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Abstract — The multitrait detections of QTL applied to a mixture of full- and half-sib families
require specific strategies. Indeed, the number of parameters estimated by the multivariate meth-
ods is excessive compared with the size of the population. Thus, only multitrait methods based
on a univariate analysis of a linear combination (LC) of the traits can be extensively performed.
We compared three strategies to obtain the LC of the traits. Two linear transformations were
performed on the overall population. The last one was performed within each half-sib family.
Their powers were compared on simulated data depending on the frequency of the two QTL
alleles in each of the grand parental populations of an intercross design. The transformations
from the whole population did not lead to a large loss of power even though the frequency of
the QTL alleles was similar in the two grand parental populations. In these cases, applying the
within-sire family transformation improved the detection when the number of progeny per sire
was greater than 100.

multitrait / QTL / sib families / simulations

1. INTRODUCTION

The detection of quantitative trait loci (QTL) in animal populations in the
last decade has shown much evidence for loci determining quantitative traits of
agricultural interest in many species ([3], review). The hypothesis on genetic
determinism of the traits, as that resulting from single trait detection, often
suggests the existence of loci influencing several traits (e.g. SSC7 in pigs, [1]).
But most of the statistical methods used in such frameworks are aimed at de-
tecting QTL trait by trait. However, specific algorithms, called multitrait, have
been developed to test the hypothesis of pleiotropy. They exploit information
from the residual and/or genetic correlations between the traits [4,7,9].
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It has been shown that the multivariate strategy (MV) [6-8] applied to sib
families [4] is greatly limited in terms of power and computing time, due to
the high number of estimated parameters. Alternative techniques are based
on linear transformations of the traits, with the resulting variables being anal-
ysed univariately. A first strategy is based on a principal component analysis
performed on the phenotypic covariance matrix of the data (PCA). Since the
transformation is carried out on the phenotypic variability, it has been shown to
perform well in detecting a pleiotropic QTL [4,9, 12] only if the determinism
of the traits is simple, for example with one pleiotropic QTL determining the
traits. Another proposition [4] to overcome this limit is to maximise the ratio
of the variability due to the putative QTL and the residual variability at each
tested position. This latter strategy consists in performing a discriminant anal-
ysis at each tested position. It is based on the distribution of the phenotypes
of the progeny between groups of haplotypes inherited from their sire. In each
group, the performance for each trait is weighted by the probability that the
progeny received the corresponding haplotype.

In both cases [4, 14], a unique linear transformation of the traits was per-
formed from the covariance matrix estimated from the whole population. Thus,
the effects of the QTL alleles were assumed to be similar in all the families, i.e.
all sires, and eventually dams, were assumed to be heterozygous and to share
the same two QTL alleles. In animal populations, even coming from crosses
of divergent lines such as pig experimental populations [1], QTL alleles might
not be fixed, at least for some QTL. The aim of this study was, for one par-
ticular case of multitrait QTL detection, to evaluate the consequences on the
power and the accuracy of the position estimates of the segregation of the QTL
alleles in the grand parental populations in an intercross design.

2. METHODS

Multitrait methods and the single trait method (ST) were compared. These
methods applied to a mixture of full and half sib families are extensively de-
scribed in [4] and [11]. Only the major points are restated here.

The methods are based on an interval mapping method [10], considering a
mixture of full and half sib families. The population is considered as a set of
n sire families (i = 1,...,n), with n; mates for the sire i (j = 1,...,n;) and
n;; progeny for the dam ij (k = 1,...,n;;). Some hypotheses have been made
to improve the robustness and the time of computation, based on [2,5, 13]. In
particular, only the most probable sire genotype was retained in the calculation,
and the likelihood was linearised within full-sib families. This could not be
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totally linearised because of the uncertainty of the dam genotype. According
to the notations of Elsen et al. [2], the general form of the likelihood function
is then written at the x location as:

N =TT ptn s o | | (1)
k=1

i=1 jzl hd,‘j

where M; is the marker information of the sire family i; Es\l is the most prob-
able sire i genotype for genetic markers; hd;; is a dam ij genotype having a
probability greater than 0.1 for genetic markers; f; is the penetrance func-
tion, which is specific of the method and test applied.

