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Summary - The analysis of threshold models with fixed and random effects and associated
variance components is discussed from the perspective of generalized linear mixed models
(GLMMs). Parameters are estimated by an interative procedure, referred to as iterated
re-weighted REML (IRREML). This procedure is an extension of the iterative re-weighted
least squares algorithm for generalized linear models. An advantage of this approach is that
it immediately suggests how to extend ordinary mixed-model methodology to GLMMs.
This is illustrated for lambing difficulty data. IRREML can be implemented with standard
software available for ordinary normal data mixed models. The connection with other
estimation procedures, eg, the maximum a po8teriori (MAP) approach, is discussed. A

comparison by simulation with a related approach shows a distinct pattern of the bias of
MAP and IRREML for heritability. When the number of fixed effects is reduced, while the
total number of observations is kept about the same, bias decreases from a large positive
to a large negative value, seemingly independently of the sizes of the fixed effects.
binomial data / threshold model / variance components / generalized linear model /
restricted maximum likelihood

Résumé - Inférence sur les composantes de variance des modèles à seuil dans une

perspective de modèle linéaire mixte généralisé. L’analyse des modèles à seuils avec
effets fixes et aléatoires et des composantes de variance correspondantes est ici placée
dans la perspective des modèles linéaires mixtes généralisés (GLMMs!. Les paramètres
sont estimés par une procédure itérative, appelée maximum de vraisemblance restreinte re-
pondéré obtenu par itération (IRREML). Cette procédure est une extension de l’algorithme
itératif des moindres carrés repondérés pour les modèles linéaires généralisés. Elle a

l’avantage de suggérer immédiatement une manière d’étendre la méthodologie habituelle
du modèle mixte aux GLMMs. Une application à des données de difficultés d’agnelage est
présentée. IRREML peut être mis en ceuvre avec les logiciels standard disponibles pour les
modèles linéaires mixtes normaux habituels. Le lien avec d’autres procédures d’estimation,
par exemple l’approche du maximum a posteriori (MAP), est discuté. Une comparaison



par simulation avec une méthode voisine montre un biais caractéristique du MAP et de
l’IRREML pour l’héritabilité. Quand le nombre des effets fixés est diminué, à nombre to-
tal d’observations constant, le biais passe d’une valeur fortement positive à une valeur
fortement négative, apparemment indépendantes de l’importance des effets fixés.
distribution binomiale / modèle à seuil / composante de variance / modèle linéaire
généralisé / maximum de vraisemblance restreinte

INTRODUCTION

In his paper on sire evaluation Thompson (1979) already pointed out the potential
interest for binomial data in modifying the generalized linear model (GLM) esti-
mating equations to allow for random effects. He conjectured that if modification is
feasible, generalization towards other distributions such as the Poisson or gamma
distribution should be easy. The iterated re-weighted restricted maximum likeli-
hood (IRREML) procedure (Schall, 1991; Engel and Keen, 1994) for generalized
linear mixed models (GLMM) proves to be exactly such a modification. IRREML
is motivated by the fact that in GLMMs the adjusted dependent variate in the
iterated re-weighted least squares (IRLS) algorithm (McCullagh and Nelder, 1989,
§ 2.5) approximately follows an ordinary mixed-model structure with weights for
the residual errors and, in the absence of under- or overdispersion, residual error
variance fixed at a constant value (typically 1). IRREML is quite flexible and not
only covers a variety of underlying distributions for the threshold model but also
easily extends to other types of data such as count data, for example, litter size.
This entails simple changes in the algorithm with respect to link and variance func-
tion employed. When the residual error variance for the adjusted dependent variate
is not fixed, it represents an additional under- or overdispersion parameter which is
a useful feature, for example, under- or overdispersed Poisson counts. Calculations
in this paper are performed with REML (Patterson and Thompson, 1971) facilities
for ordinary mixed models in Genstat 5 (1993). Software for animal models such
as DFREML (Meyer, 1989), after some modification, can be used for IRREML as
well.

Methods for inference in ordinary normal data mixed models, eg, the Wald test
(Cox and Hinkley, 1974, p 323) for fixed effects, are also potentially useful for
GLMMs, as will be illustrated for the lambing difficulty data. Simulation results
for the Wald test in a GLMM for (overdispersed) binomial data were presented in
Engel and Buist (1995).

