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The Editorial Board here introduces a new kind of scientific report in the Journal,
whereby a current field of research and debate is given emphasis, being the subject
of an open discussion within these columns.

As a first essay, we propose a discussion about a difficult and somehow trouble
some question in applied animal genetics: how to take proper account of the
observed data being selected data? Several attempts have been carried out in the
past 15 years, without any clear and unanimous solution. In the following, Im,
Fernando and Gianola propose a general approach that should make it possible to
deal with every problem. In addition to the interest of an original article, we hope
that their own discussion and response to the comments given by Henderson and
Thompson will provide the reader with a sound insight into this complex topic.

This paper is dedicated to the memory of Professor Henderson, who gave us here
one of his latest contributions.

The Editorial Board

Summary — Data available in animal breeding are often subject to selection. Such data
can be viewed as data with missing values. In this paper, inferences based on likelihoods
derived from statistical models for missing data are applied to production records subject
to selection. Conditions for ignoring the selection process are discussed.

animal genetics — selected data — missing data — likelihood inference

Résumé — Les méthodes d’inférence fondées sur la vraisemblance en génétique
animale: prise en compte de données issues de la sélection au moyen de la théorie
des données manquantes. Les données disponibles en génétique animale sont souvent
1ssues d’un processus préalable de sélection. On peut donc considérer comme manguants
les attribuis (non observés) associés aur individus éliminés, et analyser les données
recueillies comme provenant d’un échantillon avec données manguantes. Dans cet article,
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on développe les méthodes d’inférence fondées sur les vraisemblances, en explicitant dans
leur calcul le processus, di a la sélection, qui induit les données manquantes. On discute
les conditions dans lesquelles on peut ignorer la sélection, et donc considérer seulement la
vraisemblance des données effectivement recueillies.

génétique animale — sélection — données manquantes — vraisemblance

INTRODUCTION

Data available in animal breeding often come from populations undergoing selec-
tion. Several authors have considered methods for the proper treatment of data sub-
ject to selection in animal breeding. Examples are Henderson et al. (1959), Curnow
(1961), Thompson (1973), Henderson (1975), Rothshild et al. (1979), Goffinet
(1983), Meyer and Thompson (1984), Fernando and Gianola (1989), and Schaeffer
(1987).

Data subject to selection can be viewed as data with missing values, selection
being the process that causes missing data. The statistical literature discusses miss-
ing data that arise intentionally. Rubin (1976) has given a mathematically precise
treatment which encompasses frequentist approaches that are not based on like-
lihoods as well as inferences from likelihoods (including maximum likelihood and
Bayesien approaches). Whether it is appropriate to ignore the process that causes
the missing data depends on the method of inference and on the process that causes
the missing values. Rubin (1976) suggested that in many practical problems, infer-
ences based on likelihoods are less sensitive than sampling distribution inferences to
the process that causes data. Goflinet (1987) gave alternative conditions to those
of Rubin (1976) for ignoring the process that causes missing-data when making
sampling distribution inferences, with an application to animal breeding.

The objective of this paper is to consider inferences based on likelihoods derived
from statistical models for the data and the missing-data process, in analysis of
data from populations undergoing selection. As in Little and Rubin (1987), we
consider inferences based on likelihoods, in the sense described above, because
of their flexibility and avoidance of ad-hoc methods. Assumptions underlying the
resulting methods can be displayed and evaluated, and large sample estimates of
variances based on second derivatives of the log-likelihood taking into account the
missing data process, can be obtained.

MODELING THE MISSING-DATA PROCESS

Ideas described by Little and Rubin (1987) are employed in subsequent develop-
ments. Let y, the realized value of a random vector Y, denote the data that would
occur in the absence of missing values, or complete data. The vector y is partitioned
into observed values, y,1s, and missing values, y;s. Let

f(.YIO) = f(yobsv.Ymisle) (1)
be the probability density function of the joint distribution of Y = (Yous; Yinis)s
and 0 be an unknown parameter vector. We define for each component of Y an
indicator variable, R; (with realized value r;), taking the value 1 if the component
is observed and O if it is missing. In order to illustrate the notation, 3 types of
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missing data are described in table I. Consider 2 correlated traits measured on n
unrelated individuals; for example, first and second lactation yields of n cows. The
‘complete’ data are y = (y,;), where y;; is the realized value of trait j in individual ¢
(7 =1,2; ¢ =1...n). Suppose that selection acts on the first trait (case (a) in Table
I). As a result, a subset of y, y.s, becomes available for analysis. The pattern of the
available data is a random variable. For example, if the better of two cows (n = 2)
is selected to have a second lactation, the complete data would be

