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Abstract – Epistasis refers to gene interaction effect involving two or more genes. Statistical
methods for mapping quantitative trait loci (QTL) with epistasis effects have become available
recently. However, little is known about the statistical power and sample size requirements for
mapping epistatic QTL using genetic markers. In this study, we developed analytical formulae to
calculate the statistical power and sample requirement for detecting each epistasis effect under
the F-2 design based on crossing inbred lines. Assuming two unlinked interactive QTL and the
same absolute value for all epistasis effects, the heritability of additive × additive (a × a) effect is
twice as large as that of additive × dominance (a × d) or dominance × additive (d × a) effect, and
is four times as large as that of dominance × dominance (d × d) effect. Consequently, among the
four types of epistasis effects involving two loci, ‘a × a’ effect is the easiest to detect whereas
‘d × d’ effect is the most difficult to detect. The statistical power for detecting ‘a × a’ effect is
similar to that for detecting dominance effect of a single QTL. The sample size requirements
for detecting ‘a × d’, ‘d × a’ and ‘d × d’ are highly sensitive to increased distance between
the markers and the interacting QTLs. Therefore, using dense marker coverage is critical to
detecting those effects.

epistasis / QTL / statistical power / sample size / F-2

1. INTRODUCTION

Epistasis refers to gene interaction effect involving two or more genes.
Evidence from studies in several species, including cattle [18, 21], dogs [1],
rat [23], drosophila [8] and humans [10, 20], indicates that epistasis can play a
significant role in both quantitative and qualitative characters. Epistasis effects
of quantitative trait loci (QTL) have been found in soybean [17], maize [9]
and tomato [11]. Among the many models to study epistasis effects, the linear
partition of genotypic values into additive, dominance, and epistasis effects by
Fisher [12] is considered a classical model for epistasis [6]. Cockerham [5]
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and Kempthorne [15] further partitioned Fisher’s epistasis effects into four
components, additive × additive, additive × dominance, dominance × addi-
tive, and dominance × dominance epistasis effects with the genetic interpre-
tation of allele × allele, allele × genotype, genotype × allele, and genotype ×
genotype interactions respectively. The partition of Fisher’s epistasis effect by
Cockerham and Kempthorne provides a necessary tool to understand the pre-
cise nature of gene interactions. The genetic modeling of epistasis by Fisher,
Cockerham and Kempthorne can be applied for testing epistasis effects of can-
didate genes and for mapping interactive QTL using genetic markers. Several
statistical methods for mapping interactive QTL have been reported, e.g., the
ANOVA method [22], the randomization test [3], the mixture model likelihood
analysis based on Cockerham’s orthogonal contrast [14], and the Bayesian ap-
proach for an outbred population [24]. However, little is known about the sta-
tistical power and sample size requirement for detecting each epistasis effect.
The purpose of this article is to derive and analyze the statistical power and
sample size requirements of the F-2 design for detecting epistasis effects. For-
mulae for statistical power take into account major factors affecting statistical
power and sample size, including separate testing and estimation of additive ×
additive, additive × dominance, dominance × additive, and dominance × dom-
inance effects, various levels of epistasis effects, marker-QTL distances, type-I
error and sample size; formulae for sample size requirements take into account
various levels of epistasis effects, marker-QTL distances, type-I and type-II
errors.

2. MATERIALS AND METHODS

2.1. Assumptions

Throughout this paper, two unlinked quantitative trait loci (QTL) on differ-
ent chromosomes, QTL 1 and QTL 2, are assumed. Let A and B denote codom-
inant marker loci linked to QTL 1 and QTL 2, respectively, and let θ1, and θ2
denote the recombination frequencies between marker A and QTL 1, and be-
tween marker B and QTL 2, respectively. Then, the marker-QTL orders are
A-θ1-QTL1 and B-θ2-QTL2. Two inbred lines with gene fixation for the mark-
ers and QTL are assumed for the convenience of analytical derivations. We
assume Line 1 has AAQ1Q1BBQ2Q2 genotype and Line 2 has aaq1q1bbq2q2

genotypes, where A, a, B and b are marker alleles, and Q1, q1, Q2 and q2

are QTL alleles. The cross between these two lines yields the F-1 genera-
tion with AQ1/aq1BQ2/bq2 individuals. The F-2 design is a result of matings
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among the F-1 individuals. The least squares partitioning of genotypic values
and variances [12, 15] will be used to derive the common genetic modeling
for QTL values, assuming Hardy-Weinberg equilibrium. The statistical test-
ing of epistasis effects using genetic markers will use a least squares model,
because analytical solutions are available from this method. From this least
squares model, elements required for the calculation of statistical power and
sample size requirements will be derived, including the marker contrast for
testing each epistasis effect and the variance of the contrast. Theoretical results
for experimental designs will be compared with simulation studies assuming
various levels of epistasis effects, and marker-QTL distance.

2.2. Genetic modeling and marker contrasts

The purpose of genetic modeling of the QTL genotypic values and indi-
vidual phenotypic values is to establish a theoretical foundation for defining
marker contrasts for testing epistasis effects. The least squares partitioning of
genotypic values by Kempthrone [15] will be used for the genetic modeling.
Let gi jkl = genotypic value of individuals with genotype ij at locus 1 and kl
at locus 2, (i = Q1 and j = q1 of locus 1, k = Q2 and l = q2 of locus 2).
Then, using Kempthrone’s partitioning of genotypic values for the case of two
unlinked loci [15, 19], the genotypic value can be modeled as:

gi jkl = µ + (αi + α j) + (αk + αl) + δi j + δkl + (ααik + ααil + αα jk + αα jl)

+ (αδikl + αδ jkl) + (δαi jk + δαi jl) + δδi jkl

= µ + αi j + αkl + δi j + δkl + ααi jkl + αδi jkl + δαi jkl + δδi jkl (1)

where µ is the population mean of QTL genotypic values, αi, α j, αk, αl are
the additive effects of QTL allele Q1, q1,Q2, q2, respectively; δi j, δkl are the
dominance effects of locus 1 and locus 2, respectively; ααik, ααil, αα jk, αα jl

are the additive × additive effects accounting for the dependency of the effect
of an allelic substitution at one locus on the allele present at a second locus;
αδikl, αδ jkl are the additive × dominance effects accounting for the interaction
of single alleles at locus 1 with the genotype at locus 2; δαi jk, δαi jl are the
dominance × additive effects representing the interaction of the genotype at
locus 1 with single alleles at locus 2; and δδi jkl is the dominance × dominance
effect representing the interaction between the genotype at locus 1 and the
genotype at locus 2. In equation (1), αi j = αi + α j, αkl = αk + αl, ααi jkl =