For threshold models with normal underlying distributions and known compo-
nents of variance, Gianola and Foulley (1983) observe that their Bayesian maximum
a posteriori (MAP) approach produces estimating equations for fixed and random
effects such as those anticipated by Thompson. Under normality assumptions, for
fixed components of variance, IRREML will be shown to be equivalent to MAP.
IRREML therefore offers an alternative, non-Bayesian, derivation of MAP. The
MAP approach was also presented in Harville and Mee (1984), including estima-
tion of variance components. Their updates of the components of variance are akin
to those of the estimation maximization (EM) algorithm (Searle et al, 1992, § 8.3)
for REML. The algorithm presented in Engel and Keen (1994), which is used in this



paper, is related to Fisher scoring. Both algorithms solve the same final estimating
equations, but the latter is considerably faster than the former.

Gilmour et al (1985) presented an iterative procedure for threshold models with
normal underlying distributions, which also uses an adjusted dependent variate and
residual weights. This approach, which will be referred to as GAR, is different from
MAP and IRREML. In the terminology of Zeger et al (1988) MAP and IRREML
are closely related to the subject-specific nature of the GLMM, while GAR is of a
population-averaged nature, as will be explained in more detail in this paper.
A number of authors, eg, Preisler (1988), Im and Gianola (1988), and Jansen

(1992), have discussed maximum likelihood estimation for threshold models. Apart
from the fact that straightforward maximum likelihood estimation does not correct
for loss of degrees of freedom due to estimation of fixed effects, as REML does
in the conventional mixed model, it is also handicapped by the need for high-
dimensional numerical integration. Maximum likelihood estimation for models with
several components of variance, especially with crossed random effects, is practically
impossible. IRREML is more akin to quasi-likelihood estimation (McCullagh and
Nelder, 1989, chap 9; McCullagh, 1991): conditional upon the random effects only;
the relationship between the first 2 moments is employed while no full distributional
assumptions are needed beyond existence of the first 4 moments.

Since practical differences between various methods proposed pertain mainly to
their subject-specific or population-averaged nature, we will give some attention
to a comparison between GAR and IRREML. Simulation studies were reported in
Gilmour et al (1985), Breslow and Clayton (1993), Hoeschele and Gianola (1989),
and Engel and Buist (1995). Conclusions from the Hoeschele and Gianola study
differ from conclusions from the other studies with respect to bias of MAP/IRREML
and GAR. Since the Hoeschele and Gianola study was rather modest in size, it
was decided to repeat it here in more detail, ie under a variety of parameter
configurations and for larger numbers of simulations.

GLMMs and threshold models

The GLMM model

Suppose that random effects are collected in a random vector u, with zero means
and dispersion matrix G, eg, for a sire model G = Ao, 8 2, where A is the additive
relationship matrix and 0&dquo;; the sire component of variance. Conditional upon u, eg,
for given sires, observations y are assumed independent, with variances proportional
to known functions V of the means p:

For binary data, y = 1 may denote a difficult birth and y = 0 a normal birth. The
mean f.1, is the probability of a difficult birth for offspring of a particular sire. The
conditional variance is Var(y!u) = V(p) = /l(1- p) and 0 equals 1. For proportions
y = x/n, an appropriate choice may be:



Parameter 0 may be included to allow for under- or overdispersion relative
to binomial variation (McCullagh and Nelder, 1989, § 4.5). Observe that [2] is

inappropriate when n is predominantly small or large: for n = 1 no overdispersion
is possible and 0 should equal 1 and for n -! oo, [2] vanishes to 0 while extra-
binomial variation should remain. More complicated variances (Williams, 1982) may
be obtained by replacing 0 in [1] by {1 + (n - 1)!0{ or by {1 + (n - 1)u5f.1,(1- f.1,n.
In both expressions ao is a variance corresponding to a source of overdispersion
(for a discussion of underdispersion see Engel and Te Brake, 1993). Limits for
n -> oo of the variances are o,2tL(1 - 0 f.1,) and o, 0 2 /-t 2(1_M)2 respectively. Both can be
accomodated in a GLMM for continuous proportions, eg, motility of spermatozoa,
and are covered by IRREML.

The mean f.1, is related to a linear predictor by means of a known link function g:
= g(f.1,). The linear predictor is a combination of fixed and random effects:

! = xll3 + z’u, where x and z are design vectors for fixed and random effects
collected in vectors 13 and u, respectively. For difficulty of birth, for instance, 77
may include main effects for parity of the dam and a covariable for birthweight as
fixed effects and the genetic contribution of the sire as a random effect. Popular
link functions for binary or binomial data are the logit and probit link functions:
logit(p) = log(f.1,/(l-¡.¡,)) = q and probit (p) = !-1(p.) = 17, where !-1 is the inverse
of the cumulative density function (cdf) of the standard normal distribution.