The test statistic was an approximate likelihood ratio test [2]. Whatever the
method, the parameters of the methods were estimated within half- and full-sib
families as in [4].

2.1. Single trait analysis

For the single trait method, the penetrance function f;j is assumed to be
normal for each trait. For each quantitative trait /, the within half-sib and full-
sib family phenotypic means and average effects of the QTL substitution, and
the variance of the half-sib families were estimated under the hypothesis of the
segregation of a QTL at the x location.

All the following methods were aimed at detecting pleiotropic QTL by mul-
titrait analysis. The traits must be standardised before the analysis to avoid
confusion between the scales of measure and sizes of the effects.

2.2. Multivariate analysis

In the multivariate method, the penetrance function f; is assumed to be a
p-dimension multinormal function, where p is the number of analysed traits.
With this method, all the parameters estimated with the single trait analysis are
jointly estimated, plus the residual correlation coefficients. They were assumed
independent from the sire families to limit the number of estimated parameters
(see [4]).

2.3. Principal component analysis

Weller et al. [14] first proposed a univariate analysis of linear combinations
of the traits. Each linear combination is thus analysed as a trait, as described
for the single trait analysis.
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A principal component analysis was carried out from the phenotypic covari-
ance matrix, estimated from the overall population, leading to as many pheno-
typically independent variables as traits. Technically, it is easy to implement.
Since it is performed from the phenotypic data, it assumes that the residual
variability within QTL genotypes and the phenotypic variability have similar
magnitudes. Otherwise, the variability explained by the QTL can be split be-
tween different component variables, reducing the power of detection [4, 12].

We also tested the sum of the test statistics of the linear component variables
(sPCA) at each position. Such a strategy mimics the multivariate technique if
the residual variability within QTL genotypes and the phenotypic variability
are of the same magnitude [12].

2.4. Discriminant analysis

More recently, Gilbert and Le Roy [4] proposed to apply the discriminant
analysis (DA) technique to the multitrait detection of QTL. As for PCA, a
univariate analysis of a linear combination of the traits was conducted, but the
calculation of the linear combination was specific to the putative effect of the
tested position on the traits.

The linear combination which best discriminates the putative QTL effects
was established at each tested position. To calculate the linear combination,
groups of progeny were distinguished, based on the sires’ QTL haplotypes they
inherited at the tested position. This maximised the ratio of genetic variability
(between groups, due to the putative QTL) and the residual variability (within
groups, due to any other reason). This was thus the best way to discriminate
between the QTL effects on all the traits within the sire families. Moreover, if
the sires and dams have the same QTL alleles, as in intercross designs between
breeds fixed for the QTL alleles, it is also the best way to estimate QTL effects
within full-sib families [4].

Two different strategies were applied to define the groups of progeny. First,
two groups were defined from the overall population, with respect to the grand
parental origin of the sire’s haplotypes, as in [4]. The transformation was then
simply performed from the genetic and residual variabilities estimated from
the overall population (PDA), as for PCA. But such a transformation supposed
at least that the QTL alleles in the grand parental breeds had different frequen-
cies, to make the between group variability high enough to be detected. Thus,
we implemented a second strategy where the groups of progeny were defined
within each half-sib family. The linear combination was then specific to the
QTL alleles of the sire considered. If the QTL alleles were different between
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the sires, the linear combination should thus better characterise their specific
effects on the traits. This strategy will be denoted FDA (Familial DA). This
assumed that the number of progeny per sire was large enough to accurately
estimate the covariance matrix. Then, it was expected to improve the detec-
tion when the QTL alleles were not fixed in the grand parental populations.
But only the sire’s haplotypes were considered to perform the transformation.
Thus, if it is homozygous for the QTL, the linear combination will not discrim-
inate between the groups. Then, the information from heterozygous mates will
be lost.