¥ = (Y11, Y21, Y12, Y22)
Then when y11 > y21:

Yobs = Y11, Y21, y12)7 Ymis = (y22)7 r= (17 17 110)
and when y;; < y91:

Yobs = (yllay21, y22)7 Ymis = (ylZ)a r= (1’ 1’0, 1)
Thus, in analysis of selected data, the pattern of records available for analysis,
characterized by the value of r, should be considered as part of the data. If this is
not done, there will be a loss of information.

To treat R = (R;) as a random variable, we need to specify the conditional prob-
ability that R = r, f(r|y,¢), given the ‘complete’ data Y = y; the vector ¢

Table I. An example of 3 types of missing-data

(a) (6 (0
Y11 Y12 U1 2 * Y12
Y21 Y22 Y21 Y22 * Y22
Ymi1 Ym2 Ym1 Ym2 * Ym2
Y(m+1)1 * * * * *
Ynl * * * * *

* Stands for missing value

(a) Yobs = {¥11,%21-- - Yn1,¥12 ... Ym2)
Ymis = (y(m+1)2 - Yn2)

ram=1fori=1...n

rigo=1fori=1...mandOfori=m+1...n.
(b)  Yobs = Eyu < Ym1, Y12+ - Ym2)

Ymis = Y(m+1)1---YnlL Ym+1)2--- Yn2)
rij=1fori=1...m; j=1,2
rj=0fori=m+1...n; j=1,2.

(c) yobs=gy12---ym2)

Ymis = (Y11 - --ynl,y(m+1)2---yn2)

rgj=1fori=1...mand j =2

=1
= 0 otherwise.
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is a parameter of this conditional distribution. The density of the joint distribution
of Y and R is

f(y,r10,9) = f(x18) - f(rly, ) (2)

The likelihood ignoring the missing-data process, or marginal density of yous in
the absence of selection, is obtained by integrating out the missing data ymis from

(equ.(1))
f(.YObsle) = f f(yobsa.Vmis’O)d.Vmis (3)

The problem with using f(¥,bs|@) as a basis for inferences is that it does not take
into account the selection process. The information about R, a random variable
whose value r is also observed, is ignored. The actual likelihood is

f(.Vobs, 1'!9, (P) = f f(.Vobsa.Ymisle) . f(rlJ’obs,ylllisa ‘l’)d}’mis (4)

The question now arises as to when inferences on 8 should be based on the joint
likelihood (equ.(4)), and when can it based on equ.(3), which ignores the missing
data process. Rubin (1976) has studied conditions under which inferences from
equ.(3) are equivalent to those obtained from equ.(4). If these hold, one can say
that the missing data process can be ignored. The conditions given by Rubin (1976)
are: 1) the missing data are missing at random, ie, f(r|Yobs; Ymis, $) = F(r|Yobs: P)
for all § and yp;s evaluated at the observed values r and yous; and 2) the parameters
0 and ¢ are distinct, in the sense that the joint parameter space of (0,¢) is the
product of the parameter space of 8 and the parameter space of ¢. Within the
contexte of Bayesian inference, the missing data process is ignorable when 1) the
missing data are missing at random, and 2) the prior density of 8 and ¢ is the
product of the marginal prior density of 8 and the marginal prior density of ¢.

IGNORABLE OR NON-IGNORABLE SELECTION

Without loss of generality, we examine ignorability of selection when making
likelihood inferences about @ for each of the three examples given in Table I. Suppose
individuals 1,2...m (< n) are selected.