ααik + ααil + αα jk + αα jl, αδi jkl = αδikl + αδ jkl, δαi jkl = δαi jk + δαi jl. For an
F-2 population with equal allele frequencies, it can be shown that the genetic
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effects in equation (1) have the following symmetry property:

a1 = αi = −α j

a2 = αk = −αl

d1 = δii = −δi j = δ j j

d2 = δkk = −δkl = δll

iaa = ααik = −ααil = −αα jk = αα jl

iad = αδikk = −αδikl = αδill = −αδ jkk = αδ jkl = −αδ jll

ida = δαiik = −δδi jk = δα j jk = −δαiil = δαi jl = −δα j jl

idd = δδiikk = −δδiikl = δδiill = −δδi jkk

= δδi jkl = −δδi jll = δδ j jkk = −δδ j jkl = δδ j jll.

This symmetrical property leads to simplified modeling of equation (1), as
shown in Table I. More importantly, this symmetry property will greatly sim-
plify the marker contrasts for testing epistasis effects, allowing simple analyti-
cal solutions for evaluating statistical power and sample size requirement, as to
be shown later. By combining the nine equations in Table I and solving for µ,
a1, a2, d1, d2, iaa, iad, ida, and idd, the unique solutions of the effect parameters
in terms of the genotypic values are:

µ = 1
16 (giikk + 2giikl + giill + 2gi jkk + 4gi jkl + 2gi jll + g j jkk + 2g j jkl + g j jll)

(2)

a1 =
1
16 [(giikk + 2giikl + giill) − (g j jkk + 2g j jkl + g j jll)] (3)

a2 =
1
16 [(giikk + 2gi jkk + g j jkk) − (giill + 2gi jll + g j jll)] (4)

d1 =
1
16 [(giikk + 2giikl + giill) − 2(gi jkk + 2gi jkl + gi jll) + (g j jkk + 2g j jkl + g j jll)]

(5)

d2 =
1
16 [(giikk + 2gi jkk + g j jkk) − 2(giikl + 2gi jkl + g j jkl) + (giill + 2gi jll + g j jll)]

(6)

iaa =
1
16 [(giikk − g j jkk) − (giill − g j jll)] (7)

iad =
1
16 (giikk − 2giikl + giill − g j jkk + 2g j jkl − g j jll) (8)

ida =
1
16 (giikk − 2gi jkk + g j jkk − giill + 2gi jll − g j jll) (9)

idd =
1
16 (giikk − 2giikl + giill − 2gi jkk + 4gi jkl − 2gi jll + g j jkk − 2g j jkl + g j jll).

(10)

In equations (2–10), a1 = additive effect of QTL 1, d1 = dominance effect
of QTL 1, a2 = additive effect of QTL 2, d2 = dominance effect of QTL 2,
iaa = additive × additive epistasis effect, iad = additive × dominance epistasis
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Table I. Representation of genotypic values in terms of additive, dominance, and epis-
tasis contributions for the case of two loci with two equally frequent alleles.

Genotype Frequency Genotypic Value

Q1Q1Q2Q2 1/16 giikk = µ + 2a1 + 2a2 + d1 + d2 + 4iaa + 2iad + 2ida + idd

Q1Q1Q2q2 1/8 giikl = µ + 2a1 + d1 − d2 − 2iad − idd

Q1Q1q2q2 1/16 giill = µ + 2a1 − 2a2 + d1 + d2 − 4iaa + 2iad − 2ida + idd

Q1q1Q2Q2 1/8 gi jkk = µ + 2a2 − d1 + d2 − 2ida − idd

Q1q1Q2q2 1/4 gi jkl = µ − d1 − d2 + idd

Q1q1q2q2 1/8 gi jll = µ − 2a2 − d1 + d2 + 2ida − idd

q1q1Q2Q2 1/16 g j jkk = µ − 2a1 + 2a2 + d1 + d2 − 4iaa − 2iad + 2ida + idd

q1q1Q2q2 1/8 g j jkl = µ − 2a1 + d1 − d2 + 2iad − idd

q1q1q2q2 1/16 g j jll = µ − 2a1 − 2a2 + d1 + d2 + 4iaa − 2iad − 2ida + idd

effect, ida = dominance × additive epistasis effect, and idd = dominance ×
dominance epistasis effect between QTL 1 and QTL 2. Equations (2–10) are
foundations for marker contrasts for QTL detection under the F-2 design, and
can be used for testing candidate genes in an F-2 design.

When a QTL genotypic value is to be predicted by linked markers, as is the
case in QTL detection, the QTL genotypic value can be modeled as:

gi jkl = mi jkl + ri jkl (11)

where mi jkl is the effect of markers, and ri jkl is the genotypic residual value due
to recombination between the markers and QTL. Note that the common genetic
mean (µ) term in equation (11) is dropped for convenience of derivations. The
two marker models with or without the µ term are equivalent models [13, 19]
that achieve the same result for statistical testing. In matrix notation, the QTL
genotypic value modeled by genetic markers can be expressed as:

g = Xm + r (12)

where g is the column vector of QTL genotypic values, X is the design matrix
for the marker effects, r is the recombination residual of the QTL value not
explained by the common mean and the markers, and m is the vector of marker
effects, i.e.,

m = (miikk ,miikl,miill,mi jkk,mi jkl,mi jll,m j jkk,m j jkl,m j jll)
′.