3. A COMPARISON OF POWER AND POSITION ESTIMATIONS

For a particular linkage group, we tested the hypothesis HO “there is no QTL
for any trait on the linkage group" vs. H1 “there is a QTL determining at least
one trait".

3.1. Studied cases

The population came from an intercross design between two grand parental
populations, respectively one population of grand sires and one population of
grand dams. The three generations of the design were denoted FO, F1, F2.
Five hundred F2 progeny were simulated, with 25 progeny per F1 dam. The
number of F1 sires varied from 2 to 10. Then, the number of progeny per sire
(nps) varied from 250 to 50.

Nine genetic markers evenly distributed on a 1 M-long linkage group were
simulated. Each had five isofrequent alleles, identical in the two grand parental
populations. We considered two traits with equal polygenic heritabilities of 0.2,
residual variances of 1 and a residual correlation between the traits equal to
—0.4. Under the general H1 hypothesis, a QTL influencing the two traits was
located at 31 cM on the linkage group. Its two alleles, denoted 1 and 2, had an
additive substitution effect of 0.50 on each trait.

This design was similar to one of those reported in [4] with 10 F1 sires and
fixed QTL alleles. The multitrait methods PDA, PCA and sPCA were already
shown to be powerful to detect pleiotropic QTL in such designs. In the present
study, the frequencies of the QTL alleles in the grand parental populations
varied and two different situations were studied:

(1) The QTL segregated in the two grand parental populations with fp(1) =
fm(2) varying between 1 and 0.5, where fp(i) and fm(i) (i = 1,2) were the fre-
quencies of allele i in the grand sire and in the grand dam populations respec-
tively. Except when fp(1) = fm(2) = 1, the 4 QTL genotypes were represented
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in the F1 generation. When fp(1) = fm(2) = 0.5, the groups defined from
the grand parental origin of the sire’s haplotypes to perform the discriminant
analysis on the overall population were then theoretically identical.

(2) The QTL segregated in only one of the grand parental populations (say
the grand sires). fp(1) varied from 1 to 0.25 (when fp(1) = 0, all the F1 in-
dividuals are homozygous 2/2 for the QTL), and fm(2) = 1. These simulated
designs were more realistic than the case (1). They could be related to exper-
imental crosses between selected (supposed to be the FO females) and exotic
(supposed to be the FO males) populations.

3.2. Power calculation

We performed 2000 simulations under HO to estimate chromosome-wise
thresholds at the 5% level, and 1000 simulations under H1 to determine the
powers. The five methods were successively applied on each replicate: ST,
PCA, PDA, FDA and sPCA. For ST and PCA, rejection thresholds were cor-
rected for the number of analysed variables by an approximate Bonferroni cor-
rection. This corresponded to the division of the type-I error by the number of
variables analysed, considered as being independent.

Due to the characteristics of the QTL simulated, the principal component
variable which detects the pleiotropic QTL was associated with the lowest
eigenvalue of the phenotypic covariance matrix [4]. Thus, only the results from
the analysis of this variable will be presented for PCA.

3.3. Accuracy of the position estimates

The accuracy of the position estimates was assessed by considering the
mean squared errors (MSE) obtained over the 1000 simulations performed to
calculate power. It synthesises the bias and the standard deviation of the esti-
mates (MSE = biais? + standard deviation?).

4. RESULTS AND DISCUSSION

Tables I and II summarise the power of the methods when the QTL alle-
les segregate in at least one of the grand parental populations. The power of
the single-trait method was always improved by the multitrait strategies. This
was the consequence of the determinism of the two traits: this great improve-
ment from the multitrait analysis compared with single trait detection when
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the product of the effects of the QTL on the traits with the residual correlation
is negative, has been described by many authors [4,6-9, 12]. The decrease in
power due to the decrease of fp(1) did not modify this statement.

When fp(1) = 1, the QTL alleles were fixed in the grand parental popu-
lations. The more powerful method was PDA, followed by PCA for all nps.
Concerning the MSE of the position estimates (Tabs. III and IV), similar re-
sults were obtained: PDA and PCA had the more accurate estimations, with a
similar magnitude. The accuracy of SPCA and MV were twice those of PCA
and PDA. FDA was intermediate. This order was expected from previous re-
sults [4], since the transformation from the overall population did not miss
information with respect to the allele segregation.