Cases (a)

Selection based on observations on the first trait, which are a part of the observed
data and all the data used to make selection decisions are available. The likelihood
for the observed data, ignoring selection, is

£(3oel®) = [T] 700, 0210)] [ TT fwal®)] (5)
i=1 i=m+1
= [f[f(yulﬂ)] [f[f@,-zwu,e)] (6)

Because selection is based on the observed data only, the conditional probability
F(rly,$) = f(r|yobs, §) because it does not depend on the missing data. Applying
this condition in equ.(4) one obtains as likelihood function
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f(¥obs, r|0,) = f(r|¥obs, §) - f(¥obs|0) (M

It follows that maximization of equ.(7) with respect to 8 will give the same estimates
of this parameter as maximization of equ.(6). Thus, knowledge of the selection
process is not required, i.e., selection is ignorable. Note that with or without
normality, f(yobs|@) can always be written as equ.(5) or (6). Under normality of
the joint distribution of Y;; and Y;2, Kempthorne and Von Krosigk (Henderson et
al., 1959) and Curnow (1961) expressed the likelihood as equ.(6). These authors,
however, did not justify clearly why the missing data process could be ignored.

In order to illustrate the meaning of the parameter ¢ of the conditional
probability of R = r given Y = y, we consider a ‘stochastic’ form of selection:
individual ¢ is selected with probability g(1o + ¥1¥:1), so § = (vbo,%1). This type
of selection can be regarded as selection based on survival, which depends on the
first trait via the function g(o + ¥1¥:1). We have for the data in Table I

Pr(R; =1ly)=1 fori=1...n
Pr(Rio = 1ly$) = g(vo + 1ya) fori=1...n
The actual likelihood for the observed data y,s and r is

f(Yobs, 710, ) = H[f(yila ¥i2|0)9(¥o + Y1yi1)]

i=1

: ﬁ {/f(yilayﬂle)[l - g(%o +¢1yi1)]dyi2}

i=m-1

m n

= {TTowo +wwa) { TI 11— oo +¥19:)] } £ Yorel) (8)
i=1 i=m+1

It follows that when ¢ and O are distinct, inference about 8 based on the

actual likelihood, f(¥obs, r|0, §), will be equivalent to that based on the likelihood

ignoring selection, f(yobs|0). As shown in equ.(8), the two likelihoods differ by a

multiplicative constant which does not depend on 8.

It should be noted that in general, although the conditional distribution of R;s
given y does not depend on O, this is not with the marginal distribution. For
example, when Y;; is normal with mean y; and variance 0%, and g is the standard
normal function (®) we have

Pr(Riz = 110,¢) = ®[(o + Y1)/ (1 + ¢707)'/?]
The condition (b) in' Goffinet (1987) for ignoring the process that causes missing
data is not satisfied in this situation.

Cases (b)

Data are available only in selected individuals because observations are missing
in the unselected ones. In what follows, we will consider truncation selection:
individual 7 is selected when y;; > ¢, where ¢ is a known threshold.

The likelihood of the observed data (y,ps) ignoring selection is
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yobslo Hf(yzl y12|0) (9)

i=1

The conditional probability that R = r given Y = y depends on the observed and
on the missing data. We have

Pr=(Rij =1ly) =1goo)(yn) for j=1,2; i=1...n
where 1 0)(%:1) = 1 if yn > ¢, and 0 if y;; < ¢
The actual likelihood, accounting for selection, is

F(¥obsr718) = [Hf ynval®)] [ T [ [ i 21001 ooy (wia)dpindva)

i=m-+1

— franl®)[ T Pr(Ya <ti0)] (10)
i=m+1
where 1(_qoo)(¥:1) =1 if i1 <tand 0if yir > ¢
Comparison of equs.(9) and (10) indicates that one should make inferences
about 0 using equ.(10), which takes selection into account. If equ.(9), is used, the
information about @ contained in the second term in equ.(10) would be neglected.
Clearly selection is not ignorable in this situation.

