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Summary - In this study ’iterative peeling’ is introduced, a method equivalent to
the traditional recursive peeling method for computing exact likelihoods in nonlooped
pedigrees, but which can also be used to obtain approximate likelihoods in looped
pedigrees. Iterative peeling is an interesting tool for animal breeding, where exact recursive
peeling is generally unfeasible due to the abundant number of loops in animal pedigrees.
In simulations, hypothesis testing and parameter estimation were compared based on
approximate likelihoods in looped pedigrees and exact likelihoods in nonlooped pedigrees,
showing no biases introduced by the approximation in looped pedigrees.
likelihood / pedigree peeling / major gene / looped pedigree

Résumé - Calcul approximatif de vraisemblance pour un modèle monogénique dans
de grands pedigrees à boucles. Dans cette étude on introduit une procédure itérative
de condensation de l’information contenue dans un pedigree, appelée « épluchage », qui
est équivalente à l’épluchage récursif pour le calcul des vraisemblances exactes dans des
pedigrees sans boucles, mais qui est également utilisable pour le calcul de vraisemblances ap-
proximatives dans les pedigrees à boucles. L’épluchage itératif est une méthode intéressante
en génétique animale où la méthode récursive exacte est généralement inapplicable à cause
du grand nombre de boucles dans les pedigrees animaux. À l’aide de simulations, on a
comparé des tests d’hypothèse et l’estimation de paramètres basés sur des vraisemblances
approximatives dans des pedigrees à boucles et des vraisemblances exactes dans des pedi-
grees sans boucles, montrant qu’il n’y a pas de biais introduit par le calcul approximatif
dans des pedigrees à boucles.

vraisemblance / condensation d’information de pedigree / gène majeur / pedigree à
boucles



INTRODUCTION

Research into the use of major gene models in animal breeding has been aimed
mainly at approximations to a mixed inheritance model, including polygenes, in
one generation half-sib structures (Hoeschele, 1988; Le Roy et al, 1989; Knott et al,
1992). Because of the pedigree loops that arise in animal breeding situations, ex-
tension to multigeneration pedigrees is difficult. A pedigree loop arises when 2
individuals are connected by more than one path of descent or marriage relation-
ships. Lange and Elston (1975) described various types of loops, among which are
inbreeding loops, marriage rings and marriage loops. In animal breeding pedigrees
these kinds of loops are very common. In particular, multiple matings which are
generally applied to males and often to females, result in many marriage loops and
marriage rings.

For genotype probability and likelihood computation, loops can only be dealt
with in an exact manner in pedigrees with a few simple non-overlapping loops using
the traditional recursive peeling method (Elston and Stewart, 1971; Cannings et al,
1976; Cannings et al, 1978). However, in highly looped pedigrees, common in animal
breeding, exact recursive peeling is too demanding computationally and recursive
peeling is not flexible enough to allow for approximate computations.

In this study we introduce ’iterative peeling’. Iterative peeling is developed as
an exact method for application in nonlooped pedigrees, equivalent to recursive
peeling, but which, unlike the original recursive variant, can be used without
modifications in looped pedigrees to obtain approximate likelihoods. The main
objective of this paper is to introduce iterative peeling for such approximations
in looped pedigrees, allowing for a more general application of major gene models
in animal breeding. Using simulations, the usefulness of the approximation for
likelihood-based hypothesis testing and parameter estimation in looped pedigrees
is investigated. A monogenic model will be considered, which can be extended to a
mixed inheritance model, as will be discussed.

RECURSIVE AND ITERATIVE PEELING

In the first section, recursive peeling is described for obtaining monogenic model
likelihoods in nonlooped pedigrees. In the second section, ’iterative peeling’ is
introduced as an equivalent method for exact computations in nonlooped pedigrees.
The equivalent exact method in nonlooped pedigrees can be used as an approximate
method in looped pedigrees.