The normal equations for equation (12) in matrix notation are X′Xm = X′g,
and the solution to this normal equation is m = (X′X)−1X′g, where (X′X)−1 is
the inverse of X′X, and X′ is the transpose of X.
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A phenotypic value is modeled as the summation of a QTL genotypic value
(gi jkl) and a random residual (e) with N(0,σ2

e) distribution, i.e.,

yi jkl = gi jkl + ei jkl = mi jkl + (ri jkl + ei jkl) = mi jkl + εi jkl (13)

with εi jkl = phenotypic residual value not explained by the marker effects
due to the recombination and random residuals. Using matrix notation, equa-
tion (13) can be expressed as:

y = Xm + (r + e) = Xm + ε. (14)

The normal equations are X′Xm = X′y, and the estimator of m is given by

m̂ = (X′X)−1X′y. (15)

Let m̂ = (m̂iikk, m̂iikl, m̂iill, m̂i jkk, m̂i jkl, m̂i jll, m̂ j jkk, m̂ j jkl, m̂ j jll)′ be the least
squares estimate of m = (miikk, miikl, miill, mi jkk, mi jkl, mi jll, m j jkk, m j jkl, m j jll)′
defined in equation (15), then the four marker contrasts for testing epistasis
effects are:

Laa =
1

16

(
m̂iikk − m̂iill − m̂ j jkk + m̂ j jll

)
(16)

Lad =
1

16

(
m̂iikk − 2m̂iikl + m̂iill − m̂ j jkk + 2m̂ j jkl − m̂ j jll

)
(17)

Lda =
1

16

(
m̂iikk − m̂iill − 2m̂i jkk + 2m̂i jll + m̂ j jkk − m̂ j jll

)
(18)

Ldd =
1

16

(
m̂iikk − 2m̂iikl + m̂iill − 2m̂i jkk + 4m̂i jkl − 2m̂i jll + m̂ j jkk

−2m̂ j jkl + m̂ j jll

)
(19)

where Laa, Lad, Lda and Ldd are the contrasts for testing additive × additive,
additive × dominance, dominance × additive, and dominance × dominance
effects, respectively.

2.3. Variances of recombination and phenotypic residuals

Following the approach of Bulmer [2] (Eq. (5.1) on page 58), Table I can be
expressed more succinctly as:

gi jkl = µ + 2(z1 − 1)a1 + 2(z2 − 1)a2 +
(
1 − 4z1 + 2z2

1

)
d1 +
(
1 − 4z2 + 2z2

2

)
d2

+ 4(z1 − 1)(z2 − 1)iaa + 2(z1 − 1)
(
1 − 4z2 + 2z2

2

)
iad

+ 2
(
1 − 4z1 + 2z2

1

)
(z2 − 1)ida +

(
1 − 4z1 + 2z2

1

) (
1 − 4z2 + 2z2

2

)
idd

(20)
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where z1 is the number of Q1 alleles in a particular individual at the first
putative QTL, and z2 is the number of Q2 alleles in a particular individ-
ual at the second putative QTL, (z1, z2 = 0, 1, or 2 respectively). Equa-
tion (20) provides a convenient model for deriving variance and covariance
of the QTL genotypic values (App. A). Let σ2

g = the total QTL genotypic vari-
ance, σ2

A1 = additive variance of QTL 1, σ2
A2 = additive variance of QTL 2,

σ2
D1 = dominance variance of QTL 2, σ2

D2 = dominance variance of QTL 2,
σ2

AA = additive × additive variance, σ2
AD = additive × dominance variance,

σ2
DA = dominance × additive variance, and σ2

DD = dominance × dominance
variance of the two QTLs, then

σ2
g = σ

2
A1 + σ

2
A2 + σ

2
D1 + σ

2
D2 + σ

2
AA + σ

2
AD + σ

2
DA + σ

2
DD

= 2a2
1 + 2a2

2 + d2
1 + d2

2 + 4i2aa + 2i2ad + 2i2da + i2dd (21)

with

σ2
A1 = 2a2

1, σ
2
A2 = 2a2

2, σ
2
D1 = d2

1 , σ
2
D2 = d2

2,

σ2
AA = 4i2aa, σ

2
AD = 2i2ad, σ

2
DA = 2i2da, σ

2
DD = i2dd. (22)

Derivations for equations (21, 22) are given in Appendix A. The total genetic
variance is partitioned into eight independent components, and each variance
component is a function of one effect only. This property greatly facilitates
the evaluation of the contribution of an effect to the total genetic variance.
Note that equivalent partitions can be obtained under alternative models, but
they have different meanings in interpreting gene effects, different structures
of variance components, and different properties in statistical estimation that
may affect the study of QTL [14].

The population variance of recombination residuals for equation (12) is

σ2
r =

1
n (g′g −m′X′g). (23)

Applying equation (23) to the F-2 design, and utilizing equation (22), the re-
combination residual variance of QTL genotypic values is found to be:

σ2
r =
[
1 − (1 − 2θ1)2

]
σ2

A1 +
[
1 − (1 − 2θ2)2

]
σ2

A2

+
[
1 − (1 − 2θ1)4

]
σ2

D1 +
[
1 − (1 − 2θ2)4

]
σ2

D2

+
[
1 − (1 − 2θ1)2(1 − 2θ2)2

]
σ2

AA +
[
1 − (1 − 2θ1)2(1 − 2θ2)4

]
σ2

AD

+
[
1 − (1 − 2θ1)4(1 − 2θ2)2

]
σ2

DA +
[
1 − (1 − 2θ1)4(1 − 2θ2)4

]
σ2

DD.

(24)
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Derivation of equation (24) is given in Appendix B. The residual variance of
phenotypic values for F-2 design under equation (14) is:

σ2
ε = σ

2
r + σ

2
e .

3. RESULTS

3.1. Mathematical formulae for statistical power and sample size

Statistical power (π) is the probability that an effect is detected when the
effect is present, commonly denoted by π = 1 − β, where β is the type II error,
i.e., the probability of false ‘negatives’. A standardized normal distribution
denoted by N(0,1) is assumed for deriving the statistical power. The normal
distribution is chosen because the calculation of the exact residual degrees of
freedom is unnecessary, providing analytical simplicity. Since the residual de-
grees of freedom are sufficiently large for the sample sizes discussed in this
article (N ≥ 200), the normal distribution practically yields identical results
as the t-distribution that is often used in QTL analysis. The general expression
for π is:

π = 1 − β = 1 − Pr(Z < zi) = 1 −Φ(zi) (25)

where Z is a N(0,1) normal variable, zi is the ordinate of the standardized
normal curve corresponding to the type II error of β, and Φ is the cumulative
distribution function of standard normal random variable. The application of
equation (25) to QTL mapping designs requires two key elements: a marker
contrast for detecting each epistasis effect, and the variance of the contrast.