Cases (c)

Often selection is based on an unknown trait correlated with the trait for which
data are available (Thompson, 1979). As in case (c) in Table I, suppose the data
are available for the second trait on selected individuals only, following selection,
e.g. by truncation, on the first trait. The likelihood ignoring selection is

F(yobs|®) = [] £(v:210) (11)

=1
We have
Pr(Ry=0ly)=1fori=1...n
PT’(Rig = 1|y) - l(t,oo)(yil) fort=1...n
The likelihood of the observed data, y.us and r is

e 70 = [I1 [ 100090000 0100

H //f(yn,yzzw —co.)(¥i1)dyindye2

i=m+1

= [T swalo)] [TT Prea > da.0)] [ TT Preva <1i0)] (12)
i=1 =1

i=m+1

Inferences based on the likelihood (equ.(11)) would be affected by a loss of
information represented by thé second and the third terms in equ.(12).
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Under certain conditions one could use f(yobs|@) to make inferences about
parameters of the marginal distribution of the second trait after selection. Suppose
the marginal distribution of the second trait depends only on parameters 02, and
that the marginal and conditional (given the second trait) distributions of the first
trait do not depend on 0. In this case, likelihood inferences on 82 from equs.(11)
and (12) will be the same.

In summary, the results obtained for the 3 cases discussed indicate that when
selection is based only on the observed data it is ignorable, and knowledge of the
selection process is not required for making correct inferences about parameters
of the data. When the selection process depends on observed and also on missing
data, selection is generally not ignorable. Here, making correct inferences about
parameters of the data requires knowledge of the selection process to appropriately
construct the likelihood.

A GENERAL TYPE OF SELECTION
Selection based on data

In this section, we consider the more general type of selection described by Goffinet
(1983) and Fernando and Gianola (1987). The data y, are observed in a ‘base
population’ and used to make selection decisions which lead to observe a set of data,
Ylobs, among n; possible sets of values y11,¥12-.-¥1n,- Bach y1e(k =1...n1) is
a vector of measurements corresponding to a selection decision. The observed data
at the first stage, y10bs, are themselves used (jointly with yg) to make selection
decisions at a second stage, and so forth. At stage j (j = 1...J), let y; be the
vector of all elements from y;; ...y;n;, without duplication. The vector y; can be
partitioned as

Y= (.onbsa .ijis)
where yjobs and yjmis are the observed and the missing data, respectively. For the
J stages, the data

y=Uoy,¥2---Yj---¥7)
can be partitioned as y = (¥obs, Yimis), where

Yobs = (.VOa.VIObs .- ~.VJObs)
and

Ynis = (.Ylmis, . .VJmis)
are the observed and missing parts, respectively, of the complete data set. The
complete data set y is a realized value of a random variable Y.

When the selection process is based only on the observed data, y,us, the observed
missing data pattern, r is entirely determined by y,ns. Thus,

f(rl.Y7¢) = f(I'lYobs,(l))

and the actual likelihood can be written as in equ.(7). In this case, the selection
process is ignorable and inferences about 8 can be based on the likelihood of the
observed data, f(yobs|0). This agrees Gianola and Fernando (1986) and Fernando
and Gianola (1989).
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Selection based on data plus ‘externalities’

Suppose that external variables, represented by a random vector E, and the
observed data yons are jointly used to make selection decisions. Let f(y,e|0,&)
be the joint density of the complete data Y and E, with an additional parameter &
such that 0 and & are distinct. The actual likelihood, density of the joint distribution
of Yops and R, is

f(YOb57 1']9, g, tl') = f f f(.VObsa.Vmis’ e, §) . f(rI.YObsa e, q‘)dJ’lllisde (13)

where f(r|yobs,e,®) is the distribution of the missing data process (selection
process).

In general, inferences about 8 based on f(yous,r|0,8,¢) are not equivalent to
those based on f(¥obs|0). However, if for the observed data, yous

F(Yobs, Ymis, €[0,8) = f(¥obs, Ymis|®) - f(el&)
for all y,.is and e, then equ.(13) can be written as
f(.Yobsvrle’ g, (l’) = f f f(.}'ost.Ymisle) ' f(elg) . f(rlJ’obs, e, q’)d.Vmisde
= f f()'obs,.}’misle)deis : ff(elg) ' f(rl.YObSa e, ¢)de
= f(¥obs|9) - f f(el&) - f(r|yons, e, d)de (14)
Thus, under the above condition, which is satisfied when Y and FE are independent,
inferences about 0 based on the actual likelihood f(¥obs, r|0,&,$) and those based

on f(yobs|0) are equivalent. Consequently, the selection process is ignorable. Note
that the condition

F(¥obss Ymis» e[O, ) = f(.}’obSa.Ymislo) ' f(elg)

for all y,.is and e does not require independence between Y and E because it holds
only for the observed data y,us and not for all values of the random variable Yps.