Recursive peeling

Probability and likelihood computations in nonlooped pedigrees can be done by
recursive peeling (Elston and Stewart, 1971; Cannings et al, 1976; Cannings et al,
1978) using 2 basic peeling operations of ’peeling up’ and ’peeling down’. Roughly,
considering a single family, a peel-up operation represents the information in a
family in probabilities for the genotype Gi of a parent i, and a peel-down operation
represents this information in probabilities for the genotype Gk for an offspring k.
Here, a notation based on Van Arendonk et al (1989) is used, where the result



of the peel-up operation is denoted by prog(Gi) and the result of the peel-down
operation is denoted by prior(Gk). The corresponding notation in Cannings et al
(1976, 1978) is the R*(..;Gi) function for peeling up and the R+(..;G!) function for
peeling down.

Peeling operations are used recursively, eg, the computation of a prog term for
a parent based on progeny data may include previously computed prog terms of
those progeny, representing information from grand-progeny. The aim of peeling is
to condense all information from a pedigree into a prior and prog term for a single
individual 1, obtaining the likelihood L for all data in the pedigree as:

where f (y, I Gi) is the penetrance function, which is the probability for the observed
data yl on individual l, given that it has genotype Gi. The individual may be an
individual from the base population, in which case the base-population genotype
frequency P(G!) is used in place of prior(Gi). Individual l may also have no own
data or no progeny, in which case the corresponding penetrance term or prog term
is removed. Computationally this is implemented using a penetrance or prog term
containing l’s.

Peeling equations

A peeling equation for an individual is obtained by considering the collection of
possible base-population genotype frequencies, genotype transmission probabilities,
penetrance probabilities and other peeling terms pertaining to the individuals in its
family and summing over all possible genotypes of the family members. The terms
thus entering a peeling equation are difficult to give in general. Here, equations will
be given to use peeling in a pedigree structure with dams nested within sires. In
this structure a family is a half-sib family of one sire with several mates, containing
groups of full sibs which are, across groups, paternal half-subs. Three different
peeling equations are considered: 2 for peeling up, dependent on whether this is
done for a sire or a dam, and 1 for peeling down. In the peeling equations, prior,
prog and penetrance functions on family members are specified in all places where
they can enter. When these are not relevant, eg, when a progeny does not have

progeny of its own, these are removed or, computationally, terms containing l’s
are used. Prior terms for individuals in the base populations are substituted with
base-population genotype frequencies.

To condense all information in a prog term for a sire i the following expression
is used:

prog(Gi) = rljrgj pr2or(Gj) fly7lC-T7)Hk!Gk Pl!’klGi, Gj) f(ykl -Gk) !r!9(CTk) [2]

where j = 1 to ni are mates of i, each mate having k = 1 to nij progeny, and

P(Gk !Gi, G! ) is the genotype transmission probability of sire i and a dam j to
offspring k. To condense all the information from a half-sib family into a prog term
for 1 particular dam j* of the family, the following expression is used:



where i is the sire of the family, prog-j. (Gi) is like in equation [2], but excluding
dam j* and k = 1, n2!* are progeny of dam j*. To condense all the information in
a prior term for 1 particular progeny k* with dam j*, the following expression is
used:

where i is the sire of the family, phs(Gi) is a term that includes information on
the paternal half-sibs of k*, which is a function of the genotype of its sire i and is
computed as:

Iterative peeling

Iterative peeling is equivalent to recursive peeling used in nonlooped pedigrees.
Iterative peeling is based on algebraic partitioning of the likelihood and on repeated
computation of peeling equations, based on the idea of iterative computation of
genotype probabilities (Van Arendonk et al, 1989).

Partitioning of likelihood

The aim of obtaining the likelihood of all data using equation [1] requires families
to be handled in a certain order and requires peeling, within each family, to be
in a certain direction. Peeling operations can be used to partition the likelihood
pertaining to parts of the pedigree. This partitioning is continued until parts are
obtained pertaining to single families. This allows a family-wise evaluation of the
likelihood, and the requirement of peeling to have a direction within each family
becomes obsolete.