Let c be a contrast vector that defines an estimable function of m, then
E(c′m̂) = c′m. Based on this result and the m vector in Appendix B, the
mathematical expectation of each contrast given by equations (16–19), denoted
by E(Li), i = aa, ad, da, dd, are functions of markers-QTL recombination
frequencies and the QTL effects being tested, i.e.,

E(Laa) = (1 − 2θ1) (1 − 2θ2) iaa (26)

E(Lad) = (1 − 2θ1) (1 − 2θ2)2 iad (27)

E(Lda) = (1 − 2θ1)2 (1 − 2θ2) ida (28)

E(Ldd) = (1 − 2θ1)2 (1 − 2θ2)2 idd. (29)

Using E(Li) in place of Li for i = aa, ad, da, dd as defined by equa-
tions (16–19), the zi value in equation (25) can be expressed as:

zi = zα/2 − E(Li)√
var(Li)

= zα/2 −
√

NiE(Li)√
Vi
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where Ni is the sample size and Vi = Ni var(Li), for i = aa, ad, da, dd. For
convenience, Vi will be referred to as the ‘kernel’ of the contrast variance,
meaning that Vi differs from var(Li) only by a constant of Ni. Let

h2
ε =
σ2

r + σ
2
e

σ2
y

= 1 − (1 − 2θ1)2h2
a1
− (1 − 2θ2)2h2

a2
− (1 − 2θ1)4h2

d1
− (1 − 2θ2)4h2

d2

− (1 − 2θ1)2(1 − 2θ2)2h2
aa − (1 − 2θ1)2(1 − 2θ2)4h2

ad

− (1 − 2θ1)4(1 − 2θ2)2h2
da − (1 − 2θ1)4(1 − 2θ2)4h2

dd (30)

where h2
a1
= σ2

A1/σ
2
y, h2

a2
= σ2

A2/σ
2
y, h2

d1
= σ2

D1/σ
2
y, h2

d2
= σ2

D2/σ
2
y,

h2
aa = σ

2
AA/σ

2
y, h2

ad = σ
2
AD/σ

2
y, h2

da = σ
2
DA/σ

2
y, and h2

dd = σ
2
DD/σ

2
y. For con-

venience, we will refer to h2
a1

and h2
a2

as the additive heritabilities, h2
d1

and

h2
d2

as the dominance heritabilities, and h2
aa, h2

ad, h2
da and h2

dd as the additive ×
additive, additive × dominance, dominance × additive and dominance × dom-
inance heritabilities, respectively. Then, the expressions of Vi in terms of QTL
parameters are given as follows:

Vaa =
1
4σ

2
yh

2
ε (31)

Vad =
1
2σ

2
yh

2
ε (32)

Vda =
1
2σ

2
yh

2
ε (33)

Vdd = σ
2
yh

2
ε. (34)

The derivations of equations (31–34) are given in Appendix B.
Letting λi = E(Li)/

√
Vi, then zi in equation (25) can be expressed in terms

of QTL parameters as:
zi = zα/2 −

√
Niλi (35)

where

λaa =
(1 − 2θ1)(1 − 2θ2)haa

hε
(36)

λad =
(1 − 2θ1)(1 − 2θ2)2had

hε
(37)

λda =
(1 − 2θ1)2(1 − 2θ2)hda

hε
(38)

λdd =
(1 − 2θ1)2(1 − 2θ2)2hdd

hε
· (39)
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In equations (36–39), θ1, θ2 are the marker-QTL recombination frequencies.
Theoretical predictions of statistical power for various parameters using equa-
tion (25) and equations (35–39) are shown in Figures 1–4. The implications of
these results will be discussed along with the results of simulation studies.

Using the above results, the minimum sample size required for given levels
of type I and type II errors can be expressed as:

Ni =
Vi(Zα/2 + Zβ)2

E2(Li)
=

(Zα/2 + Zβ)2

λ2
i

(40)

where Zα/2 and Zβ are the ordinate of the standardized normal curve corre-
sponding to the probabilities of α/2 and β. The sample size given by equa-
tion (40) is an increasing function of marker-QTL recombination frequencies,
as well as type-I and type-II errors, and a decreasing function of heritabil-
ity. Sample size requirements obtained from equation (40) for two type-I er-
rors corresponding to the “suggestive” and “significant” linkages proposed by
Lander and Kruglyak [16], and different levels of epistasis heritabilities and
marker-QTL recombination frequencies are given in Table II, assuming a 95%
statistical power.

3.2. Simulation studies on statistical power

Simulation studies were conducted using the Monte Carlo method to eval-
uate the theoretical results on statistical power for detecting epistasis effects
under the F-2 designs. Markers and QTL genotypes were generated such that
the true recombination frequencies and each QTL effect used to generate these
genotypes can be obtained reversely from the data. A total of 100 sets of
marker-QTL genotypes were generated. The phenotypic value of each indi-
vidual is obtained as the summation of the individual QTL genotypic value
and a random residual with N(0,1) distribution. For each set of genotypic data,
10 000 replicates were generated for Figures 1–4. Two interactive QTL with-
out linkage and all epistasis effects have the same absolute value are assumed,
thus the heritability of additive × additive (a × a) effect is twice as large as that
of additive × dominance (a × d) or dominance × additive (d × a) effect, and is
four times as large as that of dominance × dominance (d × d) effect. Heritabil-
ities of additive × additive effect are used in the range of 0.025 to 0.25. Sample
sizes of 200–2000 individuals resulting from crossing between inbred lines
were generated. The significant levels (type I errors) used were those corre-
sponding to “suggestive linkage” and “significant linkage” proposed by Lander
and Kruglyak [16] with type-I errors of 0.0034 and 0.00072 respectively.
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Table II. Sample size required to achieve 95% power with a type I error of 5% for the
F-2 design.

Heritability θ1 = θ2 a × a a × d = d × a d × d

(a1 = a2 = d1 = d2 = iaa = iad = ida = idd)a

h2
aa h2

ad = h2
da h2

dd N N N

0.1000 0.0500 0.0250 0 81 162 325

0.05 150 370 914

0.1 268 837 2615

0.15 488 1992 8131

0.2 942 5233 29074

0.1500 0.0750 0.0375 0 38 76 152

0.05 84 207 511

0.1 162 506 1583

0.15 308 1256 5125

0.2 608 3376 18758

0.2000 0.1000 0.0500 0 16 32 65

0.05 51 126 310

0.1 109 341 1066

0.15 218 888 3623

0.2 441 2448 13600

a ‘a1 = a2 = d1 = d2 = iaa = iad = ida = idd’ indicates that all the eight effects are assumed to
be of the same size in defining each heritability. For the F-2 design, h2

aa = 2h2
ad = 2h2

da = 4h2
dd

when a1 = a2 = d1 = d2 = iaa = iad = ida = idd .