In all these cases, the results obtained for MV and sPCA were very similar,
as stated by [4, 12]. The power was generally the lowest, which might be due
to a huge amount of parameters to estimate together, compared with the trans-
formations performed on the population. They are not described separately
below. Similarly, the results on the power and the MSE of the position esti-
mates showed similar decreases with the decrease of fp(1). The trends of the
MSE are restated separately in the following paragraph only when they were
different from the trends of the power.

4.1. QTL segregating in the two grand parental populations

Table I summarises the power of the methods when fp(1) = fm(2), and
Table III the corresponding MSE of the position estimates.

As the frequencies decreased, PDA and PCA powers tended to reduce faster
than those of FDA and sPCA. The fastest decrease concerned PDA. It turned
to be equivalent to the other methods in terms of power when the QTL alleles 1
and 2 were isofrequent. This was due to the equiprobability of the four QTL
genotypes in the F1 generation. It made the two groups of progeny theoretically
identical. Then, the strategy based on the discriminant analysis performed from
the overall population should become inefficient. Actually, PDA did not lose
that much power as compared with the other methods. Indeed, a low number
of sires in the design (from 2 to 10) implied great sampling variations of the
QTL genotypes of the sires between the simulated designs. This implies that
even when the allele frequencies were assumed equal on average, one of the
QTL alleles was often more represented by chance in the population. Thus,
enough between-group variability was created, making it possible to detect the
pleiotropic QTL without losing much power compared with the other methods.



Table 1. Power (%) when the QTL is fixed or the QTL is segregating in the two grand parental populations.

fp(1) ¢ 0.500 0.625 0.750 0.875 1.000

nps® 50 100 250 50 100 250 50 100 250 50 100 250 50 100 250
PDA ¢ 31.0 404 46.1 374 450 525 51.0 59.2 61.6 68.7 763 74.8 89.1 924 954
FDA 299 415 484 343 485 51.6 445 550 59.1 547 69.0 739 745 835 943
PCA 36.2 479 479 428 512 545 50.8 604 624 67.5 765 74.6 864 914 9438
sPCA 32,1 40.7 432 35.6 432 482 449 493 54.1 558 66.6 684 75.1 80.6 8&7.1
MV 31.9 41.0 44.1 349 432 90 473 495 540 572 657 682 75.7 81.1 87.7
ST 87 119 11.6 8.1 135 13.0 114 157 15.6 139 202 215 203 26.1 26.6

“ QTL allele 1 frequency in the grand sire population = QTL allele 2 frequency in the grand dam population.
b number of progeny per sire.
¢ PDA: discriminant analysis on the overall population; FDA: discriminant analysis within half-sib families; PCA: principal component analysis;

sPCA: sum at each position of the likelihood ratio tests of the principal component variables; ST: single trait method; MV: multivariate analysis.
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Table II. Power (%) when the QTL is fixed or the QTL is segregating in only one grand parental population.

fp(1)“ 0.25 0.50 0.75 1.00

nps® 50 100 250 50 00 250 50 100 250 50 100 250
PDA ¢ 15.1 205 257 40.1 474 512 69.4 726 738 89.1 924 954
FDA 13.0 188 23.7 314 403 49.0 549 64.1 71.6 745 835 943
PCA 142 202 229 38.1 46.7 505 68.6 71.8 727 86.4 914 948
sPCA 153 185 21.8 353 38.1 46.0 56.5 599 643 75.1 80.6 87.1
MV 16.8 18.8 224 36.3 383 46.2 56.8 60.5 65.0 75.7 81.1 87.7
ST 42 66 64 10.0 12.1 146 14.0 169 20.8 203 26.1 26.6

¢ QTL allele 1 frequency in the grand sire population (QTL allele 2 is fixed in the grand dam population).

b number of progeny per sire.