The threshold model

Suppose that r is the ’liability’, an underlying random variable such that y = 1 when
r exceeds a threshold value 0 and y = 0 otherwise. Without loss of generality it may
be assumed that 0 = 0. Let 77 be the mean of r, conditional upon u. Furthermore,
let the cdf of the residual e = (r &mdash; 7!), say F, be independent of u. Then

where F-1 is the inverse of F. It follows that the threshold model is a GLMM
with link function g(f.1,) = -F-1(1 - f.1,), which simplifies to g(f.1,) = F-1(f.1,) when e
is symmetrically distributed. Residual e may represent variation due to Mendelian
sampling and environment. Probabilities p do not change when r is multiplied by
an arbitrary positive constant and the variance of e can be fixed at any convenient
constant value, say or 2. When F is the cdf L of the standard logistic distribution,
ie F(e) = L(e) = 1/(1 + exp(-e)), g is the logit link and a2 = !r2/3. When
F is the cdf 4) of the standard normal distribution, g will be the probit link and
QZ = 1. Although the logistic distribution has relatively longer tails than the normal
distribution, to a close approximation (Jonhson and Kotz, 1970, p 6):

where c = (15/16)!/!. Results of analyses with a probit or logit link are usually
virtually equivalent, apart from the scaling factor c for the effects and C2 for the

components of variance. Heritability may be defined on the liability scale, eg, for a
sire model: h2 = 4a;/(a;+a2). As a function of 0,2/or2 heritability does not depend
on the choice of !2. Hence, estimates h2 for the probit and logit link are often about
the same.



Conditional and marginal effects

In a GLMM, effects are introduced in the link-transformed conditional means, ie in
the linear predictor q = g(p). Consequently, effects refer to subjects or individuals.
The GLMM and the threshold model are both subject-specific models, using the
terminology of Zeger et al (1988). This is in contrast with a population-averaged
model where effects are introduced in the link-transformed marginal means g(E(f.1,))
and refer to the population as a whole. In animal breeding, where sources of
variation have a direct physical interpretation and are of primary interest, a subject-
specific model, which explicitly introduces these sources of variation through
random effects, seems the natural choice. For fixed effects however, presentation
in terms of averages over the population is often more appropriate. In the threshold
model, there is no information in the data about the phenotypic variance of the
liability, allowing QZ to be fixed at an arbitrary value. Intuitively one would expect
the expressions for marginal effects to involve some form of scaling by the underlying
phenotypic standard deviation. For normally distributed random effects and probit
link this is indeed so. From r - N(x’j3, z’Gz + 1) the marginal probability, say p,
follows directly:

Hence, the probit link also holds for marginal probabilities, but the effects are
shrunken by a factor Ap = (z’Gz + 1)-°!5. For a sire model Ap = (u£ + 1) -0.5 . That
the same link applies for both conditional means f.1, and marginal means p is rather
exceptional. For the logit link, the exact integral expression for p cannot be reduced
to any simple form (Aitchison and Shen, 1980). However, from [3] it follows that the
logit link holds approximately for p, with shrinkage factor AL = ((z’Gz/c2) + 1 )-0.5.
Without full distributional assumptions, for relatively small components of variance,
marginal moments may also be obtained by a Taylor series expansion (see Engel
and Keen, 1994).

Binary observations yi and yj corresponding to, for instance, the same sire will
be correlated. For the probit link the covariance follows from:

Here V2 (a, b; p) is the cdf of the bivariate normal distribution with zero means,
unit variances and correlation coefficient p, p2! is the correlation on the underlying
scale, eg, in a simple sire model Pij = or 8 2/(0,2 + 1). For the logit link, using !3!, Ap
should be replaced by !L/c, while the value of the correlation, expressed in terms
of the components of variance in the logit model, is about the same. The double
integral in !2 may effectively be reduced to a single integral (Sowden and Ashford,
1969), which can be evaluated by Gauss quadrature (Abramowitz and Stegun, 1965,
p 924). Alternatively, for small p2, a Taylor expansion (Pearson, 1901; Abramowitz



and Stegun, 1965, 26.3.29, p 940) may be used:

where T(t) is the tth derivative of the probability density function (pdf) T of the
standard normal distribution. For a sire model, under normality assumptions, the
first-order approximation appears to be satisfactory, except for extreme incidence
rates p (Gilmour et al, 1985). By grouping of n binary observations pertaining to
the same fixed and random effect, moments for binomial proportions y immediately
follow from !4), eg:

where p is the intra-class correlation on the liability scale. Expression [6] can be
simplified by using !5!. Results for the logit link follow from !3!.