Since the powers for a × d effect and d × a effect as expected identical in the
theoretical derivations and almost identical in the simulations, we only show
the results for a × d effect, and the results for d × a effect are not included.
Table III shows the observed statistical power for epistasis effects for differ-
ent sample sizes and heritability levels. Statistical powers observed from the
simulated data agreed well with the predicted powers as shown in Figures 1–4.
Among the four types of epistasis effects involving two loci, ‘a × a’ effect
is the easiest to detect whereas ‘d × d’ effect is the most difficult to detect.
The statistical power for detecting ‘a × a’ effect is similar to that for detecting
dominance effect of a single QTL. The power is poor for detecting ‘a × d’ or
‘d × a’ effect and is extremely poor for detecting ‘d × d’ effect. This trend is
consistent across a range of sample sizes (Fig. 1), heritabilities (Fig. 2), and
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Table III. Statistical power for detecting epistasis effects based on simulated data
(θ1 = θ2 = 0.10).

Sample size 400 400 400 1000 1000 1000

a1 = a2 = d1 = d2 = iaa = iad = ida = idd 0.2000 0.2928 0.4472 0.2000 0.2928 0.4472

h2
aa 0.1000 0.1500 0.2000 0.1000 0.1500 0.2000

h2
ad = h2

da 0.0500 0.0750 0.1000 0.0500 0.0750 0.1000

h2
dd 0.0250 0.0375 0.0500 0.0250 0.0375 0.0500

α = 0.0034 (Suggestive linkage)

a × a 0.8758 0.9891 0.9965 0.9997 1.0000 1.0000

a × d 0.3172 0.5650 0.7325 0.8186 0.9602 0.9881

d × d 0.0564 0.1179 0.2519 0.2417 0.3764 0.7043

α = 0.00072 (Significant linkage)

a × a 0.7725 0.9664 0.9867 0.9988 1.0000 1.0000

a × d 0.1858 0.3964 0.6332 0.6812 0.9064 0.9768

d × d 0.0220 0.0555 0.1339 0.1309 0.2240 0.5435

recombination frequencies (Fig. 3). The general relationship between power
and type-I error is shown in Figure 4 for a wide range of type-I errors. The
sample size requirements for detecting ‘a × d’, ‘d × a’ and ‘d × d’ are highly
sensitive to increased distance between the markers and the interacting QTLs.
Therefore, using dense marker coverage is critical to detecting those effects.

4. DISCUSSION

Epistasis, a potentially important genetic component underlying complex
traits, has not been extensively explored in QTL analysis [4]. The results ob-
tained in this study provide some guidelines regarding the statistical power and
sample size requirement for detecting epistasis effects under the F-2 design. In
general, detecting epistasis effect is more difficult than detecting single QTL
effect, except for additive × additive effect, which has about the same power
as dominance effect. Detecting epistasis effects involving dominance effect is
considerably more challenging than detecting single QTL effect. This difficulty
could be reduced to some extent by decreasing marker spacing, because the
statistical power for detecting epistasis effects involving dominance is highly
sensitive to increased marker spacing (Tabs. I and II, Fig. 3). The statistical
power and sample size requirements in this study assume the use of a single
marker for detecting epistasis effects. For statistical methods using flanking
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Figure 1. Observed (dotted lines) and predicted (solid lines) statistical power as a
function of the population size. (α = 0.0034, θ1 = θ2 = 0.10, h2

aa = 0.1000, h2
ad =

h2
da = 0.0500, h2

dd = 0.0250).

Figure 2. Observed (dotted lines) and predicted (solid lines) statistical power as a
function of heritability levels h2

aa with 800 observations (α = 0.0034, θ1 = θ2 = 0.10).
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Figure 3. Observed (dotted lines) and predicted (solid lines) statistical power as a
function of marker-QTL recombination frequencies θ1 = θ2 with 800 observations
(α = 0.0034, h2

aa = 0.1000, h2
ad = h2

da = 0.0500, h2
dd = 0.0250).

Figure 4. Observed (dotted lines) and predicted (solid lines) statistical power as a
function of type I error with 800 observations (h2

aa = 0.1000, h2
ad = h2

da = 0.0500,
h2

dd = 0.0250, θ1 = θ2 = 0.10).



Statistical power for detecting epistasis 143

markers to detect epistasis effects, results of statistical power could be some-
what overestimates and sample size requirements somewhat underestimates.
Extending results in this study to interval mapping is straightforward theoreti-
cally but necessarily will require a lengthy development. Since the increase in
power of interval mapping over a single marker analysis is only slight [7], re-
sults obtained in this study can be considered as close approximation to statis-
tical power and sample size requirements, with statistical power being slightly
underestimated and sample size slightly overestimated than those under an in-
terval mapping.

ACKNOWLEDGEMENTS

This research is supported in part by the Agricultural Experiment Sta-
tion (project MN-16-043) of the University of Minnesota, and by funding
from Cargill and the National Research Initiative Competitive Grants Pro-
gram/United States Department of Agriculture (grant #03275).

REFERENCES

[1] Bourdon R.M., Understanding Animal Breeding, Prentice Hall, 2000, pp. 49–50.
[2] Bulmer M.G., The Mathematical Theory of Quantitative Genetics, Clarendon

Press, Oxford, 1980.
[3] Carlborg O., Andersson L., Use of randomization testing to detect multiple

epistatic QTLs, Genet. Res. 79 (2002) 175–184.
[4] Carlborg O., Haley C.S., Epistasis: too often neglected in complex trait studies?

Nat. Rev. Genet. 5 (2004) 618–625.
[5] Cockerham C.C., An extension of the concept of partitioning hereditary variance

for analysis of covariances among relatives when epistasis is present, Genetics
39 (1954) 859–882.

[6] Cordell H.J., Todd J.A., Hill N.J., Lord C.J., Lyons P.A., Peterson L.B., Wicker
L.S., Clayton D.G., Statistical modeling of interlocus interactions in a complex
disease: rejection of the multiplicative model of epistasis in type 1 diabetes,
Genetics 158 (2001) 357–367.