spoyaw uondNdp 1LY JO 1omod

¢ PDA: discriminant analysis on the overall population; FDA: discriminant analysis within half-sib families; PCA: principal component analysis;
sPCA: sum at each position of the likelihood ratio tests of the principal component variables; ST: single trait method; MV: multivariate analysis.
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Table III. Mean squared errors of position estimates (10?) when the QTL is fixed or the QTL is segregating in the two grand parental
populations.

fp(1) ¢ 0.500 0.625 0.750 0.875 1.000

nps® 50 100 250 50 100 250 50 100 250 50 100 250 50 100 250
PDA¢ 599 5.63 5.03 590 537 422 428 394 392 2.64 242 221 1.22 090 0.71
FDA 578 525 4.1 542 490 451 448 3.69 4.04 3.89 264 243 1.92 143 0.89
PCA 391 356 4.04 3.63 3.76 3.23 290 2.82 3.04 224 153 1.44 1.07 0.85 0.74
sPCA 541 480 5.66 5.32 450 475 441 374 4.19 350 293 2.66 200 146 133
MV 5.59 4.66 5.56 526 452 4.6l 420 3.68 4.26 351 313 2.60 203 148 1.30
ST 839 8.71 8.8l 858 846 797 8.05 739 17.72 775 694 6.71 6.35 546 5.60

¢ QTL allele 1 frequency in the grand sire population = QTL allele 2 frequency in the grand dam population.

b number of progeny per sire.

¢ PDA: discriminant analysis on the overall population; FDA: discriminant analysis within half-sib families; PCA: principal component analysis;
sPCA: sum at each position of the likelihood ratio tests of the principal component variables; ST: single trait method; MV: multivariate analysis.
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Table IV. Mean squared errors of position estimates (10?) when the QTL is fixed or the QTL is segregating in only one grand parental
population.

fp(1)“¢ 0.25 0.50 0.75 1.00

nps® 50 100 250 50 00 250 50 100 250 50 100 250
PDA¢ 820 8.13 7.59 468 525 5.15 2.09 257 234 1.22 090 0.71
FDA 840 827 7.87 520 538 523 3.68 291 2.58 1.92 143 0.89
PCA 745 7.68 7.08 349 398 441 1.96 192 212 1.07 0.85 0.74
sPCA 835 821 829 5.03 537 557 3.10 295 333 200 146 133
MV 835 821 829 479 535 5.6l 3.06 332 342 203 148 1.30
ST 10.15 10.13 9.73 843 825 8.32 720 7.17 7.39 6.35 5.46 5.60

¢ QTL allele 1 frequency in the grand sire population (QTL allele 2 is fixed in the grand dam population).

b number of progeny per sire.

¢ PDA: discriminant analysis on the overall population; FDA: discriminant analysis within half-sib families; PCA: principal component analysis;
sPCA: sum at each position of the likelihood ratio tests of the principal component variables; ST: single trait method; MV: multivariate analysis.
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For PCA, the detection was based on the phenotypic covariance matrix of
the traits in the progeny. Since fp(1) = fm(2), the general shape of the phe-
notypic data was not modified. Thus, the decrease of the power was only a
consequence of a decrease of the number of informative parents F1. For FDA,
the power of detection was clearly improved by the increase of nps. Indeed,
the estimation of the within-family covariance matrix was much more accurate
for 250 nps than for 50 nps. This power increased by 30% on average when
nps was between 50 and 250, compared with 17 and 19% respectively for PCA
and PDA.

For the two latter methods, the improvement of the power was greater when
nps increased from 50 to 100 (22 and 14% respectively) than when it increased
from 100 to 250 (2 and 9% respectively). These percentages tended to be
higher when the frequencies of the QTL alleles decreased, due to a greater
impact of the different QTL allele segregation between the families.

On the one hand, these trends led to an inversion in the order of the multitrait
methods between extreme frequencies of QTL alleles in the grand parental
populations. On the other hand, FDA was as powerful as PDA when nps was
greater than 100 or 250, depending on fp(1). As fp(1) decreased, the advantage
of FDA compared with PDA increased. FDA can then be employed for the
analysis of designs in outbred populations with large half-sib families, such as
(grand)daughter designs.