The results can be summarized as follows: 1) the selection process is ignorable
when it is only on the observed data, or on observed data and independent
externalities; 2) the selection process is not ignorable when it is based on the
observed data plus dependent externalities. In the latter case, knowledge of the
selection process is required for making correct inferences.

DISCUSSION

Maximum likelihood (ML) is a widely used estimation procedure in animal
breeding applications and has been suggested as the method of choice (Thompson,
1973) when selection occurs. Simulation studies (Rothschild et al., 1979, Meyer and
Thompson, 1984) have indicated that there is essentially no bias in ML estimates
of variance and covariance components under forms of selection, e.g., data-based
selection.

Rubin’s (1976) results for analysis of missing data provide a powerful tool for
making inferences about parameters when data are subject to selection. We have
considered ignorability of the selection process when making inferences based on
likelihood and given conditions for ignoring it. The conditions differ from those given
by Henderson (1975) for estimation of fixed effects and prediction of breeding value
under selection in a multivariate normal model. For example, Henderson (1975)
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requires that selection be carried out on a linear, translation invariant function. This
requirement does not appear in our treatment because we argue from a likelihood
viewpoint.

In this paper, the likelihood was defined as the density of the joint distribution
of the observed data pattern. In Henderson’s (1975) treatment of prediction, the
pattern of missing data is fixed, rather than random, and this results in a loss
of information about parameters (Cox and Hinkley, 1974). It is possible to use
the conditional distribution of the observed data given the missing data pattern.
Gianola et al. (submitted) studied this problem from a conditional likelihood
viewpoint and found conditions for ignorability of selection even more restrictive
that those of Henderson (1975). Schaeffer (1987) arrived to similar conclusions, but
this author worked with quadratic forms, rather than with likelihood. The fact
that these quadratic forms appear in an algorithm to maximize likelihood is not
sufficient to guarantee that the conditions apply to the method per se.

If the conditions for ignorability of selection discussed in this study are met, the
consequence is that the likelihood to be maximized is that of the observed data,
i.e., the missing data process can be completely ignored. Further, if selection is

ignorable f(yous, I,[0) < f(¥obs|0), so

0% 10g f(¥obs, 18) _ 0°10g f(¥obs|6)
80 96’ 89 09’

Efron and Hinkley (1978) suggested using observed rather than expected infor-
mation to obtain the asymptotic variance-covariance matrix of the
maximum likelihood estimates. Because the observed data are generally not inde-
pendent or identically distributed, simple results that imply asymptotic normality
of the maximum likelihood estimates do not immediately apply. For further discus-
sion see Rubin (1976).

We have emphasized likelihoods and little has been said on Bayesian inference.
It is worth noticing that likelihoods constitute the ‘main’ part of posterior distri-
butions, which are the basis of Bayesian inference. The results also hold for Bayesian
inference provided the parameters are distinct, i.e., their prior distributions are
independent. For data-based selection, our results agree with those of Gianola and
Fernando (1986) and Fernando and Gianola (1989) who used Bayesian arguments.
In general, inferences based on likelihoods or posterior distributions have been
found more attractive by animal breeders working with data subject to selection
than those based on other methods. This choice is confirmed and strengthened by
application of Rubin’s (1976) results to this type of problem.
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COMMENT

C.R. Henderson t*

The paper by Im, Fernando and Gianola provides an interesting and invaluable
contribution to estimation and prediction in an almost universal situation in animal
breeding. Very few data are available for parameter estimation or prediction of
breeding values that have not arisen from either selection experiments or from field
data in herds that have undergone selection.

For several years after the adoption of BLUP, a mixed linear model was assumed,
and the usual description of the model was that E(Y) and E(e) are both null, and
in an additive genetic model Var(U) = Ac2. The assumption of E(U) = 0 is clearly
untenable, because if selection has been effective, the expectations of a subvectors
for successive generations are increasing.

A serious attempt to model for selection was made in my 1975 Biometrics paper
cited by Im et al. It must be emphasized, as has been done in the paper under review,
that my model is different from the model of the present paper. Consequently, the
solution to prediction and estimation differs. I do not disagree with the authors’
conclusions from their model, and I think, based on long discussions with Gianola
and Fernando, that they do not disagree with my conclusions based on my model.
The really critical question is, “What is the best model for describing selection?” I
have no intention of addressing this issue because I neither have strong convictions
about my model nor about any others.