[7] Darvasi A., Vinreb A., Minke V., Weller J.I., Soller M., Detecting marker-QTL
linkage and estimating QTL gene effect and map location using a saturated ge-
netic map, Genetics 134 (1993) 943–951.

[8] DeSalle R., Slightom J., Zimmer E., The molecular through ecological genetics
of abnormal abdomen. II. Ribosomal DNA polymorphism is associated with the
abnormal abdomen syndrome in drosophila mercatorum, Genetics 112 (1986)
861–875.

[9] Doebley J., Stec A., Gustus C., teosinte branched 1 and the origin of maize:
evidence for epistasis and the evolution of dominance, Genetics 141 (1995)
333–346.



144 Y. Mao, Y. Da

[10] El-Hazmi M.A., Warsy A.S., Al-Swailem A.R., Al-Faleh F.Z., Al-Jabbar F.A.,
Genetic compounds–Hb S, thalassaemias and enzymopathies: spectrum of inter-
actions, J. Trop. Pediatr. 40 (1994) 149–156.

[11] Eshed Y., Zamir D., Less-than-additive epistatic interactions of quantitative trait
loci in tomato, Genetics 143 (1996) 1807–1817.

[12] Fisher R.A., The correlation between relatives on the supposition of Mendelian
inheritance, Trans. Roy. Soc. Edinburgh 52 (1918) 399–433.

[13] Henderson C.R., Application of linear models in animal breeding, University of
Guelph, Ontario, 1984.

[14] Kao C.H., Zeng Z.B., Modeling epistasis of quantitative trait loci using
Cockerham’s model, Genetics 160 (2002) 1203–1216.

[15] Kempthrone O., The correlation between relatives in a random mating popula-
tion, Proc. Roy. Soc. London B 143 (1954) 103–113.

[16] Lander E.S., Kruglyak L., Genetic dissection of complex traits: guidelines for
interpreting and reporting linkage results, Nature Genet. 11 (1995) 241–247.

[17] Lark K.G., Chase K., Adler F., Mansur L.I., Orf J.H., Interactions between
quantitative trait loci in soybean in which trait variation at one locus is condi-
tional upon a specific allele of another, Proc. Natl. Acad. Sci. USA 92 (1995)
4656–4660.

[18] Long C.R., Gregory K.E., Inheritance of the horned, scurred and polled condi-
tion in cattle, J. Hered. 69 (1978) 395–400.

[19] Lynch M., Walsh B., Genetics and Analysis of Quantitative Traits, Sinauer
Associates, Sunderland, 1998.

[20] Pedersen J.C., Berg K., Interaction between low density lipoprotein receptor
(LDLR) and apolipoprotein E (apoE) alleles contributes to normal variation in
lipid level, Clin. Genet. 35 (1989) 331–337.

[21] Potts J.K., Echternkamp S.E., Smith T.P.L., Reecy J.M., Characterization of
gene expression in double-muscled and normal-muscled bovine embryos, Anim.
Genet. 34 (2003) 438–444.

[22] Routman E.J., Cheverud J.M., Genetic effects on a quantitative trait: two-
locus epistatic effects measured at microsatellite markers and at estimated QTL,
Evolution 51 (1997) 1654–1662.

[23] Wright S., On the genetics of silvering in the guinea pig with especial reference
to interaction and linkage, Genetics 44 (1959) 387–405.

[24] Yi N., Xu S., Allison D.B., Bayesian model choice and search strategies for
mapping interacting quantitative trait loci, Genetics 165 (2003) 867–883.

APPENDIX A: PARTITIONING OF GENOTYPIC VALUES
AND VARIANCES UNDER THE F-2 DESIGN

Under the F-2 design, the partition of QTL genotypic values is shown in
Table I. The QTL alleles are assumed to have equal allele frequency and the
two loci are assumed unlinked.



Statistical power for detecting epistasis 145

A.1. Analysis of means

Since z1 is a random variable taking the values 0, 1, and 2 with probabili-
ties 1/4, 1/2, and 1/4. Thus z1 − 1 takes values −1, 0, and 1 with these proba-
bilities, while 1 − 4z1 + 2z2

1 = 1 − 2z1(2 − z1) takes the values 1 and –1 with
probabilities 1/2 and 1/2. Hence

E(z1 − 1) = E
(
1 − 4z1 + 2z2

1

)
= 0.

Similarly,

E(z2 − 1) = E
(
1 − 4z2 + 2z2

2

)
= 0.

Also, since the two loci are unlinked,

E[(z1 − 1)(z2 − 1)] = E(z1 − 1)E(z2 − 1) = 0,

E
[
(z1 − 1)

(
1 − 4z2 + 2z2

2

)]
= E
[(

1 − 4z1 + 2z2
1

)
(z2 − 1)

]

= E
[(

1 − 4z1 + 2z2
1

) (
1 − 4z2 + 2z2

2

)]
= 0.

Therefore, all the expectations of effect coefficients in equation (20) are zero,
taking the expectation of equation (20) we find that

E(g) = µ. (A.1)

A.2. Analysis of variances

Since all the expectations of effect coefficients are zero, and the function of
z1 and function of z2 are independent, we have

cov (z1 − 1, z2 − 1) = 0

cov
(
z1 − 1, 1 − 4z2 + 2z2

2

)
= 0

cov
(
1 − 4z1 + 2z2

1, z2 − 1
)
= 0

cov
(
1 − 4z1 + 2z2

1, 1 − 4z2 + 2z2
2

)
= 0.
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Similarly,

cov [z1 − 1, (z1 − 1) (z2 − 1)] = E
[
(z1 − 1)2 (z2 − 1)

]

= E
[
(z1 − 1)2

]
E (z2 − 1) = 0

cov
[
z1 − 1, (z1 − 1)

(
1 − 4z2 + 2z2

2

)]
= E
[
(z1 − 1)2

]
E
(
1 − 4z2 + 2z2

2

)
= 0

cov
[
z1 − 1,

(
1 − 4z1 + 2z2

1

)
(z2 − 1)

]
= E
[
(z1 − 1)

(
1 − 4z1 + 2z2

1

)]
E (z2 − 1) = 0

cov [z2 − 1, (z1 − 1) (z2 − 1)] = 0

cov
[
z2 − 1, (z1 − 1)