Estimation of parameters

The algorithm for IRREML

The algorithm will be described briefly. For details see Engel and Keen (1994) and
Engel and Buist (1993a). Suppose that [3o and uo are starting values obtained from
an ordinary GLM fit with, for example, random effects treated as if they were fixed
or with random effects ignored, ie uo = 0. After the initial GLM has been fitted by
IRLS, the adjusted dependent variate and iterative weights w (McCullagh and
Nelder, 1989, § 2.5) are saved:

where g’ is the derivative of the link function with respect to f.1&dquo; eg, for the probit
link: w = nr(ryo)2/{f.1,0(1 - f.1,0)}, 4 approximately follows an ordinary mixed-model
structure with weights w for the residual errors and residual variance 0. Now a
minimum norm quadratic unbiased estimation (MINQUE) (Rao, 1973, § 4j) is

applied to l&dquo; employing the Fisher scoring algorithm for REML (1 step of this
algorithm corresponds to MINQUE). From the mixed-model equations (MMEs)
(Henderson, 1963; Searle et al, 1992, § 7.6) new values [3 and 6 for the fixed and
random effects are solved:

Here, X and Z are the design matrices for the fixed and random effects

respectively, W is a diagonal matrix with weights w along the diagonal and l.
denotes the vector of values of the adjusted dependent variate. 130 and uo are

replaced by (3 and u, l. and w are updated and a new MINQUE step is performed.
This is repeated until convergence. Note that MINQUE does not require full



distributional assumptions beyond the existence of the first 4 moments and may be
presented as a weighted least-squares method (Searle et al, 1992, Ch 12).

Some properties of IRREML

When the MMEs are expressed in terms of the original observations y, it is readily
shown that at convergence the following equations are solved:

where * denotes a direct elementwise (Hadamard) product. These equations are
similar to the GLM equations for fixed u (with appropriate side conditions) except
for the term 0 G-1u on the right-hand side. Equations [8] may also be obtained
by setting first derivatives with respect to elements of j3 and u of D + u’G-lu
equal to zero, where D is the (quasi) deviance (see McCullagh and Nelder, 1989,
§ 2.3 and § 9.2.2.) conditional upon u. The assumption of randomness for u imposes
a ’penalty’ on values which are ’too far’ from 0. When the pdf of observations y
conditional upon normally distributed random effects u is in the GLM exponential
family, eg, a binomial or Poisson distribution, maximization of D+u’G-lu is easily
shown to be equivalent to maximization of the joint pdf of y and u.

Suppose that we have a sire model with q sires and sire variance component or 2
The IRREML estimating equations for o,2 s and 0 (see, for example, Engel, 1990)
are:

Here Zo = I, ZI is the design matrix for the sires, Ao = W-1, Al = A,
P = SZ-1 _ [21 X(X’[2-1 X)-l X’[2-I and S2 = ZGZ’ + cpW-1. The difference with
ordinary REML equations is that depends on the parameter values as well. The
MINQUE/Fisher scoring update of IRREML can be recovered from !9!, by using
P = P[2P 8 AZ’P + cpPW-1p on the left-hand side:

where 0’5 = ø and at = as. When 0 is fixed at value 1, the equation for k’ = 0 is
dropped from (10!. Alternative updates related to the EM algorithm may also be
obtained from [9] (see, for example, Engel, 1990), and will be of interest when other
estimation procedures are discussed:

Here T / ø is the part of the inverse of the MME coefficient matrix corresponding
to u.

With quasi-likelihood (QL) for independent data, it is suggested (McCullagh
and Nelder, 1989, § 4.5 and chap 9) that one can estimate 0 from Pearson’s

(generalized) chi-square statistic. From [9] it may be shown that ! = X!/d, where
X2 = ¿j .7 (yj _! i )21V(Aj) is Pearson’s chi-square in terms of conditional means and



variances and d = N - rank(X) - {q - trace (A -IT/â;)} is an associated ’number
of degrees of freedom’.

Application to birth difficulties in sheep

The data are part of a study into the scope for a Texel sheep breeding program
in the Netherlands employing artificial insemination. Lambing difficulty will be
analyzed as a binary variable: 0 for a normal birth and 1 for a difficult birth. There
are 43 herd-year-season (HYS) effects. Herds are nested within regions and regions
are nested within years. There are 2 years, 3 regions per year, about 4 herds per
region, and 3 seasons. The 33 sires are nested within regions. The 433 dams are
nested within herds with about 20 dams per herd. Observations are available from
674 offspring of the sires and dams.