Consider the pedigree with 5 individuals in figure 1. In this pedigree 2 families
are present, one family with individuals 1, 2 and 3, and a second with individuals 3,
4 and 5. Here, one partitioning above and below individual 3 divides the pedigree in
2 families, with individual 3 being in both families. Individual 3 is called a linking
individual. The likelihood for a monogenic model, assuming data is available on all
5 individuals, is computed as:

Now, L is multiplied and divided by Li =!1!2!03 P(Gi) P(G2) P(G3 ) Gi , G2)
!(Y1IG1) /(y2!G2), which is the likelihood of family 1, ignoring data on progeny 3.
Some reordering yields:



where the part !01!02 P(Gi) P(G2) P(G3 ) Gi , G2) !(Y1IGd f(y2 ) G2 ) has been iso-
lated. This part is prior(G3). The term defined as L1 can be rewritten as EG3
I;G1I;c2 P(G1) P(G2) P(G3IG1, G2) !(Y1IG1) !(Y2IG2), which is I;c3 prior(G3).
This simplifies L to:

where prio&dquo;sC( G3) stands for a scaled, or normalised, prior term. Now the likelihood
can be written as L = L1L2, or ln(L) = ln(Li) + ln(L2), with one likelihood term
per family. This is a partitioning using a prior term for the linking individual. It
shows that for this type partitioning (i) in the family where the linking individual is
a progeny, after the partitioning, information on the linking individual, ie own data
and progeny data, is ignored; and (ii) in the family where the linking individual is
a parent, a scaled prior term is used for the linking individual. This term is used
in a manner like a base-population genotype frequency for base individuals. The
scaled prior term for a linking individual 1, is computed in general as:

Although the partioning is shown only for 1 example, the partitioning is very
general. The term L1 above is in general the sum of the prior term for a linking
individual 1, which is the collection of all probability terms pertaining to anterior
individuals of and the transmission probability to l, summed over all possible
genotypes of l and of its anterior individuals. At the same time this term represents
the likelihood of the entire anterior part of the pedigree and l, excluding data on
l. The remaining part after the partitioning, L2 in the example, is the likelihood
of the posterior part of the pedigree of l, including l with a scaled prior term. In
larger pedigrees this partitioning is repeated to yield parts corresponding to single
families. When repeating the partitionings, results of earlier partitionings must be
taken into account, eg, the result that after a partitioning information on a linking
individual is ignored in the family where the linking individual was a progeny.



The likelihood of a pedigree can be partitioned entirely using prior terms.
However, the iterative computation, as will be introduced hereafter, can be speeded
up by also using a partitioning of the likelihood using a prog term. Showing
this based on the example, the likelihood L is multiplied and divided by a term
representing the likelihood of family 2, ignoring data on individual 3, L2 = EG3
EG4EG5 P(Ga) P(G5IG3, Ga) !(Y3IG3) /(!!G4), which leads to: 

2

Here a term EG4EG5 P(G4) P(G5lG3, G4) !(Y4IG4) !(Y5IG5) has been isolated,
which is prog(G3). The division by L2 scales this term, L2 being EG3 !rog(G3).
Hence, L is written as:

where protC( G3) denotes the scaled or normalised prog term. For a partitioning
using a prog term it is seen that (i) in the family where the linking individual is
a progeny, a progs’ term is added as information for the individual; and (ii) in the
family where the linking individual is a parent, all information from observations
and from prior terms is ignored. The scaled prog term for a linking individual l is
generally computed as:

Partitioning in a nested design

In a nested design, partitionings are carried through until parts are obtained
corresponding to sire families. In such families, several female parents can be
present. The linking individuals are all the sires and dams of the families, except
when they are in the base population. In this design we consider a partitioning
using a prog term for each male and a prior term for each female that is a linking
individual. When all parents of a family are in the base population, the part of the
likelihood pertaining to such a family is computed as:

where i indicates the sire of family s, j sums over the dams of the family, k indicates
male progeny that are linking individuals, 1 indicates female progeny that are linking
individuals and m indicates all other progeny. When the sire of the family is not in
the base population, the term P(Gi) f (y2!Gi) on the first line of [5] is removed and
for each dam that is not in the base population the term P(Gj) on the second line



of [5] is replaced with priof’c (G j)’ The considered partitionings using prog terms
for all male linking individuals lead to this removal of information from sires on the
first line of [5] when sires are not in the base population and lead to the inclusion of
the progsc for males on the third line of equation !5!. The considered partitionings
using prior terms for all female linking individuals, lead to the inclusion of a priors!
term on the second line of [5] when dams are not in the base population and the
removal of all information of females on the fourth line of equation !5!. Based on
the results from the previous paragraph, the likelihood of the entire pedigree after
the partitionings is:

Repeated computation of peeling equations

Iterative peeling uses repeated computation of peeling equations. The repeated
computation is a method to establish the order in which equations should be
handled. Therefore, iterative peeling does not require knowledge of such an order
beforehand, as is required for recursive peeling.