(
1 − 4z2 + 2z2

2

)]
= 0

cov
[
z2 − 1,

(
1 − 4z1 + 2z2

1

)
(z2 − 1)

]
= 0

cov
[
z2 − 1,

(
1 − 4z1 + 2z2

1

) (
1 − 4z2 + 2z2

2

)]
= 0

cov
[
1 − 4z1 + 2z2

1, (z1 − 1) (z2 − 1)
]
= 0

cov
[
1 − 4z1 + 2z2

1, (z1 − 1)
(
1 − 4z2 + 2z2

2

)]
= 0

cov
[
1 − 4z1 + 2z2

1,
(
1 − 4z1 + 2z2

1

)
(z2 − 1)

]
= 0

cov
[
1 − 4z1 + 2z2

1,
(
1 − 4z1 + 2z2

1

) (
1 − 4z2 + 2z2

2

)]
= 0

cov
[
1 − 4z2 + 2z2

2, (z1 − 1) (z2 − 1)
]
= 0

cov
[
1 − 4z2 + 2z2

2, (z1 − 1)
(
1 − 4z2 + 2z2

2

)]
= 0

cov
[
1 − 4z2 + 2z2

2,
(
1 − 4z1 + 2z2

1

)
(z2 − 1)

]
= 0

cov
[
1 − 4z2 + 2z2

2,
(
1 − 4z1 + 2z2

1

) (
1 − 4z2 + 2z2

2

)]
= 0.

Since z1 is a random variable taking the values 0, 1, and 2 with probabili-
ties 1/4, 1/2, and 1/4. Thus (z1−1)(1−4z1 +2z2

1) takes values −1, 0, and 1 with
these probabilities, therefore,

cov
(
z1 − 1, 1 − 4z1 + 2z2

1

)
= E
[
(z1 − 1)

(
1 − 4z1 + 2z2

1

)]

= (−1) × 1
4 + 0 × 1

2 + 1 × 1
4 = 0.
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Similarly,

cov
(
z2 − 1, 1 − 4z2 + 2z2

2

)
= 0

cov
[
z1 − 1,

(
1 − 4z1 + 2z2

1

) (
1 − 4z2 + 2z2

2

)]

= E
[
(z1 − 1)

(
1 − 4z1 + 2z2

1

)]
E
(
1 − 4z2 + 2z2

2

)
= 0

cov
[
(z1 − 1) (z2 − 1) , (z1 − 1)

(
1 − 4z2 + 2z2

2

)]

= E
[
(z1 − 1)2

]
E
[
(z2 − 1)

(
1 − 4z2 + 2z2

2

)]
= 0

cov
[
(z1 − 1) (z2 − 1) ,

(
1 − 4z1 + 2z2

1

)
(z2 − 1)

]
= 0

cov
[
(z1 − 1) (z2 − 1) ,

(
1 − 4z1 + 2z2

1

) (
1 − 4z2 + 2z2

2

)]
= 0

cov
[
(z1 − 1)

(
1 − 4z2 + 2z2

2

)
,
(
1 − 4z1 + 2z2

1

)
(z2 − 1)

]
= 0

cov
[
(z1 − 1)

(
1 − 4z2 + 2z2

2

)
,
(
1 − 4z1 + 2z2

1

) (
1 − 4z2 + 2z2

2

)]
= 0

cov
[(

1 − 4z1 + 2z2
1

)
(z2 − 1) ,

(
1 − 4z1 + 2z2

1

) (
1 − 4z2 + 2z2

2

)]
= 0.

Therefore, the covariance of any two different effect coefficients is zero.
Also,

var (z1 − 1) = E
[
(z1 − 1)2

]
= 1

2

var (z2 − 1) = 1
2

var
(
1 − 4z1 + 2z2

1

)
= E
[(

1 − 4z1 + 2z2
1

)2]
= 1

var
(
1 − 4z2 + 2z2

2

)
= 1

var [(z1 − 1) (z2 − 1)] = E
[
(z1 − 1)2 (z2 − 1)2

]
= E
[
(z1 − 1)2

]
E
[
(z2 − 1)2

]
= 1

4

var
[
(z1 − 1)

(
1 − 4z2 + 2z2

2

)]
= E
[
(z1 − 1)2

(
1 − 4z2 + 2z2

2

)2]

= E
[
(z1 − 1)2

]
E
[(

1 − 4z2 + 2z2
2

)2]
= 1

2

var
[(

1 − 4z1 + 2z2
1

)
(z2 − 1)

]
= 1

2

var
[(

1 − 4z1 + 2z2
1

) (
1 − 4z2 + 2z2

2

)]
= E
[(

1 − 4z1 + 2z2
1

)2 (
1 − 4z2 + 2z2

2

)2]

= E
[(

1 − 4z1 + 2z2
1

)2
E
(
1 − 4z2 + 2z2

2

)2]
= 1.
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Therefore,

σ2
g = 4var (z1 − 1) a2

1 + 4var (z2 − 1) a2
2 + var

(
1 − 4z1 + 2z2

1

)
d2

1

+ var
(
1 − 4z2 + 2z2

2

)
d2

2 + 16var [(z1 − 1) (z2 − 1)] i2aa

+ 4var
[
(z1 − 1)

(
1 − 4z2 + 2z2

2

)]
i2ad + 4var

[(
1 − 4z1 + 2z2

1

)
(z2 − 1)

]
i2da

+ var
[(

1 − 4z1 + 2z2
1

) (
1 − 4z2 + 2z2

2

)]
i2dd

= 2a2
1 + 2a2

2 + d2
1 + d2

2 + 4i2aa + 2i2ad + 2i2da + i2dd. (A.2)

APPENDIX B: PROOFS OF RECOMBINATION RESIDUAL
VARIANCES, MEANS AND VARIANCES OF CONTRASTS

The general formula for calculating the residual variance is

σ2
r =

1
n (g′g −m′X′g)

as given by equation (23), where m = (X′X)−1X′g. The following results can
be established:

g′g = n
(

1
16g

2
iikk +

1
8g

2
iikl +

1
16g

2
iill +

1
8g

2
i jkk +

1
4g

2
i jkl +

1
8g

2
i jll

+ 1
16g

2
j jkk +

1
8g

2
j jkl +

1
16g

2
j jll

)