Variability on the liability scale may depend on litter size. Therefore, observations
corresponding to a litter size of 1 and litter sizes of 2 or more are analyzed separately.
Corresponding data sets are referred to as the S-set (single; 191 observations) and
M-set (multiple; 483 observations). The M-set is reproduced in Engel and Buist
(1993) and is available from the authors. Some summary statistics are shown in
table I.

Table II shows some results for components of variance, for models fitted to the
S- and M-sets. Dam effects are absorbed. To stabilize convergence, the occurrence
of extreme weights was prevented by limiting fitted values on the probit scale to the
range [-3.5, 3.5!. In addition to fixed HYS effects, factors for age and parity of the
dam (P), sex of the lamb (S), and for the M-set a covariate for litter size (L = litter
size - 2) and included. Levels for factor P consist of the following 6 combinations
of age and parity: (1;1), (2;1), (2;2), (3; ! 2), (4; ! 3) and (> 5; ! 4). In models 3,
4 and 5 a factor D for pelvic dimension of the dam (’wide’, ’normal’ or ’narrow’),
and in models 4 and 5 a covariate W = birthweight - average birthweight of the
lamb is also included, with separate averages of 4.27 and 3.63 for the S- and M-sets
respectively.

Fixed effects may be screened by applying the Wald test to the values of

! saved from the last iteration step. Some results for the M-set are shown in



Standard errors are in parentheses. S, P and D denote main effects, W and L are
covariables, S x L and D x W are interactions. When an estimate is negative (-), the
component is assumed to be negligible and set to 0.

table III. In all cases, test statistics are calculated for the values of the variance

components obtained for the corresponding full model, ie model 1-5. Variability due
to estimation of the variance components is ignored. For each line in the table the
corresponding test statistic accounts for effects above that line, but ignores effects
below the line. Referring to a chi-square distribution, in model 1 seasonal effects
seem to be unimportant and are excluded from the subsequently fitted models.

In model 3 for the M-set, the following contrasts for pelvic opening (D) are found:
0.520 (0.231), 2.019 (0.547) and 1.499 (0.531), for ’normal’ versus ’wide’, ’narrow’
versus ’wide’ and ’narrow’ versus ’normal’, respectively. Pairwise comparison, with a
normal approximation, shows that any 2 levels are significantly (P < 0.05) different.
The effects refer to the probits of the conditional probabilities. For the probits of
the marginal probabilities, effects have to be multiplied by (1+(J&dquo;!+(J&dquo;5)-0.5 = 0.769
(from table II). The difference between ’narrow’ and ’wide’, for example, becomes
1.55 (0.43). In model 5 for the M-set, separate coefficients for birthweight are fitted
for the 3 levels of pelvic opening. The estimated coefficient for birthweight for a
dam with a narrow pelvic opening is 0.72 (0.61); this is about 0.47 (0.63) higher
than the estimates for the other 2 levels, which are about the same. Although a
larger coefficient is to be expected for a narrow pelvic opening, the difference found
is far from significant. Fitting a common coefficient, ie dropping the interaction
D x W between pelvic opening and birthweight in model 4, gives an estimated
coefficient for birthweight of 0.28 (0.15), which becomes 0.21 (0.12) after shrinkage.
By comparison, the coefficient for the S-set, after shrinkage, is 0.92 (0.30). The
reduced effect of birthweight for the M-set agrees with the negligible values found
for the component of variance for sires.



Relation to other methods

We will mainly concentrate on differences between GAR and IRREML.
GAR is based on QL for the marginal moments with a probit link and nor-

mally distributed random effects (see also Foulley et al, 1990). QL-estimating
equations for dependent data are (McCullagh and Nelder, 1989, § 9.3):
D’Var(y)-1 (y - p) = 0, where the matrix of derivatives D = (dij), dij =
((3pt/<9/3,tj), follows from p = <I>(X(3*), and (3* = Àp(3 denotes the vector of marginal
fixed effects. It follows from [6] that:



where R = diag({p(l - p) - pr2(ÀpXj3)}/n), B = diag(r(ÀpXj3)), C = A2G and
p represents the appropriate intraclass correlation. Var(y) will be replaced by [12],
ignoring terms of order p2 and higher. The QL equations may be solved by iterated
generalized least squares on an adjusted dependent variate, say (GAR:

where B is B evaluated at j3,. By comparison, the adjusted dependent variate from
[7] is:

