
HAL Id: hal-00893959
https://hal.science/hal-00893959

Submitted on 11 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing inbreeding coefficients in large populations
The Meuwissen, Z Luo

To cite this version:
The Meuwissen, Z Luo. Computing inbreeding coefficients in large populations. Genetics Selection
Evolution, 1992, 24 (4), pp.305-313. �hal-00893959�

https://hal.science/hal-00893959
https://hal.archives-ouvertes.fr


Original article

Computing inbreeding coefficients
in large populations

THE Meuwissen Z Luo

Institute of Animal Physiology and Genetics Research,
Edinburgh Research Station, Roslin EH25 9PS, UK

(Received 21 October 1991; accepted 15 April 1992)

Summary - An algorithm for computing inbreeding coefficients in large populations is
presented. It is especially useful in large populations because of the small size of the
memory required, which is linear with population size, and its speed, if the number of

generations involved is not too large, ie not larger than about 12. The method is compared
with 2 other methods for computational speed and memory requirement. The presented
algorithm is suited for situations where the inbreeding coefficients for a few new animals
are to be computed given that their ancestor’s inbreeding coefficients were calculated
previously.

inbreeding coefficient / algorithm

Résumé - Le calcul des coefficients de consanguinité dans de grandes populations.
On présente un algorithme de calcul des coefficients de consanguinité pour de grandes
populations. Il est particulièrement adapté à ces populations à cause du faible volume de
mémoire d’ordinateur requis (il dépend linéairement de la taille de la population) et de la
rapidité de calcul quand le nombre de générations impliquées n’est pas trop élevé (c’est-
à-dire inférieur à environ 12). La méthode est comparée à 2 autres méthodes du point de
vue de la vitesse de calcul et de la mémoire requise. Le présent algorithme est également
adapté aux situations de mise à jour où les coefficients de consanguinité correspondant
à un faible nombre d’animaux nouveaux doit être calculé en tirant parti des coefficients
calculés pour les anciens animaux.

coefficient de consanguinité / algorithme

* On leave from the Schoonoord Research Institute for Animal Production, PO Box 501,
3700 AM Zeist, The Netherlands



INTRODUCTION

Many countries are implementing or have implemented evaluation methods for na-
tional herds based upon animal models. If these account for inbreeding, calculation
of inbreeding coefficients in large populations is required. Henderson (1976) and
Quaas (1976) implicitly present methods for the calculation of inbreeding coeffi-
cients, when they propose algorithms for the calculation of the inverse of the ad-
ditive relationship matrix. Henderson’s method requires storage of a large matrix.
Quaas avoids this: memory requirement is linear with N and computation time is
proportional to N2, where N is the size of the data set. In Quaas’ method com-
puter time becomes a limiting factor with increasing N. With this algorithm, no
use is made of known inbreeding coefficients, and hence all calculations have to be
repeated whenever coefficients are required for a new batch of animals. Golden et
al (1991) present an algorithm based on Quaas’ method using sparse programming
techniques.

Tier (1990) presents a fast method for the calculation of inbreeding coefficients.
Using sparse programming techniques, his algorithm first determines which ele-
ments in the additive genetic relationship matrix A are required and then calculates
them. The memory required is a small proportion of NZ: about 0.9%. For large pop-
ulations, the physical memory of the computer is still likely to be too small and use
of disk memory is required, slowing this algorithm considerably. Known inbreeding
coefficients are not recalculated.

The aim of this paper is to present a method for the calculation of inbreeding
coefficients in large populations, which is fast, requires memory proportional to N
and does not recompute known inbreeding coefficients. The method presented is
compared to Golden et al’s (1991) implementation of Quaas’ (1976) method and
Tier’s (1990) method for speed and memory required.

METHOD

The method is based on the decomposition of the additive genetic relationship
matrix A, as described by Henderson (1976): A = LDL’, where L is a lower

triangular matrix containing the fraction of the genes that animals derive from
their ancestors, and D is a diagonal matrix containing the within family additive
genetic variances of animals. The animals are ordered such that parents precede
offspring. From the decomposition, it follows that (Quaas, 197G):

where Aii is the ith diagonal element of A, which equals the inbreeding coefficient of
animal i plus 1. Quaas (1976) computes the elements of L quickly and one column
at a time by tlie following recursive algorithm:

For j= 1 to 1V (all columns of L)
Ljj = 1



For i= j + 1 to N (all elements below the diagonal element)
Lij = (L! + Ldd )/2 when both parents si and di of i are known, or

= Lkd /2 when only one parent ki of i is known, or
= 0 when both parents are unknown, for i < j.