Our models differ in that mine is considerably more restrictive, requiring as
it does, a fixed incidence matrix with conceptual repeated sampling. This of
course is the traditional approach taken by classical statisticians. The problem is
more difficult, however, with selection problems, as compared to nicely designed
experimental situations. No attempt was made in the 1975 paper to solve the
problem of estimation of variances and covariances. Rather, I solved the problem of
BLUE of estimable functions of 3 and BLUP of random variables, given multivariate
normality and with variances and covariances known to proportionality. I pointed
out that, in contrast to no selection models, the estimators and predictors are biased
if incorrect ratios are employed. Thus, it is critical to obtain the best possible of
these parameters. Im et al. address this problem.

Several workers have speculated that REML applied to a selection model
estimates the variances and covariances that existed prior to selection and which
may have been altered by selection. In contrast to most of these speculations, I
suggested that when selection is on observed records, the linear selection functions
should be translation invariant. I think this is true under my selection model but
may well not be true for other selection models.

Im et al. strongly emphasize the desirability of likelihood methods. I agree with
them, and in many meetings and papers have recommended these methods over
some of my own, such as Method 3. I doubt the accuracy of the last sentence of
the paper under review which states that animal breeders find likelihood methods
more attractive. A study of animal breeding literature of the past 5 years would
probably disclose that animal breeders have used Method 3 much more often than

* Formerly of the Department of Animal Science, Cornell University Ithaca, NY, USA.
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REML or ML. If this is true, I certainly agree with minority and with Im et al.
The fact is that BLUE and BLUP under my selection model are ML estimators of
B and of the conditional mean of U.

I should now like to discuss how results compare under my selection model and
under the model of the present authors. We agree partially regarding estimation
when selection is on observable records. The authors’ model clearly shows ignora-
bility of selection in this case. Under my model, linear selection functions of Y must
either be translation invariant or it must be true that E(L'Y;) = E(L'Y,) when Y;
and Y, refer to selection and to no selection, respectively. This difference is simply
a consequence of different models.

We agree that if selection is on unobserved random variables, selection is not
ignorable. A special case of this has been of interest to me. Base population animals
have been selected on translation invariant linear functions of data, but these are not
available for analysis. Assuming that such selection results in E(U,) # 0 a simple
modification of the regular mixed model equations leads to BLUE and BLUP, and
presumably these modified equations could be used to derive REML estimation of
the variances and covariances, Henderson (1988).

I believe that this final question is justified, namely, “What are the operating
characteristics of the authors’ estimators?” Likelihood methods for variance esti-
mation have known desirable properties only in large samples. We need studies for
various methods of bias, MSE, and maximization of selection progress using BLUP
with estimated variances and covariances. Probably this can be done only through
extensive simulation for a wide range of parameter values, selection intensity, etc.

The authors have made a valuable contribution to the problem of estimation in
selection models. This paper should motivate further studies on this problem.
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COMMENT

R. Thompson *

This paper considers ways of constructing likelihoods for selected data, specifically
taking account of the presence and absence of data following a method developed
by Rubin {1976) and explained in the recent book by Little and Rubin (1987). Some
of the likelihoods have been given previously without any formal recourse to ideas
of missingness, for example extensions of case (a) Henderson et al. (1959), Curnow
(1961) and Thompson (1973). Theses authors used a sequential approach to build
up likelihoods that I find appealing. Using this approach it is easy to see that r is
a function of y and so does not contribute any extra information on 8. To derive
the same likelihood by differing routes is reassuring.

* AFRC Institute of Animal Physiology and Genetics Research, Edinburgh, UK.
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It is valuable to know when selection is ignorable. I have always found it confusing
that in extensions of case (a) a likelihood approach would say that selection on ¥,
is always ignorable but Henderson (1975) suggests that selection is only ignorable
if selection is on a culling variate (w) that is translation invariant.

