosol corresponds to the 100,000 g supernatant and the pellet to the « microsomal and mitochondrial » fraction used to test calcium binding after washing in medium A and resuspension in medium C.
Calcium-binding assay by equilibrium dialysis. — Dialysis membranes had been previously treated with 2 mM EDTA solution, followed by extensive washing with deionized water or standard buffer (medium C). After adding 1 ml of different fractions in medium C the dialysis bag was placed in an Erlenmeyer flask containing 100 ml of standard buffer in the presence of 1.0 μM to 1 mM of CaCl₂ and 0.8 μCi of ⁴⁶CaCl₂. Dialysis was performed at 4 °C with stirring. Equilibrium was reached in 24 hrs. The ⁴⁶Ca²⁺ content in each compartment was determined by the use of a liquid scintillator counter.

Melanosome calcium binding assay by centrifugation. — 70 to 100 μg of melanosomal proteins suspended in 1 ml of medium C were incubated in 1 ml of standard buffer in presence of 1.0 μM 1 mM CaCl₂ and 0.1 μCi of ⁴⁶CaCl₂. After the melanosome fraction was added, the suspension was incubated for 10 min. and centrifuged at 8 500 g for 10 min. Supernatant radioactivity was assessed using a liquid scintillator counter.

Melanosome HCl hydrolysis. — Hydrolysis of the melanosome weighed sample (1 mg/ml) was carried out in 6 N HCl at 110 °C for 48 hrs. in evacuated sealed tubes. After hydrolysis, the contents were centrifuged and the pellet was washed and assayed for calcium binding.

Radioactivity counting. — Radioactivity was assayed by liquid scintillation spectrometry using 10 ml of a mixture containing PPO (5.5 g) POPOP (100 mg) in Triton X 100 (333 ml) and toluene (667 ml). Counting was carried out in a Packard Tri-carb spectrometer model 3320.

Protein assay. — Protein concentration was determined by the method of Lowry et al. (1951) Before the addition of Folin reagent, the proteins from the melanosome fraction were extracted with 2 p. 100 sodium dodecylsulfate at 100 °C for 2 min. (Marot et al., 1977) and the melanin removed by centrifugation.

Results.

Calcium binding in subcellular fractions.

After removal of follicular cells, oocytes were homogenized and fractionated (Material and methods); the main fractions were assessed for total calcium binding by equilibrium dialysis (fig. 1). All fractions bound Ca²⁺; when saturable binding was studied high non saturable binding was found in the vitellus fraction. In the four other fractions saturable binding was observed. The melanosome fraction bound Ca²⁺ specifically with the highest binding capacity. This fraction was further analyzed, and we present here a preliminary characterization of calcium binding to purified melanosomes.

Characteristics of calcium binding to melanosomes.

Calcium binding to isolated melanosomes is a concentration dependent saturable process. Scatchard analysis of a typical binding study assayed by equilibrium dialysis is shown in figure 2. Two types of binding sites were determined. The mean K_D values obtained from a total of five determinations at 4 °C were 21 ± 5 μM in Xenopus...
laevis and 42 ± 13 µM in Rana esculenta. In Xenopus binding capacity was 0.18 nmol per oocyte. No significant amount of endogenous Ca2+ appeared to remain bound to high affinity sites after isolation of the melanosomes; melanosomes isolated in the presence of EGTA or EDTA bound Ca2+ (after removal of the complexing reagents by dialysis) with a similar K_D as those reported without EDTA or EGTA in the isolation medium. This indicates that high affinity sites are entirely eluted during melanosome isolation.

Dialysis and centrifugation technique yield similar affinity constants. The centrifugation technique was used in subsequent studies since it was easier and more rapid.

As measured by centrifugation, calcium binding to melanosomes reached a steady state in 10 min. at all calcium concentrations studied.

The calcium binding was linear between 10 and 200 µg of melanosomal proteins in each sample. Above 200 µg the binding became non-linear. All binding assays contained between 50 to 100 µg of proteins.

In order to know if Ca2+ bound to melanoproteins or to the melanin polymer, proteins were removed by 6 NHCl hydrolysis. Calcium binding to the melanin was assessed by equilibrium dialysis, but high affinity binding was never detected, indicating that binding sites were either removed by the HCl treatment or were destroyed. Treatment of melanosomes with pronase (0.3 mg/ml) for 12 hrs at 4 °C slightly increased calcium binding to melanosomes.

FIG. 1. — Total bound calcium in subcellular fractions. Calcium binding was determined by equilibrium in cytosol (C), mitochondrial and microsomal fraction (M), membranes (MB), vitellus (V) and melanosomal fraction (MEL) from Xenopus oocytes, prepared as described in materials and methods. Equivalent of 330 oocytes per ml were dialysed against 100 ml of medium C in presence of 10^{-6}M of CaCl\textsubscript{2} and 0.8 µCl of 45CaCl\textsubscript{2} for 24 hrs.

FIG. 2. — Calcium binding to melanosomes. Melanosomes were prepared as described in materials and methods. Binding was assayed by equilibrium dialysis. Protein concentration was 100 µg of protein per ml. Scatchard plot (Scatchard, 1949) : B = bound Ca2+; U = free Ca2+; K_D = dissociation constant; B max = maximum binding capacity.
All standard assays were performed at pH 7.4; calcium binding steadily increased from pH 6.0 to pH 9.0 (fig. 3).