For each individual a prior and a prog term is computed and remains stored
because results of peeling terms can be required as input for the computation of
other peeling terms. Iterative peeling computes a series of solutions priorlo, rtorlil,
etc, for these terms. Starting values are taken for individual i as pr!or!(Gt) =
P(Gi), the genotype frequencies in the base population and progl°I (Gi) equals 1 for
all Gi. Iterative computation starts by computing prior[l] (Gi) for each individual i,
in order of descending age. Evaluation of these prior terms is based on prior!l! terms
of parents, which are available because older individuals are updated before younger
individuals, and on proglol terms of sibs. Subsequently, proglo (Gi) is computed
for each individual i, in order of ascending age. Evaluation of these prog terms is
based on prior!l! terms of mates, on prog[l] terms of progeny, which are available
because now younger individuals are updated before older individuals, and for
female parents, on a progiol or prog[l] term of their male mate. Whether this last
term is already updated as prog[l] depends on the order in which prog terms are
computed. After computation of all prior!l! and prog[l] terms is completed, a new
iteration starts computing prior[2] and prog!2!, etc.

Starting values are such that priorlol terms are correct for all individuals in the
base populations, and proglol terms are correct for all individuals without progeny.
Terms that can be correct after the first cycle of computations are, for instance,
priorl1] terms of individuals descending from 2 base individuals and prog[l] terms

of parents without grandprogeny. Correct computation of a term is shown when in
the next cycle recomputed terms are equal to old terms. Once it is found that a
term is correctly computed, recomputation can be omitted in following iterations
of the algorithm. The order in which terms are found correct gives information on
the order in which recursive peeling could be used. Generally, in each iteration,
reasonably large groups of terms appear correct, keeping the number of cycles
required to compute all terms correctly reasonably small, typically about the
number of generations in the data set. When all terms are found correctly computed,
likelihood of the data can be obtained using [5] and !6!.



Application in looped pedigrees

The series of solutions priorf°], prio!ll, etc, obtained with iterative peeling can be
considered as temporary solutions for the required terms, corresponding to solutions
based on a not yet fully determined peeling order. ’Temporary’ likelihoods can
also be computed using [5] and [6] based on a not yet fully determined order.
In nonlooped pedigrees, a peeling order can eventually be found and temporary
solutions become exact. In looped pedigrees, a peeling order for recursive peeling
cannot be determined. In the iterative peeling algorithm the impossibility of finding
a peeling order in looped pedigrees is shown by continuing changes in peeling
terms. In looped pedigrees, these changes were found to decrease in size quickly and
temporary likelihoods were found to stabilise, supplying an approximation. Because
in iterative peeling every following update of terms includes information from 50%
less related individuals, a geometric rate of convergence is plausible. As a stopping
rule to use the approximation in looped pedigrees, we used the average absolute
difference between subsequent normalised heterozygote probabilities, based on
computed peeling terms. For convenience, only the heterozygote probability, which
changed the most, was monitored.

SIMULATION STUDY

Application of iterative peeling to obtain approximate likelihoods in looped pedi-
grees was the aim of this study. Simulations were therefore performed to investigate
the usefulness of this approximation. Because exact computations are unfeasible in
large looped pedigrees, approximate likelihoods could not be compared with exact
ones. Hence, an indirect way to study the approximation was found by studying the
distribution of test statistics and of parameter estimates over a number of replicated
analyses in looped as well as in nonlooped pedigrees. In nonlooped pedigrees exact
likelihoods could be computed, serving as a reference. Simulations and analysis are
based on a biallelic autosomal locus and a normal penetrance function.

