Propolis: chemical composition, biological properties and therapeutic activity

Mc Marcucci

To cite this version:

HAL Id: hal-00891249
https://hal.archives-ouvertes.fr/hal-00891249
Submitted on 1 Jan 1995

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Review article

Propolis: chemical composition, biological properties and therapeutic activity

MC Marcucci

Biological Chemistry Laboratory, Chemical Institute of Universidade Estadual de Campinas, CP 6154, cep 13081-970, Campinas, SP, Brazil

(Received 23 June 1994; accepted 30 November 1994)

Summary — The plant sources and chemical composition of propolis are reviewed. The chemical constituents that may be relevant to its biological and therapeutic activity are discussed. The cytotoxic activity and antimicrobial and pharmacological properties of propolis are presented. Propolis components, which cause allergy and are responsible for anticancer activity, eg, caffeic acid derivatives, are reported. The therapeutic efficacy of propolis in treating diseases caused by microorganisms is described. Some recent concepts about propolis and its use in medicine are presented.

propolis / phenolics / antimicrobial activity / toxicity / therapeutical activity

INTRODUCTION

In recent years there has been renewed interest in the composition of propolis, a substance that can be regarded as a potential natural source in folk medicine and in the chemical industry. This article describes the composition, biological and pharmacological properties, therapeutic activity and uses of propolis in pharmaceutical and cosmetic products.

COMPOSITION OF PROPOLIS

Propolis is a natural resinous substance collected by bees from parts of plants, buds and exudates (Ghisalberti, 1979). Bees use it as a sealer for their hives (García-Viguera et al, 1992) and, more importantly, to prevent the decomposition of creatures which have been killed by bees after an invasion of the hive (Brumfitt et al, 1990). Characteristically, it is a lipophilic material, hard and brittle when cold but soft, pliable, and very sticky when warm, hence the name bee-glue (Hausen et al, 1987a). It possesses a pleasant aromatic smell, and varies in color, depending on its source and age (Brown, 1989). Among the types of chemical substances found in propolis are waxes, resins, balsams, aromatic and ethereal oils, pollen and other organic matter (Ghisalberti et al, 1978). The proportion of these types of substances varies and depends on the place
and time of collection (Ghisalberti et al., 1978; Bankova et al., 1992b). The compounds identified in propolis resin originate from 3 sources; plant exudate collected by bees; secreted substances from bee metabolism; and materials which are introduced during propolis elaboration (Ghisalberti, 1979; Marcucci et al., 1994b).

Simple fractionation of propolis to obtain compounds is difficult due to its complex composition. The usual manner was to extract the fraction soluble in alcohol, called ‘propolis balsam’, leaving the alcohol-insoluble or wax fraction (Ghisalberti, 1979). Although ethanol extract of propolis (EEP) is the most common, extracts with other solvents have been carried out (Villanueva et al., 1964; Cizmárik and Matel, 1970; Hladón et al., 1980; Bankova et al., 1983, 1988, 1989; Manolova et al., 1985; Cortani, 1987, 1991; Grunberger et al., 1988; Andrich et al., 1987; Neychev et al., 1988; Ross, 1990) for identification of many constituents. Many analytical methods have been used for separation and identification of propolis constituents (Bankova et al. 1982, 1988, 1989, 1992a, 1994; König, 1986; Cortani, 1987; Pápay et al., 1987; Grenaway et al., 1988, 1989, 1991; Walker and Crane, 1967; Nagy et al., 1989a, 1989b; Campos et al., 1990; Christov and Bankova, 1992; Tomás-Barberán et al., 1993). The known components of propolis resin are listed in table I.

Vitamins B₁, B₂, B₆, C, E, and mineral elements silver, cesium, mercury, lanthanum, antimony, copper, manganese, iron, calcium, aluminium, vanadium and silicon have all been identified in propolis samples (Deblock-Bostyn, 1982; Debuyser, 1983).

The plant origin of propolis has been studied by many researchers. Bankova et al. (1992b) showed that propolis composition is very similar to bud exudates. Qualitative composition of many compounds, e.g., flavonoids aglycones in propolis of different tree species has indicated that propolis has been collected from Populus fremontii (USA), P. x euramericana (UK), Dalechampia spp and Clusia spp (Equator) (Greenaway et al., 1990); P. nigra, P. italica, P. tremula (Bulgaria) and P. suaveolens (Mongolia) (Bankova et al., 1992b; 1994); Betula, Populus, Pinus, Prunus, Acacia, Aesculus hypostanate (Hungary) (Nagy et al., 1985), Clusia minor (Venezuela) (Tomás-Barberán et al., 1993), Plumeria acuminata and P. acutifolia (Hawaiian Islands) (König, 1985) and Betula and Alnus (Polish regions) (Warakomska and Maciejewicz, 1992).