The latter variate relates to a first-order approximation of the conditional
means p, while the former relates to a first-order approximation of the marginal
means p. Approximately Var((GAR) = B-lVar(y)B-1 = B-IRB-1 + ZCZ’ =

wG1R +ZCZ’, and Gilmour et al (1985) solve MMEs in terms of !GAR and WGAR!
For example, in a sire model with q sires, predictions from these MMEs for Apu,
say ÛGAR, are used to update the intraclass correlation p. Analogous to !11! with
<!=1:

Both GAR and IRREML are based on an approximate mixed-model structure for
an adjusted dependent variate. Note however that in GAR, in contrast to IRREML,
predictions of the random effects are only used to update the components of variance
and do not enter WGAR and (GAR directly. At the end of this section we shall see
that this may be an advantage for GAR over IRREML in situations where there is
little information in the data about individual random effects, eg, in a sire scheme
with small family sizes or extreme incidence. The marginal quasi-likelihood method
(MQL) presented in Breslow and Clayton (1993) can be regarded as a generalization
of GAR. However, in its more general setting, MQL does not have the benefit of
some of the exact results for binomial data and underlying normal distributions
used to derive GAR.

In MAP, assuming a vague prior for (3 and a normal prior for u, the posterior
mean for (0’, u’)’ is approximated by the posterior mode. Hence, (13 , û’)’ maximize
the joint pdf of y and u. Under normality this is equivalent to maximization of a
penalized deviance. Hence, the estimating equations for 13 and u for MAP and
IRREML are the same and given by [8]. As shown in Foulley et al (1987) an
estimator for, for instance, a sire component QS, may be solved from: Eo[8/8u£ s

log (f (u I or 2))] = 0. Here, f(.[.) denotes a (conditional) pdf for the variables

indicated, and expectation Eo is with respect to f (u!y, as). The latter pdf may be
approximated by a normal density with mean u and dispersion T. In an iterative
scheme this leads to the EM-type update !11!. Consequently, MAP and IRREML
also solve the same final estimating equations with respect to the components of
variance, although the algorithms used are different.

The penalized quasi-likelihood method (PQL) presented in Breslow and Clayton
(1993) is based on Laplace integration. Random effects are assumed to be normally
distributed. The log pdf of y conditional upon u is replaced by a quasi-likelihood.
When parameter 0 is involved, the extended quasi-likelihood (Nelder and Pregibon,



1987) can be used, see Engel and Buist (1993). In the resulting integral expression,
the logarithm of the integrand in terms of u is approximated by a quadratic
function around its optimum in u, employing expected second-order derivatives.
Now random effects are easily integrated out. Some further approximations, eg,

approximating conditional deviance residuals by Pearson residuals, result in a

normal log likelihood for the adjusted dependent variate ( from [7]. An REML
type adjustment for loss of degrees of freedom due to estimation of fixed effects
finally yields an REML log likelihood, which is maximized by Fisher scoring. Hence,
although motivated quite differently, PQL is equivalent to IRREML (for details see
Engel and Buist, 1993).
A comparison between GAR and MAP/P(!L/IRREML by simulation was pre-

sented in Gilmour et al (1985). They consider a simple one-way model, eg, a

sire model with q unrelated sires, with n offspring per sire, and with a binary
observation per offspring. An overall mean is the only fixed effect. Gilmour et

al (1985) observe that there is a tendency for MAP/P(!L/IRREML to under-
estimate h2 for small family size n or extreme incidence p. For extreme inci-
dence p, GAR tends to overestimate h’. As also noted by Thompson (1990), for
this simple set-up, closed-form expressions can be derived from [8] and !11!, viz,
PGAR = {MSB - y(1 - y)}/{(n - 1)T(!-1(y)z}. Here MSB is the mean sum of