Simulated data

Data sets had a nested structure each generation, with full-sibs nested within
paternal half-sibs. Three different data structures were used (table I), 1 structure
without loops and 2 structures with loops. The data structures were designed to
contain approximately the same number of observations, the same number of base
individuals (structure 1 vs 2) and the same family sizes (1 vs 3). In structures 2 and
3, the third generation was produced by taking 1 son from each sire and 1 daughter
from each dam, maintaining the same breeding structure across generations. No
directional selection was practised, and breeding females for a male were each
taken from a different sire-family. Half- and full-sib matings were avoided, so that
inbreeding was absent within the 3 generations considered. The additional third
generation in structures 2 and 3 caused many pedigree loops in the form of marriage
loops. All individuals used for breeding the last generation, ie 120 for structure 2
and 60 individuals for structure 3, were involved in 1 or more such loops, often
overlapping.



Genotype Gi of an individual equals 1, 2 or 3 corresponding to genotypes A1A1’
AlA2 and A2A2 at an autosomal locus. Genotypes for individuals in the base
population were randomly sampled using genotype frequencies according to Hardy-
Weinberg proportions, after which genotypes of other individuals were randomly
sampled based on realised parental genotypes assuming Mendelian transmission
probabilities. For each individual a random normally distributed environmental
component was sampled and added to a pre-determined effect of each genotype to
obtain a phenotypic observation. Random numbers were generated using GGUBFS
and GGNQF (IMSL, 1984). Details on the parameters used for these simulations
are given in the following sections.

Model and model fitting

The statistical model can be specified by the probability terms in !2!, [3] and [4]
which are P(Gi), the genotype frequency in the base population for individual i,
P(GiIGs, Gd), the transmission probability for individual i given the genotypes of
its sire s and dam d, and the penetrance function /(</t!G,), the probability for
the data y2 on individual i given the genotype Gi of individual i. From these 3

terms, transmission probabilities are assumed known to be Mendelian. Genotype
frequencies in the base population depend on the unknown frequency f of the
A1 allele, assuming Hardy-Weinberg proportions of genotypes. The penetrance
function for an individual i is taken as:

This penetrance function is a normal probability density function with variance
a-2 around the mean JiGi for genotype Gi. No dominance is assumed. For analysis,
means attributed to the genotypes are expressed as Ji1 = p - 1/2t, !2 = tc and
A’3 = Ji + 1/2t, where t is the difference between homozygotes, referred to as the
gene effect. The unknown parameters in the model are then f, p., t, and Q2.

Likelihoods were computed using iterative peeling. For structure 1, without
loops, computations were done exactly by repeating the computations until no
further changes occurred, having found the order for recursive computation. For
the looped pedigrees of structures 2 and 3, iterative peeling was used to obtain
approximate likelihoods. The stopping rule was a change less than 10-8 for the

average absolute heterozygote probabilities of all individuals. The maximum of the
likelihood was sought using the downhill simplex algorithm (Nelder and Mead,
1965), using as convergence criteria the variance of likelihood values of points in
the simplex to be less than 10-12.



Comparisons

Looped and nonlooped pedigrees were compared in hypothesis tests and parameter
estimation. In hypothesis testing, a null hypothesis postulating the absence of a
major gene is used, described by a model with parameters it and a2, and an
alternative hypothesis postulating the presence of a major gene is used, described
by a model with parameters f, /1, t and a2. Tests are based on the likelihood ratio
(LR) test statistic, which is twice the natural logarithm of the ratio of maximum
likelihoods under each hypothesis. Type I error and power, the complement of type
II error, were investigated at their nominal level, ie assuming the expected classical
asymptotic X2 distribution for the LR test statistic under the null hypothesis
(Wilks, 1938). Using the classical rules, rejection thresholds were obtained from a X2 2
distribution with 2 degrees of freedom, ie the difference in number of parameters
between the null and alternative hypothesis. It should be noted that for testing
mixtures, these classical rules do not lead exactly to the nominal type I errors

(Titterington et al, 1985), but this is not of importance for the comparisons between
looped and nonlooped pedigrees to be made here. The likelihood Lo for the null

hypothesis is computed as:

where yi are observations with i = 1, ... , N, the total number of observations,
assumed normally and independently distributed. Under the null hypothesis, the
maximum likelihood estimate for the mean is íi = &dquo;BYi/N and for the variance is
(;2 = &dquo;B(Yi - íiO)2/N.