The elements of D are calculated as:

D!! = 1 when both parents are unknown, or
= 0.75 - Fkj /4 when only one parent k! of j is known, or
= 0.5 - (Fs! + FdJ/4 when both parents Sj and dj of j are known, where

Fj denotes the inbreeding coefficient of animal j. After computing the elements of
the jtli column of L, they are squared and multiplied by D!!. The resulting vector
is added to a working vector. When this procedure is followed for every column of
L, the working vector contains the Ajj-values. This algorithm requires N(N+ 1)/2
operations. Golden et al (1991) made a list of the offspring of all the animals i.

Because element Lij is non-zero only if i is a descendant of j, the operations within
each column are performed only for the descendants of j. Because the elements of
the columns of L are not stored they have to be recalculated when a new batch of
animals becomes available.

In the present algorithm, the elements of L are computed row by row, which
overcomes the problem of recalculating elements of L when a new batch of animals
has to be evaluated. A row i of L gives the fraction of the genes that animal i derives
from its ancestors. Hence, Lisi = Lid! = 0.5, where si and di are the sire and dam
of i, respectively. Each row of L can be built by proceeding up the pedigree adding
half the &dquo;contribution&dquo; of the current animal to each of its parents. The fraction of
the genes derived from an ancestor is:

where Pj is the set of identification numbers of the progeny of j and ANCi is the
set of identification numbers of the ancestors of i, including animal i itself. The
latter identity in [2] is because Li! = 0, if k is not an ancestor of i or not equal to i.

This leads to the following algorithm for computing L, row by row. As each
row is determined, the contributions to the elements of Aii are accumulated. Row
i of L and A;z, are set to 0 before starting. The algorithm keeps track of a list of
ancestors ANCI, whose contribution to Aii has yet to be included. If the sire or
dam is unknown si = 0 or di = 0, respectively.

Do while ANCI is not empty:



delete j from ANC,
end wliile

The youngest animal j in ANCi is evaluated, because all of its progeny in the
pedigree of animal i must have been evaluated, hence, its Lij value is known. The
kernel of a Fortran program of the algorithm is given in the Appendix. The list of
ancestors is represented by a link list. In the computer program time is saved by: i)
checking whether one of the parents is unknown, giving an inbreeding coefficient of
zero (otherwise, the algorithm would trace the pedigree of the other parent) ; and ii)
if the pedigree is sorted such that full sibs have successive identification numbers, ie
are evaluated successively, only the first full sib is evaluated and all full sibs obtain
(and have) the same inbreeding coefficient as the evaluated full sib.

In order to compare the algorithms, Golden et al’s (1991) and Tier’s (1990)
algorithms were programmed in Fortran. Golden et al presented their algorithm in
C, which they considered faster. However, C was not available to the authors. The
sorting of the list of descendants in the Golden et al algorithm was performed by
an IMSL routine here (I1VISL, 1984).

SIMULATION

In order to compare the algorithms, the simulation program of Meuwissen and Van
der Werf (1991) was used to generate a pedigree data set. The program simulated
an open dairy cattle nucleus scheme for 10, 20 or 40 years, with population sizes of
9 267, 15 582 and 28171 animals, respectively (see table I). Selection was for animal
model BLUP breeding values. Nucleus dams and commercial dams produced 8 and
1 offspring, respectively. The number of nucleus and commercial sires selected was
4 and 10, respectively. Also, a breeding program was simulated for 20 years with
selection of only one commercial sire, representing a situation with large half sib
families.

Inbreeding coefficients were calculated on a micro-VAX 3800 in batch mode. The
maximum physicsl memory allocated to the batch queue was about 20 Mb. Because
this exceeded the memory required by any of the algorithms, no disk memory was
used. If disk memory were used, the computational speed would depend on the size
of the physical memory of the computer.



The number of generations in the data-set after 10, 20 and 40 years were
counted and a weighted average per individual was calculated, where weighting
was according to the contribution of the path. For instance, if only the sire of the
sire and the sire of an animal were known, the average number of generations was
2.1/4 + 1 ! 1/4 + 0 -1/2 = 0.75. The animal with the maximum average number of
generations and the average number of generations of the animals born in the last
year evaluated were estimated.

RESULTS

The results are presented in table II. Although the algorithm of Golden et al

(1991) and that presented here require the same number of additions of L !D!!
terms, the latter consumed less computer time. This is because the algorithm of
Golden et al: i) makes a list of offspring of each animal, before starting evaluations;
ii) traces descendants instead of ancestors, which is more difficult because the
number of progeny of each animal is unlimited, whereas the number of parents
is limited to 2; iii) sorts the list of descendants for every animal, which is time-
consuming ; and iv) tracing of descendants, sorting them, and addition of L? - Djj are

not simultaneously performed. The Golden et al algorithm requires more memory,
because the list of offspring needed and the tracing of descendants requires memory.
However, the memory required is still linear with the number of animals N.