squares between sires for the binary observations and y is the overall mean. The
adjusted dependent variable and weights are: (GAR = !-1(y) + (y - y)/T(!’-1(y))
and WGAR = T(!-1(y))z/{!(1 - y) - /&dquo;’(!!07))!}- As long as the first-order ap-
proximation from [5] holds, and q is not too small, PGAR will be nearly unbiased.
Actually, for this simple scheme, GAR may be shown to be equivalent to Williams’
method of moments for estimating overdispersion (Williams, 1982). Starting from
uo = 0 and ?7o = !-1 (y), the adjusted dependent for IRREML is the same as for
GAR, but the weights w = T(!-1(y))z/{y(1 - V)l are smaller! Consequently, the
first estimate a2 = {MSB - y(l - y)}/{nr(<p-l(y))2} underestimates Us approx-
imately by a factor (n - 1)/n. Simulation results in Gilmour et al (1985) suggest
that with further iteration underestimation by this factor persists. For extreme
incidence, say close to 1, IRREML weights are approximately T[r(i¡) , as follows
from Abramowitz and Stegun (1965, 26.2.12, p 932). Most of the information is in
the negative-valued random effects, and over-shrinkage of random effects will yield
smaller weights in the next iteration, ie ‘residual variances’ will be too high. There-
fore, underestimation by IRREML may be expected to be more serious for extreme
incidence, even when the first-order approximation from [5] still holds. Lack of in-
formation about individual random effects, because of small family size or extreme
incidence, seems a serious problem with MAP/P(aL/IRREML. The smaller weights
in IRREML are a consequence of ’residual variances’ being derived from predicted
values of conditional variances. Alternative weights wo = E(g’(f.1,)2V(f.1,))-1 for IR-
REML are suggested in Engel and Keen (1994). For the logit link evaluation of alter-
native weights is straightforward: wo = {2 + 2exp(QZ/2) cosh(x’I3)}-B but for the

probit link it is problematic. It is suggested that we use wo = {g’ (ji)2 E(V (f.1,))) -1
instead. Note that in the first step for the simple sire scheme this weight equals
WGAR. Simulation results in Breslow and Clayton (1993) also show a negative bias
for MAP/P(aL/IRREML. However, Hoeschele and Gianola (1989) find a positive
bias. Their simulation study concerns a sire model which includes 135 fixed HYS



effects. MAP/PQL/IRREML has smaller bias and smaller mean-squared error than
GAR. For both methods an upward bias in the order of 20% (based on 45 simula-
tions) of the true h2 = 0.25 is observed. An upward bias is also apparent for some
of the models simulated in Hoeschele et al (1987). Simulation results for overdis-
persed binomial data in Engel and Buist (1995) only indicate a serious upward bias
for variance components estimated by IRREML when the true component value is
small and the non-negativity constraints are active.

Simulation results

Data are generated as described in Hoeschele and Gianola (1989) (referred to as
HG). The 135 HYS effects are generated from a N(0, U2 H ys) distribution. For
each HYS class, a sire has 0, 1 or 2 offspring with probabilities 1 - pHyS, PHYS/2
and pHYs/2 respectively. The HYS effects and design for sires and offspring are
generated only once, after which the same HYS values and the same design are
used in all subsequent simulations. HYS effects are included in the model as fixed
effects. Other fixed effects are sire group effects: 4 groups with effects -0.40, -0.15
(the value -0.10 in HG was assumed to be a typing error), 0.15 and 0.40. The
numbers of sires in the groups are 12, 14, 13 and 11. The 50 independent sire
effects are generated from an N(0, <7g) distribution, where or2 = h2/(4 - h2). The
residuals for the liability are from an N(0, 1) distribution. The overall constant on
the probit scale is -!-1(po) (1 + QHYS + a!)0.5, where po determines the overall
incidence. Suppose that aHYS corresponds to a proportion /HYS of 1 + ohys 2 + erg,
then QHYS = (4fHYS/(1 - ,IHYS))/(4 - h2). In HG, h2 = 0.25, fHYS = 0.30,
po = 0.9 and PHYS = 0.2. The expected total number of records is 2 025, with
about 40 offspring per sire. This is configuration 10, which is presented with some
of the other configurations of parameter values studied in table IV.

For each configuration, either 1 or 2 series of 200 simulations are performed. In
a series, HYS effects, sire-offspring configuration and data are all generated from
a sequence of random numbers from the same seed. The first series corresponds to
the same seed for all configurations. Therefore, for the first series, for example for
configurations 3 and 8, the design is the same. Seeds of the second series are all
different. In table IV bias (%bias) and root mean square error (8l4Q) are both
expressed as a percentage of the true value of h2. In contrast with the results
in Gilmour et al (1985) and in agreement with Hoeschele and Gianola (1989),
with one exception, MAP/PGZL/IRREML shows a positive bias. The exception
is configuration 13 where HYS effects are not included, neither in the generation of
the data nor in the model fitted. The negative value for this configuration indicates
that, although the bias seems fairly independent of the size of the fixed effects, it
may depend on the (relative) number of fixed effects in the model.