Type I error of the test for a major gene was investigated by simulating 1 000
data sets of each structure (table I), generating for each individual only a randomly
distributed error term with U2 = 100 as phenotype. Likelihoods for the null

hypothesis and the alternative hypothesis were computed in each of these replicated
data sets, and the likelihood ratio test statistic was obtained. The number of

significant tests in these 1 000 data sets was counted using rejection thresholds
of 4.605 and 5.991, corresponding to nominal type I errors of 10 and 5%. Power to
detect a major gene was investigated by simulating 100 data sets of each structure
(table I) for 3 different gene effects t = 5, t = 7.5 and t = 10 and using allele
frequency f = 0.5 and residual variance U2 = 100. Hence, relative gene effects t la
were 0.5, 0.75 and 1. Power was based on a nominal type I error of 5%, using a
rejection threshold of 5.991. Parameter estimates were compared using the 100 data
sets of each structure (table I) used to investigate power with t = 10.

RESULTS

Type I errors were significantly lower than their nominal, ie asymptotically ex-
pected, level, but comparison of type I errors between looped and nonlooped struc-
tures did not show significant differences (table II). This indicates that absolute
values of approximate likelihoods obtained are on average close to expected and
that the distribution of the test statistic over a number of replicates is not signif-
icantly altered when loops are present. Similar conclusions can be drawn by com-
paring power of the test under the alternative hypothesis (table III). Parameter



estimates for gene effect under the alternative hypothesis are biased in general, but
estimates for gene effects as well as allele frequency do not differ between looped
and nonlooped structures (table IV). This indicates that location of the maximum
is, on average over replicates, not altered for approximate likelihoods.

Simulated parameters: t = 10 and f = 0.5.



DISCUSSION AND CONCLUSIONS

An alternative peeling algorithm, called iterative peeling, has been presented. The
iterative peeling algorithm includes an algorithm to find an order for evaluating
peeling equations. When an order cannot be found, as in looped pedigrees, an
approximate likelihood is supplied. In this case, use of a partitioned computation
of the likelihood is also crucial. Traditional recursive peeling does not involve such
approximations, because this method only computes the exact likelihood once a
peeling order is found and computes the likelihood by representing all pedigree
information in terms for a single individual. Usefulness of iterative peeling as
an approximate method in looped pedigrees was investigated by simulations. At
an aggregate level, ie compared on average over a number of replicated data
sets, no differences were found between looped and nonlooped pedigrees. Exact
computations were unfeasible due to the large number of loops in the typical animal
breeding pedigrees we considered, and properties of iterative peeling could not be
studied comparing exact and approximated likelihoods in individual data sets.

The iterative peeling method may be of interest for application in animal
breeding. In human populations, pedigrees are generally small and loops are not
abundant so that exact computations can be considered using more complicated
forms of peeling (see Cannings et al, 1978). These more complicated forms of
peeling consider genotypes on sets of individuals jointly. Larger pedigrees and
more abundant looping in animal breeding, however, makes the sets of genotypes
considered jointly too large for exact computations to be feasible. Therefore,
approximate methods are required for application in animal breeding. Iterative
peeling seems very suited, being exact without loops, and automatically supplying
approximate likelihoods when loops are present. Note that, due to the partitioned
computation of likelihood, iterative peeling also automatically handles pedigrees
consisting of independent families, ie data traditionally handled with sire or sire-
and-dam models. The equations and partitionings given here could be extended to
allow for more general pedigrees. In particular, allowance could be made for females
being mated with several males. In this case, partitionings should accommodate for
’linking individuals’ being parents in several families, rather than just one. The
monogenic model used could also be extended to a mixed inheritance model, the
model usually required for analysis of animal breeding data. In iterative peeling only
uni- and bivariate functions of genotypes are considered on single families. This can
be combined with for instance a Hermitian integration (Le Roy et al, 1989; Knott
et al, 1992) to include a polygenic component.
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