FIG. 3. — Effect of pH on calcium binding to melanosomes. Centrifugation assays were performed in the presence of 20 μM of CaCl₂, as described in materials and methods. Binding is expressed as the percentage of bound calcium/total calcium in the medium.

FIG. 4. — Effect of lanthanum chloride on calcium binding to melanosomes. Calcium binding was assayed by equilibrium dialysis in the presence of various amounts of Ca²⁺ (1 μM to 1 mM) an of three La³⁺ concentrations: 10⁻⁶M (∆——∆) 10⁻⁴M (∆——∆) and 10⁻²M (∆——∆). Control without La³⁺ (o——o). Protein concentration was 50 μg per ml. Scatchard plot (15) : B = bound Ca²⁺; U = free Ca²⁺.

Effect of different ions and procaine.

When KCl concentration was less than 100 mM, calcium binding was unmodified. Above that concentration, binding was inhibited; 50 p. 100 of the original binding level was reached at 2 M KCl.

Ca²⁺ binding in the presence of 2 mM Mn²⁺ was tested; both divalent cations inhibited calcium binding. About 50 p. 100 inhibition was achieved at 2 mM of Mn²⁺ and Mg²⁺.

Lanthanum was also found to be an inhibitor of calcium binding (fig. 4). A La³⁺ concentration of 0.1 mM totally inhibited calcium binding to melanosomes.

Procaine 0.5 mM to 5 mM did not inhibit calcium binding to melanosomes.

Discussion.

The binding of calcium to melanosomes is a saturable process which exhibits two distinct types of binding sites. The high affinity dissociation constant K_D was found to be about 20 μM in both Xenopus and Rana. This value is comparable with those reported for Ca²⁺ binding to plasma membranes, microsomes or to numerous calcium binding proteins (Mc Donald et al., 1976; Kretsinger, 1976).

Melanosomes are complex subcellular organelles surrounded by a membrane composed of insoluble melanin polymer and firmly bound proteins in unequal pro-
portions. A preliminary characterization of amphibian melanoproteins was achieved after SDS extraction (Marot et al., 1977), at least twenty proteins were resolved by polyacrylamide gel electrophoresis. In order to know the localisation of Ca\(^{2+}\) binding sites, melanoproteins were extracted by SDS (data not given), and it was found that the binding sites were not extracted in these conditions. As reported by Marot et al. (1977), only HCl (6 N) hydrolysis for 20 hrs. removes all melanosomal proteins and abolishes Ca\(^{2+}\) binding to melanin. It was reported that synthetic melanin only binds Ca\(^{2+}\) very slightly (Potts and Au, 1976). This suggests Ca\(^{2+}\) binding at the melanoprotein level and, to our knowledge, it is the first report attributing a biochemical function to melano-proteins.

The finding that Mg\(^{2+}\) and Mn\(^{2+}\) at high concentration (2 mM) inhibit Ca\(^{2+}\) binding to melanosomes is of interest; it was demonstrated that the ionophore A 23187 in the presence of Mg\(^{2+}\) (10 mM) (Wasserman and Masui, 1975) or Mn\(^{2+}\) (10 mM) (unpublished results) triggered Xenopus oocyte maturation in the absence of hormonal stimulation. These divalent cations could induce a Ca\(^{2+}\) release by inhibiting calcium binding to melanosomes. However, the conclusions are ambiguous regarding the biological significance of Ca\(^{2+}\) binding to oocyte melanosomes, particularly during hormonally induced maturation.

Total calcium concentration in the whole oocyte ranges from 1 to 10 mM; Ca\(^{2+}\) binding capacity of melanosomes at high affinity sites represents between 2 to 20 p. 100 of total Ca\(^{2+}\). Recent experiments using microprobe analysis (unpublished results) confirm that melanosome Ca\(^{2+}\) content is high. It is suggested that melanosomes may play a role in the regulation of calcium metabolism in amphibian oocytes.

Acknowledgement. — This work was supported by the Délégation Générale à la Recherche Scientifique et Technique (Biologie de la Reproduction et du Développement), Contract No 76-7-0711.

Résumé. La fraction des mélanosomes a été isolée par ultracentrifugation à partir des ovocytes de Xenopus laevis et de Rana esculenta. La fixation du Ca\(^{2+}\) sur les mélanosomes a été étudiée par dialyse à l'équilibre et par centrifugation. La liaison du Ca\(^{2+}\) aux mélanosomes est un phénomène saturable. Chez le Xénope, la constante de dissociation est de 21 \(\mu\)M ; la capacité maximum de liaison pour les sites de haute affinité est de 0,18 nmole/ovocyte. Les sites de haute affinité pour le Ca\(^{2+}\) sont détruits après traitement par HCl (6 N). MgCl\(_2\) ou MnCl\(_2\) à la concentration de 2 mM inhibe la fixation du Ca\(^{2+}\) tandis que la procaïne n’a pas d’effet sur la liaison du Ca\(^{2+}\) aux mélanosomes. Le lanthane à une concentration \(\geq\) 0,1 mM est un inhibiteur des sites de haute affinité.

References

Ca binding to melanosomes