BIOLOGICAL AND PHARMACOLOGICAL PROPERTIES

Antibacterial activity

The in vitro activity of propolis against several bacterial strains has been reported (Ghisalberti, 1979; Vanhaelen and Vanhaelen, 1979b; Pepeljnjak et al., 1981, 1982; Pápay et al., 1985b; Kawai and Konishi, 1987; Toth and Papay, 1987; Okonenko, 1988; Petri et al., 1988; Rosenthal et al., 1989; Brumfitt et al., 1990; Cuéllar et al., 1990; Soboleva et al., 1990; Dimov et al., 1991; Dobrowolski et al., 1991; Kujumgiev et al., 1993; Ventura Coll et al., 1993; Langoni et al., 1994; Woisky et al., 1994).

Meresta and Meresta (1985) examined the sensitivity of 75 bacterial strains to propolis extracts. Of these, 69 were identified as Staphylococcus spp and Streptococcus spp. All strains exhibited a high sensitivity to propolis extracts. The antibacterial activity of propolis against S. aureus 209P had minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 10 and 120 mg/ml, respectively (Meresta and Meresta, 1980). Valdez Gonzalez et al. (1985) observed that EEP inhibited the growth of various bacteria including strains of Streptococcus and Bacil-
lus. Grange and Davey (1990) related that preparations of EEP (3 mg/ml) completely inhibited the growth of Pseudomonas aeruginosa and Escherichia coli, but had no effect on Klebsiella pneumoniae. Fuentes and Hernandez (1990) showed that EEP had a pronounced activity against Gram-positive bacteria, including S aureus, E coli, P aeruginosa, B subtilis, S epidermidis and Streptococcus sp (B hemolytic). The results of Fuentes and Hernandez were confirmed by Marcucci et al (1994c) with the same E coli strain.

Besides aerobic bacteria, the antimicrobial effects of EEP have been tested against a total number of 267 anaerobic strains. The cultures of bacteria generally showed the highest sensitivity to 1 mg/ml of EEP (Kedzia, 1986, 1990).

Extracts of propolis have been shown to potentiate the effect of certain antibiotics (Ghisalberti, 1979; Kedzia and Holderna, 1986; Hernandez and Bernal, 1990; Krol et al, 1993). The antibiotic action against S aureus (various strains) and E coli was increased by the addition of propolis to nutrient medium. The presence of propolis prevented or reduced any gradual build-up in tolerance of Staphylococci to antibiotics (Ibragimova and Pankratova, 1983; Meresta and Meresta, 1985).

The antibacterial activity of propolis is reportedly due to flavonoids and aromatic acids and esters present in resin (Debuyser, 1983; Meresta and Meresta, 1985/1986). Galangin, pinocembrin and pinostrobin have been recognized as the most effective flavonoid agents against bacteria (Dimov et al, 1992). Ferulic and caffeic acid also contributes to bactericidal action of propolis (Debuyser, 1983).

Kedzia et al (1990) reported that the mechanism of antimicrobial activity is complicated and could be attributed to a synergism between flavonoids, hydroxyacids and sesquiterpenes. Scheller et al (1977b) and Krol et al (1993) also observed this effect.

Antiviral activity

There are few data from studies of the antiviral effects of propolis (Esanu et al, 1981; König, 1986; Bankova et al, 1988; Neychev et al, 1988; Debiaggi et al, 1990; Vachy et al, 1990; Amoros et al 1994; Serkedjieva et al, 1992). In virological studies carried out with extracts obtained with various solvents, some fractions affected the reproduction of influenza viruses A and B, vaccinia virus and Newcastle disease virus in different biological testing systems (Maksimova-Todorova et al, 1985; Manolova et al, 1985). The action of these active fractions was similar both in strain spectrum and in the degree of antiinfluenza activity of propolis concentrations from 0.2–3.0 mg/ml.

Amoros et al (1992a, 1992b) investigated the in vitro effect of propolis on several DNA and RNA viruses, including herpes simplex type 1, an acyclovir resistant mutant, herpes simplex type 2, adenovirus type 2, vesicular stomatitis virus and poliovirus type 2. The inhibition of poliovirus propagation was clearly observed. At a concentration of 30 μg/ml, propolis reduced the titer of herpes simplex virus by 1 000, whereas vesicular stomatitis and adenovirus were less susceptible. In addition to its effect on virus multiplication, propolis was found to exert a viricidal action on the enveloped viruses herpes simplex (HSV) and vesicular stomatitis virus (VSV).