X′X = n
16Diag {1, 2, 1, 2, 4, 2, 1, 2, 1} ,

where Diag denotes a diagonal matrix,
(
X′X
)−1
= 4

nDiag{4, 2, 4, 2, 1, 2, 4, 2, 4}

X′g =
n

16



u1u2 u1b2 u1c2 b1u2 b1b2 b1c2 c1u2 c1b2 c1c2

u1b2 u1v2 u1b2 b1b2 b1v2 b1b2 c1b2 c1v2 c1b2

u1c2 u1b2 u1u2 b1c2 b1b2 b1u2 c1c2 c1b2 c1u2

b1u2 b1b2 b1c2 v1u2 v1b2 v1c2 b1u2 b1b2 b1c2

b1b2 b1v2 b1b2 v1b2 v1v2 v1b2 b1b2 b1v2 b1b2

b1c2 b1b2 b1u2 v1c2 v1b2 v1u2 b1c2 b1b2 b1u2

c1u2 c1b2 c1c2 b1u2 b1b2 b1c2 u1u2 u1b2 u1c2

c1b2 c1v2 c1b2 b1b2 b1v2 b1b2 u1b2 u1v2 u1b2

c1c2 c1b2 c1u2 b1c2 b1b2 b1u2 u1c2 u1b2 u1u2





giikk

giikl

giill

gi jkk

gi jkl

gi jll

g j jkk

g j jkl

g j jll



with

u1 = (1 − θ1)2, b1 = 2θ1(1 − θ1), c1 = θ
2
1, v1 = 2

[
θ21 + (1 − θ1)2

]

u2 = (1 − θ2)2, b2 = 2θ2(1 − θ2), c2 = θ
2
2, v2 = 2

[
θ22 + (1 − θ2)2

]
.
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Hence,

m = (X′X)−1X′g

=



u1u2 u1b2 u1c2 b1u2 b1b2 b1c2 c1u2 c1b2 c1c2

1
2u1b2

1
2u1v2

1
2u1b2

1
2b1b2

1
2b1v2

1
2b1b2

1
2c1b2

1
2 c1v2

1
2c1b2

u1c2 u1b2 u1u2 b1c2 b1b2 b1u2 c1c2 c1b2 c1u2

1
2b1u2

1
2b1b2

1
2b1c2

1
2v1u2

1
2v1b2

1
2v1c2

1
2b1u2

1
2b1b2

1
2b1c2

1
4b1b2

1
4b1v2

1
4b1b2

1
4v1b2

1
4v1v2

1
4 v1b2

1
4b1b2

1
4b1v2

1
4b1b2

1
2b1c2

1
2b1b2

1
2b1u2

1
2 v1c2

1
2v1b2

1
2 v1u2

1
2b1c2

1
2b1b2

1
2b1u2

c1u2 c1b2 c1c2 b1u2 b1b2 b1c2 u1u2 u1b2 u1c2

1
2c1b2

1
2c1v2

1
2c1b2

1
2b1b2

1
2b1v2

1
2b1b2

1
2u1b2

1
2u1v2

1
2u1b2

c1c2 c1b2 c1u2 b1c2 b1b2 b1u2 u1c2 u1b2 u1u2





giikk

giikl

giill

gi jkk

gi jkl

gi jll

g j jkk

g j jkl

g j jll



=



µ + 2τ1a1 + 2τ2a2 + τ
2
1d1 + τ

2
2d2 + 4τ1τ2iaa + 2τ1τ22iad

+2τ21τ2ida + τ
2
1τ

2
2idd

µ + 2τ1a1 + τ
2
1d1 − τ22d2 − 2τ1τ22iad

−τ21τ22idd

µ + 2τ1a1 − 2τ2a2 + τ
2
1d1 + τ

2
2d2 − 4τ1τ2iaa + 2τ1τ22iad

−2τ21τ2ida + τ
2
1τ

2
2idd

µ + 2τ2a2 − τ21d1 + τ
2
2d2 − 2τ21τ2ida + τ

2
1τ

2
2idd

µ − τ21d1 − τ22d2 − τ21τ22idd

µ − 2τ2a2 − τ21d1 + τ
2
2d2 + 2τ21τ2ida + τ

2
1τ

2
2idd

µ − 2τ1a1 + 2τ2a2 + τ
2
1d1 + τ

2
2d2 − 4τ1τ2iaa − 2τ1τ22iad

+2τ21τ2ida + τ
2
1τ

2
2idd

µ − 2τ1a1 + τ
2
1d1 − τ22d2 + 2τ1τ22iad − τ21τ22idd

µ − 2τ1a1 − 2τ2a2 + τ
2
1d1 + τ

2
2d2 + 4τ1τ2iaa − 2τ1τ22iad

−2τ21τ2ida + τ
2
1τ

2
2idd



,

with τ1 = 1 − 2θ1, τ2 = 1 − 2θ2.

Substituting the above results in equation (23) yields equation (24).
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Using equations (16–19), we have:

E(Laa) = 1
16

(
miikk − miill − m j jkk + m j jll

)

= 1
16

[ (
µ + 2τ1a1 + 2τ2a2 + τ

2
1d1 + τ

2
2d2 + 4τ1τ2iaa + 2τ1τ22iad

+2τ21τ2ida + τ
2
1τ

2
2idd

)

−
(
µ + 2τ1a1 − 2τ2a2 + τ

2
1d1 + τ

2
2d2 − 4τ1τ2iaa + 2τ1τ

2
2iad

−2τ21τ2ida + τ
2
1τ

2
2idd

)

−
(
µ − 2τ1a1 + 2τ2a2 + τ

2
1d1 + τ

2
2d2 − 4τ1τ2iaa − 2τ1τ

2
2iad

+2τ21τ2ida + τ
2
1τ

2
2idd

)

+
(
µ − 2τ1a1 − 2τ2a2 + τ

2
1d1 + τ

2
2d2 + 4τ1τ2iaa − 2τ1τ

2
2iad

−2τ21τ2ida + τ
2
1τ

2
2idd

) ]

= τ1τ2iaa.

This proves equation (26). Equations (27–29) can be proved similarly.

Let kaa =
1

16 (1 0 − 1 0 0 0 − 1 0 1)′.

Then,

var(Laa) = k′aa(X′X)−1kaa(σ2
r + σ

2
e) =

1
4n

(
σ2

r + σ
2
e

)
.

This proves equation (31). Equations (32–34) can be proved similarly.