Table V shows that this is indeed so. Starting from the original HG scheme, using
new seeds for generating the data, the number of fixed effects is reduced by factors
1/3, 1/2, 2/3 and 3/4. A reduction of 1/3, for instance, is effected by combination
of HYS effects (2, 3), (5, 6), (8, 9) and so forth, replacing the original values for
2 levels by their mean value. The first series of 200 simulations refers to the same
design used in all subsequent reductions. In the second series, a new design, which is
reduced afterwards, is generated for 1, 1/3, .... Bias goes from positive to negative.



Standard errors in parentheses; h2 = heritability; Po = incidence rate; PHYS = probability
for a sire for progeny in a HYS class; fHYS = proportion of variance explained by the
HYS effects.



The negative bias agrees with the calculations in the preceding section for the
simple sire model and with the results in Gilmour et al (1985), where an overall
constant was the only fixed effect in the model. Data for configurations 10 and 16
was also generated with random HYS effects, with a new set of HYS effects for each
simulation, and analysed with HYS as a random factor in the model. Estimated
bias was -35.8 (2.7)% for configuration 10 and -11.8 (1.7)% for configuration 16.
Corresponding root mean square errors were 52.0 and 27.3%, respectively. Bias
and root mean square error are reduced when the progeny size is increased, see,
for example, configurations 18, 21 and 22. Estimators are also less biased when
incidence is less extreme, eg, configurations 3 versus 8 and 1 versus 7. Differences
between series within configurations are sometimes greater than would be expected
on the basis of the standard errors involved, showing that the configuration of sires
and offspring is also of importance.

Bias and root mean square error for estimated heritability are expressed as a percentage
of the true value of h2. Standard errors in parentheses.

GAR was programmed, similar to MAP/PQL/IRREML, in terms of Fisher
scoring for the updates of the sire variance. Estimates are the same as for the
original method proposed, which uses EM steps, but speed of convergence is
often increased by at least a factor 10. Some results, using the same seeds as
for MAP/P(aL/IRREML, are presented in tables IV and V. For high incidence
(po = 0.9) results of MAP/PQL/IRREML and GAR are comparable. For mod-
erate incidence (po = 0.6), the bias for GAR is clearly less than for MAP/P(aL/
IRREML. GAR also has smaller mean square error than MAP/P(aL/IRREML at
the lower incidence, although the difference is less marked. In all cases, the root



mean square error is considerably larger than the corresponding bias. Plots of the es-
timated h2 values of MAP/P(aL/IRREML against GAR suggest a strong, fairly lin-
ear relationship. Correlations between sire predictions from MAP/P(aL/IRREML
and GAR are high, eg, over 0.99 for the first series of configurations 10 and 16.

Table V also includes results obtained for IRREML with the alternative weights
Wo = T(1]?/{p(l- p) - pT(Àp1])2} from the previous section. There is a distinct
change in the bias due to the change of weights. However, although bias is

considerably improved for the top lines in the table, underestimation for the bottom
lines has become more serious.

In table VI, approximate standard errors of heritability estimates from MAP/ /
PQL/IRREML are compared with standard errors estimated from the series of
200 simulations (referred to as empirical values). The approximate standard errors,
based on Fisher information assuming normality for the adjusted dependent variate,
perform quite well, as was also observed in Engel and Buist (1995). These standard
errors are standard output in Genstat 5.

Mean, 10 and 90% percentage points of the approximate standard errors are presented as
percentages of the empirical value.

The approximately linear relationship between IRREML and GAR estimates
within a configuration of parameter values, and the similar standard errors, suggest
that it should be possible to correct for bias in IRREML, at the least in those cases
where GAR performs well. For incidence 0.90 and the full set of 135 HYS effects,
IRREML and GAR have large positive bias of similar size. In this case the direction
of the bias is in line with results for GLMS, where bias correction often involves



shrinkage towards the origin. Possibly, the results of Cordeiro and McCullagh
(1991), involving an extra iteration step for adjusted response variables, may be
extended to minimization of the penalized deviance, thus improving estimates /3 and
predictions u. This would imply modification of the adjusted dependent variate (.

Users of MAP/P(aL/IRREML should be aware of the problems involved when
family sizes are small, or in the context of an animal model, when many animals are
only weakly related. With extreme incidence, say over 0.90, and a sizeable number
of HYS effects, say in the order of 6% of the number of binary observations, MAP,
PQL, IRREML and GAR are liable to seriously overestimate heritability, and actual
selection response may be considerably less than expected on the basis of model
calculations.
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