One important specificity of the MSE of the position estimates, compared
with the power, concerned PCA. It was always the more accurate method to
estimate the position in the cases we simulated. Otherwise, the evolution of the
MSE with respect to the decrease of fp(1) or the number of progeny per sire
followed trends similar to that of the power.

4.2. QTL segregating in only one of the grand parental populations

Compared with the previous situation, two points are to be highlighted
(Tab. II for the power, Tab. IV for the MSE of the position estimates). In this
case some of the F1 individuals were homozygous 2/2 for the QTL. The F2
progeny QTL genotypes then presented an excess of allele 2. Thus, the general
shape of the phenotypic data was modified compared with the cases with equal
proportions. This potentially decreased the power of PCA and sPCA, since the
phenotypic component variables were modified.

First, PDA was the more powerful method in most cases. FDA was then
never more powerful than PDA. Indeed, in this situation, only one class of QTL
heterozygous F1 existed in the design, with allele 1 coming from the grand sire
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and allele 2 from the grand dam. But when fp(1) # 0, F1 homozygous 2/2 led
to an excess of the QTL genotype 2/2 and a lack of 1/1 in the progeny. Thus,
the phenotypic covariance matrix no longer represented the variability due to
the QTL. On the contrary, the two groups of haplotypes determined from the
overall population by PDA were always different. But actually, the power of
PCA did not decrease more than those of the other methods.

Second, the improvement of the power of PDA expected from FDA was
null in this case. The powers of PDA and FDA were similar for all fp(1) only
if nps = 250. Then, FDA was powerful only when the number of progeny
per sire was enough (greater than 200) to accurately estimate the covariance
matrix.

Finally, very similar trends were observed for the accuracy of the QTL po-
sition estimates, but as previously noted, the accuracy was always better for
PCA, in a lower magnitude than when fp(1) = fm(2).

S. CONCLUSIONS

We compared two multitrait methods based on linear transformations of the
traits from the overall population with one multitrait method based on within
half-sib family transformations. When both QTL alleles were represented in
the grand parental populations, the discriminant analysis performed from the
overall population was still powerful, even if the groups of progeny were theo-
retically identical, due to the small and finite number of sires simulated. When
the QTL alleles were not fixed in one grand parental population, however, the
excess of progeny of the homozygous QTL genotypes did not hugely penalise
the power of PCA. Thus, the multitrait strategies based on transformations
from the overall population are robust when the QTL alleles are not fixed in
FO and the number of half sib families is relatively low (less than 10).

The within half sib family discriminant analysis was at least as powerful
as PDA only when the number of progeny per sire was greater than 200 in
our designs. It was a consequence of the lack of accuracy of the covariance
matrix estimation by FDA when nps was low, and again the small number
of sires which maintained the power of PDA. This could also come from an
increase in the number of parameters to be estimated due to an increase in the
number of sires in the design, the (co)variance matrix being estimated within
half-sib families. For example, in the cases simulated here, with two sires in
the pedigree, there were 52, 58 and 98 parameters to estimate under HI1 re-
spectively for PDA, FDA and MV. With 10 sires, it became 76, 130 and 146
respectively for PDA, FDA and MV. The relative advantage of the discriminant
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analysis compared with MV (or SPCA) in terms of the number of parameters
estimated might be reduced in such circumstances, but there is still a great ad-
vantage in terms of computing. In practice, in experimental crosses for QTL
detection between divergent breeds such as in pigs, which correspond to the
simulated designs, PDA does not need to be replaced by FDA when the QTL
alleles are not supposed to be fixed. But analysing large half-sib families, FDA
represents an attractive alternative, where sire family contribution to the test
statistic might be better estimated than with PDA.

These results were obtained for a very simple determinism of the traits. In
particular, it would be interesting to test the ability of these methods to detect
pleiotropic QTL when the phenotypes are also distributed differently between
families due to the segregation of other QTL. On the contrary, the power of
the methods when the QTL has more than two alleles in at least one of the FO
population should be tested.
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