Tier’s (1990) algorithm was faster than the algorithm presented here, when
40 years are evaluated, ie evaluation of 12.3 generations of animals. When many
generations are evaluated, many animals have common ancestors, whose pedigree
is re-evaluated many times in the present algorithm. Tier’s algorithm avoids
redundant calculation by tracing pedigrees once. The memory required is 15.9 lVlb
for 28171 animals. The presented algorithm required 0.7 NIb is this situation.
When about 6 or fewer generations are evaluated, the present algorithm is faster

than Tier’s, because Tier’s algorithm first determines which elements of A are

required before calculating inbreeding coefficients. If only the animals born in year
40 are evaluated, the algorithm presented here and that of Tier (1990) have about
the same speed (table II). In Tier’s algorithm, the required elements of A have to be
determined for relatively few animals. The time required by the algorithm of Golden
et al (1991) equals that required if all animals are evaluated, because the algorithm
re-calculates all inbreeding coefficients. The last alternative in table II shows that
the presence of large half sib families is advantageous to Tier’s algorithm. This is
because Tier’s algorithm traces the pedigree of the sire only once.

DISCUSSION AND CONCLUSIONS

The presented algorithm for computing diagonal elements of A is a sparse imple-
mentation of an algorithm presented by Mrode and Thompson (1989) and Quaas
(1989) for the multiplication of A with a matrix. Here, this matrix is the identity
matrix and only diagonal elements are calculated.

The algorithm combines high computational speed with low memory require-
ment, if the number of generations evaluated is not larger than, say 12 (table II).
Hence, the algorithm is suited for large population sizes.



In order to keep the calculations within the physical memory of the computer,
none of the populations evaluated in table II were really large. If the data set
were much larger, Tier’s (1990) algorithm especially would require disk memory
which would decrease its speed considerably. However, the presence of large half sib
families favours the use of Tier’s algorithm (table II). If the number of generations
involved exceeds, say 12, the algorithm presented here becomes slow compared to
Tier’’s, because common ancestors are traced many times. In order to overcome
this problem we may compute Fi = 1/2AS!d! _ L L!,kLd:kDkk and store the

k

sire’s row of L (LSik, k = 1, ... , si). However, calculating the dam’s row of L costs
approximately the same amount of computer time as calculating the individual’s
row of L, as in !1]. ] .

In practice, often inbreeding coefficients of many animals in the population have
been calculated. Only those of a few new born animals are unknown. The presented
algorithm is suited for these situations, because it does not re-compute inbreeding
coefficients.



APPENDIX

Integer arrays (N is the number of animals in the population):
PED(1:2, l:l!T) PED(1, i) = sire identification no of animal i

PED(2, i) = dam identification no of animal i
POINT(1:N) POINT (i)= the next oldest ancestor in the link list

= 0 if i is the last ancestor
Real Arrays:
F(0: N) F(i) = inbreeding coefficients of animal i. F(O) = -1

gives appropriate within family variances for unknown
parents by the formula: .5-.25*(F (PED(1, i)+PED(2,i)). F(i)
is initially set equal to -1, which is more accurate than
calculating F + 1 and then subtracting 1.

L(1:N) L(j) = element ij of matrix L, if animal i is evaluated
D(1:N) D(i) = within family variance of animal i
.. , ! ., - . , ! ., , ..,



ACKNOWLEDGMENTS

We are indebted to Thompson and referees for helpful suggestions and comments. The
IB!Iilk Marketing Board of England and Wales, the Meat and Livestock Commission and
the Ministry of Agriculture, Fisheries and Food are gratefully acknowledged for their
sponsorship.

REFERENCES

Golden BL, Brinks JS, Bourdon RM (1991) A performance programmed method
for computing inbreeding coefficients from large data sets for use in mixed-model
analyses. J Anim Sci, 69, 3564-3573
Henderson CR (197G) A simple method for computing the inverse of a numerator
relationship matrix used in the prediction of breeding values. Biometrics 32, 69-83
IMSL (1984) International Mathematical and Statistical Libraries. Houston, TX,
ed 9.2

Meuwissen THE, van der Werf JHJ (1991) Effects of heterogeneous within-herd
variances on the efficiency or dairy cattle breeding schemes. 42th Ann Meet Eur
Assoc Anim Prod, Berlin, Germany
Mrode R, Thompson R (1989) An alternative algorithm for incorporating the
relationships between animals in estimating variance components. J Anim Breed
Genet 106, 89-95



Quaas RL (1976) Computing the diagonal elements and inverse of a large numerator
relationship matrix. Biometrics 32, 949-953
Quaas RL (1989) Transformed mixed model equations: a recursive algorithm to
eliminate A-1. J Dairy Sci 72, 1937-1941
Tier B (1990) Computing inbreeding coefficients quickly. Genet Sel Evol 22, 419-430