In an interesting paper the same 3 authors {Gianola et al., 1988) have constructed
the joint density of the data and random effects conditional on the culling variate
(D,). Inferences based on D, suggest that selection can be ignored only if it is based
on functions of the data that do not depend on the fixed effects. It would have been
instructive to relate D, to terms used in the present paper, as presumably r can be
related to the culling variate and might help to answer 3 comments I have on the
use of D,.

First, Gianola et al. (1988) condition on w, the culling variate, by integrating
over y and the random effects. I am not sure of the need to integrate over the
random effects. One might sometimes want to consider repeated samples over (or
conditioning on) all possible genetic material and only repeated over the same
genetic material. Henderson (1988) has recently suggested a procedure that involves
no integration over y of the random effects, i.e. conditioning on the observed value
of w. What should one do?

Secondly, Gianola et al. (1988) highlighted differences between using D. and
Henderson’s (1975) approach when selection is on random effects or residuals
(w = L'v or L'e). This case is artificial in the sense that random effects and residuals
will never be known exactly. But if selection is on known random effects it scarcely
seems necessary to predict them using only the data. It might be more interesting
to compare the 2 predictions. Similarly, if w = L’e is known, this known value could
improve estimation and prediction of the other parameters.

Thirdly, if selection is on w = L'y, but is not translation invariant, presumably
the authors technique, which is non-linear, should be more efficient than Hender-
son’s approach. I wonder if the authors have quantitative information on this.

Finally there are cases when one wants to estimate parameters associated with
equ.(4) and, (Robertson (1966)). There is discussion of this area in Little and Rubin
(1987) and techniques developed by Foulley, Gianola and Thompson (1983) for
quantitative and binary traits can sometimes be used.
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REJOINDER

S. Im, R.L. Fernando and D. Gianola

We thank the participants in this discussion and, in particular, Professor Henderson,
whose comments were received by us a few weeks before his unexpected death,
for their contributions to the theory of parameter estimation under selection. As
Thompson points out in his comments, there is a controversy regarding selection
based on observed data. Accordingly, we begin our rejoinder with a discussion on
this problem. Then we adress the issues raised by the discussants.

Different methods of parameter estimation or prediction of breeding values
developed to account for selection lead to different results on ignorability of
selection based on observed data, as stated by Thompson. The repeated sampling
developments of Henderson (1975) are made using the conditional distribution of
Yobs given R (the observed pattern of missing data) and require, as indicated
by missing data theory (Rubin, 1976), stronger conditions for ignorability than
likelihood based inferences. However, it should be noted that the latter inferences
are based on the joint distribution of Y,,; and R instead of the conditional
distribution mentioned above. Some papers (Gianola et al., 1988; Goffinet, 1988)
have considered selection from the conditional likelihood viewpoint and given
conditions for ignoring it, and these are very restrictive and similar to those of
Henderson (1975). Goffinet (1988) advocated the use of conditional likelihood for
selection on observed data and found that it is ignorable only if the marginal
distribution of R does not depend on the parameter 8. The crucial question to
be answered is: should inferences be based on the conditional distribution of Yy,
given R?

In repeated sampling inferences, the statistical quality of an estimator is usually
measured in terms of quantities (bias, variance) evaluated by averaging over all
possible samples according to the randomness generated by the sampling process.
According to this principle, inferences should be made unconditionally on the
observed value of R. This is done in survey sampling theory where selection schemes
do not depend on the response variable and the selection probabilities are known;
see, for example, Gourieroux (1981). However, these conditions are not satisfied in
animal breeding situations and, as noticed by Henderson (1975), the unconditional
approach is rather intractable. Consequently a condmonal analysis, while not fully
efficient, may be useful.

From the likelihood viewpoint, the unconditional method should be preferred
over the conditional method because the former leads to better estimates than
the latter, in the sense of having smaller asymptotic variances of estimators. Condi-
tional likelihood is usually considered as a device for obtaining a consistent estimate
of the parameter of interest in the presence of infinitely many nuisance parameters
(Kalbfleisch and Sprott, 1970). According to Andersen (1970), the conditional max-
imum likelihood estimator is consistent and asymptotically normally distributed
but, in contrast to the maximum likelihood estimators, it will not in general be
efficient even under regularity conditions.

