A scientific note on the specific optical rotation of three honey types from Bulgaria

Dinko Dinkov

To cite this version:

Dinko Dinkov. A scientific note on the specific optical rotation of three honey types from Bulgaria. Apidologie, Springer Verlag, 2003, 34 (3), pp.319-320. 10.1051/apido:2003017. hal-00891777

HAL Id: hal-00891777

https://hal.archives-ouvertes.fr/hal-00891777

Submitted on 1 Jan 2003

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Scientific note

A scientific note on the specific optical rotation of three honey types from Bulgaria

Dinko Dinkov*

Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria

(Received 12 February 2002; revised 25 November 2002; accepted 27 November 2002)

Honey has the property to rotate the polarization plane of polarized light. This depends largely on types and relative proportions of sugars in honey. Each sugar has a specific effect, and the total optical rotation is dependent on concentration. Floral honeys are laevorotary and honeydew (or adulterated floral) honeys are usually dextrorotary. This is a consequence of the normal preponderance in honey of fructose, which has a negative specific rotation, \([\alpha]_D^{20} = -92.4^\circ \) over glucose \([\alpha]_D^{20} = +52.7^\circ \) (Battaglini and Bosi, 1973; Ivanov, 1986).

The measurement of specific rotation is currently used in Greece, Italy and UK to distinguish blossom and honeydew honeys. In Italy, blossom honeys have negative values of optical rotation, while honeydew honeys have positive ones (Kirkwood et al., 1960; Kirkwood et al., 1961; Sacchi and Bosi, 1963; Battaglini and Bosi, 1973; Piazza et al., 1991; Persano Oddo et al., 1995, 1997). Honeydew honeys are usually somewhat lower in fructose content and contain melezitose \(([\alpha]_D^{20} = +88.2^\circ) \) or erlose \(([\alpha]_D^{20} = +121.8^\circ) \) (Ivanov, 1986).

The aim of the study was to apply the method for determination of the specific optical rotation of bee honey according to the Harmonized Methods of the European Honey Commission (Bogdanov et al., 1997) for multifloral, honeydew and Robinia sp. honeys from Bulgaria. The results of the Bulgarian “off-hand method” (Ivanov, 1986) are different from those obtained from the method used by the European Honey Commission (Bogdanov et al., 1997). For that purpose a comparison of optical measurements of Bulgarian honeys from different origins was carried out with the harmonised method of the European Honey Commission.

The specific optical rotation \(([\alpha]_D^{20}) \), was determined in 29 honeys (Robinia sp. n = 10, multifloral n = 10, honeydew n = 9), produced in 2000, from various regions and different phytogeographical areas in Bulgaria. The specific optical rotation was evaluated by the method of the European Honey Commission (Bogdanov et al., 1997).

The botanical origin of the samples (Tab. I) was established by their melissopalynological, organoleptic, physical and chemical characteristics (Louveaux et al., 1978; Persano Oddo et al., 1995).

The results from the study on the specific optical rotation, are presented in Table I. It was estimated that the specific optical rotation of the Robinia honeys was \((-) 17.0 \pm 1.2\), which was similar to previously reported values (Piazza et al., 1991; Persano Oddo et al., 1997). The average value of the multifloral honeys was \((-) 14.8 \pm 4.9\), which was similar of the values of multifloral honeys found by Sacchi and Bosi (1963) and to those found in Robinia honeys.

The values of the specific optical rotation of the Bulgarian honeydew honeys were positive \((4.2 \pm 1.3)\), which is consistent with other results (Kirkwood et al., 1960; Kirkwood et al., 1961; Sacchi and Bosi, 1963; Battaglini and Bosi, 1973; Persano Oddo et al., 1995). However these values were lower than those found in Italian honeydew honeys, which varied from 13.6 to 16.6.

Note scientifique sur la rotation optique spécifique de trois types de miels de Bulgarie.

Eine wissenschaftliche Notiz zur spezifischen optischen Drehung von drei Honigsorten aus Bulgarien.

* Correspondence and reprints
E-mail: dinkodinkov@yahoo.com
Table I. Modification of analytical characteristics of honeys according to their origin (mean ± SD).

<table>
<thead>
<tr>
<th>Analytical criterion</th>
<th>Robinia sp. n = 10</th>
<th>Multifloral n = 10</th>
<th>Honeydew n = 9</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific rotation $[\alpha]_D^{20}$</td>
<td>(-) 17.0 ± 1.2a</td>
<td>(-) 14.8 ± 4.9a</td>
<td>(+) 4.2 ± 1.3b</td>
<td><0.01</td>
</tr>
<tr>
<td>Water content (%)</td>
<td>16.7 ± 0.9a</td>
<td>16.3 ± 0.7a</td>
<td>17.2 ± 1.2a</td>
<td>-</td>
</tr>
<tr>
<td>Invertase content (IN(2))</td>
<td>3.8 ± 2.4a</td>
<td>11.0 ± 3.2 6a</td>
<td>30.48 ± 5.92b</td>
<td><0.01</td>
</tr>
<tr>
<td>HMF (mg·kg$^{-1}$)</td>
<td>1.9 ± 1.4a</td>
<td>2.6 ± 1.3a</td>
<td>2.7 ± 2.0a</td>
<td>-</td>
</tr>
<tr>
<td>Electrical conductivity (mS·sm$^{-1}$)</td>
<td>0.1 ± 0.1a</td>
<td>0.5 ± 0.3b</td>
<td>1.1 ± 0.2b</td>
<td><0.05</td>
</tr>
<tr>
<td>Proline cont. (mg·kg$^{-1}$)</td>
<td>213.4 ± 172.3a</td>
<td>267.2 ± 23.7a</td>
<td>564.5 ± 23.3b</td>
<td><0.01</td>
</tr>
<tr>
<td>Pollen grains</td>
<td>Above 30% pollen</td>
<td>Different pollen grains</td>
<td>HDE/P(5) ≥ 3</td>
<td>-</td>
</tr>
</tbody>
</table>

Data bearing different letters are significantly different according to one way ANOVAs followed by Tukey test for multiple comparison of means.

- $[\alpha]_D^{20}$ – specific angular rotation (Bogdanov et al., 1997);
- IN – invertase number (Bogdanov et al., 1997);
- HMF – content of hydroxymethylfurural (Bogdanov et al., 1997);
- mS·sm$^{-1}$ – milli simens per cantimetre (Bogdanov et al., 1997);
- HDE/P – Honeydew elements/pollen grains (Persano Oddo et al., 1997).

REFERENCES