When selection is based on observed data, a conditional analysis is disturbing
because it implies that selection also affects the distribution of the data observed
even before it has taken place. For example, in case (a), it would say that the
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distribution of ¥, sampled at random, is affected by selection. Im (1989) highlighted
difficulties that arise when applying BLUP under selection in this case, and
considered estimation and prediction based on the unconditional likelihood. The
conditional likelihood approach, which is less efficient, requires knowledge of the
selection process and more complicated calculation, unless the marginal distribution
of R does not depend on the parameters being estimated.

For selection problems dealt with in this paper, as well as in most animal breeding
literature, the correct likelihood is given by the joint distribution of Y,bs and R.
This may not be always the case. Consider, for example, situation (b) in Table I.
We supposed that the unselected individuals were available for analysis, and used
the information that they were not selected when deriving the likelihood. If they
were not available, the actual likelihood would be a conditional one. In any selection
problem, one should construct the correct likelihood and use it to make inferences.

We agree with Henderson that likelihood methods have known desirable prop-
erties only in large samples, but little is known about their small sample behavior.
Simulation studies he indicated could be useful. We disagree that BLUE and BLUP
under his selection model are ML estimators of 8 and of the conditional mean of
U because the normality requirement is not met under selection, unless selection is
translation invariant.

Thompson’s comments are mostly concerned with another paper, Gianola et
al. (1988), who considered prediction of breeding values by maximizing the joint
distribution of the data and the random effects using the conditional selection
scheme proposed by Henderson. For known variances and 6 = (3, u), D, would be
the joint density of (Yops, U) given R, f(Yobs|T, 3,u)f(u). In Gianola et al. (1988),
the selection process is defined as the modification of the joint density of (Y,U)
into another density, due to a restriction in the sample space of W. Integration
over ¥ and u is needed for obtaining the joint density of (Y,U) conditional on
W € R, from that of (Y,U,W). The procedure suggested by Henderson (1988a)
does not involve integration explicitly because it is developed using conditional
means, variances and covariances. However, integration is required when calculating
these conditional quantities from the joint density of (Y, U, W). It seems to us that
Henderson’s (1988a) procedure is not conditional on the observed value of W but,
rather, on that W € R;. If it were so, then Hy = Var(W,) = Var(W|W) = 0. But,
in his example of cow culling, he simulated with H, # 0 (p. 3139).

Selection on random effects or residuals (Henderson, 1975) is indeed artificial
and, consequently, has no real practical interest. Gianola et al. (1988) studied this
in order to compare the results with those of Henderson (1975). We are not sure of
the need for further developing this type of selection. In his comments, Henderson
gave a new and more realistic definition of selection on random effects. Namely,
this selection is based on records correlated with U but not available for analysis.
It might be interesting to compare different methods under this scheme.

We have no quantitative information on the efficiency of Henderson’s approach
when selection is on L'y, but is not translation invariant. This question deserves
further study.

We agree with Thompson that techniques developed by Foulley et al. (1983) can
sometimes be used to estimates parameters associated with equ.(4) when selection
is not ignorable. The selection process must be completely specified and it is not
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possible to handle situations in which animals are selected in an unspecified manner
(Henderson, 1988b).

To end our rejoinder, we should like to introduce a practical and important
question. Is it possible to relax the condition of normality required in Henderson’s
developments? This question should motivate some further studies on the selection
problem.

ADDITIONAL REFERENCES

Andersen E.B. (1970) Asymptotic properties of conditional maximum likelihood
estimators.J.R. Statist. Soc. B 32, 283-301

Goffinet B. (1988) A propos de ’estimation des parameétres en présence de sélection.
Biom. Prazim 28, 49-60

Gourieroux C. (1981) Théorie des sondages. Economica, Paris

Henderson C.R. (1988a) Simple method to compute biases and mean squared error
of linear estimators and predictors in a selection model assuming normality. J. Dairy
Sci. 71, 3135-3142

Henderson C.R. (1988b) A simple method to account for selected base populations.
J. Dairy Sci. 71, 3399-3404

Im S. (1989) On a mixed linear model when the data are subject to selection. Biom.
J. in press.

Kalbfleisch J.D. & Sprott D.A. (1970) Application of likelihood methods to models
involving large numbers of parameters (with discussion). J. R. Statist. Soc. B 32,
175-208