Flavonoids and aromatic acid derivatives exhibit antiviral activity (Helbig and Thiel, 1982; Ishitsuka et al, 1982; Mucsi, 1984; Mucsi and Pragai, 1985; Kaul et al, 1985; Tsuchiya et al, 1985; Vanden Berghe et al, 1986; Vrijen et al, 1988; Wleklik et al, 1988; Serkedjieva et al, 1992; Amoros et al, 1994). König and Dustmann (1985) verified that luteolin was more active than quercetin, but remarkably less than caffeic acid, in the inhibition of Amazon parrot herpes virus (strain KS144/70) at range concentration of 12.5–200.0 mg/ml. Phenolics
Table I. Compounds identified in propolis resin.

<table>
<thead>
<tr>
<th>Basic structure</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohols</td>
<td>Benzene methanol<sup>1t</sup>; cinnamyl alcohol<sup>1t</sup>; glycerol<sup>lw</sup>; α-glycerophosphate<sup>6t</sup>; hydroquinone<sup>6t</sup>; isobutenol<sup>1t</sup>; phenethyl alcohol<sup>1t</sup>; prenol alcohol<sup>1t</sup></td>
</tr>
<tr>
<td>Aldehydes</td>
<td>Benzaldehyde<sup>1t</sup>; caproic aldehyde<sup>1t</sup>; p-hydroxybenzaldehyde<sup>1t</sup>; isovanillin<sup>9hl</sup>; protocatechuic aldehyde<sup>1t</sup>; vanillin<sup>9hl</sup></td>
</tr>
<tr>
<td>Aliphatic acids and aliphatic esters</td>
<td>Acetic acid<sup>1t</sup>; angelic acid<sup>1t</sup>; butyric acid<sup>1t</sup>; crotonic acid<sup>1t</sup>; fumaric acid<sup>1t</sup>; isobutyric acid<sup>1t</sup>; methylbutyric acid<sup>1t</sup>; isobutyl acetate<sup>1t</sup>; isopentenyl acetate<sup>1t</sup></td>
</tr>
<tr>
<td>Amino acids</td>
<td>Alanine<sup>opz</sup>; β-alanine<sup>0</sup>; α-amino butyric acid<sup>0</sup>; δ-amino butyric acid<sup>0</sup>; arginine<sup>opz</sup>; asparagine<sup>0</sup>; aspartic acid<sup>opz</sup>; cystine<sup>0</sup>; cysteine<sup>2</sup>; glutamic acid<sup>opz</sup>; glycine<sup>opz</sup>; histidine<sup>opz</sup>; hydroxyproline<sup>0</sup>; isoleucine<sup>opz</sup>; leucine<sup>opz</sup>; lysine<sup>opz</sup>; methionine<sup>opz</sup>; ornithine<sup>0</sup>; phenylalanine<sup>0</sup>; proline<sup>opz</sup>; pyroglutamic acid<sup>0t</sup>; sarcosine<sup>0</sup>; serine<sup>0z</sup>; threonine<sup>0p</sup>; tryptophan<sup>opz</sup>; tyrosine<sup>opz</sup>; valine<sup>opz</sup></td>
</tr>
<tr>
<td>Aromatic acids</td>
<td>p-Anisic acid<sup>ht</sup>; benzoic acid<sup>g/hirt/wx</sup>; caffeic acid<sup>g/hirt</sup>; cinnamic acid<sup>g/hirt</sup>; coumaric(-o,-m,-p) acid<sup>g/hirt</sup>; 3,4-dimethoxy cinnamic acid<sup>g/wx</sup>; ferulic acid<sup>g/hirt/wx</sup>; gallic acid<sup>g/hlt</sup>; gentisic acid<sup>g/hl</sup>; hydroxycinnamic acid<sup>g</sup>; p-hydroxy benzoic acid<sup>g/hlt</sup>; isoferulic acid<sup>g/hirt/wx</sup>; 4-methoxy cinnamic acid<sup>g/wx</sup>; protocatechuic acid<sup>g/hlt</sup>; salicylic acid<sup>g/hlt</sup>; vanillic acid<sup>g/wx</sup>; veratric acid<sup>g</sup></td>
</tr>
<tr>
<td>Aromatic esters</td>
<td>Benzyl acetate<sup>1t</sup>; benzyl benzoate<sup>1t</sup>; benzyl caffeate<sup>iwx</sup>; benzyl coumarate<sup>1t</sup>; benzyl-3,4-dimethoxy cinnamate<sup>1t</sup>; benzyl ferulate<sup>tv</sup>; benzyl isoferulate<sup>1t</sup>; benzyl salicylate<sup>1t</sup>; butenyl caffeate<sup>tv</sup>; butyl caffeate<sup>1t</sup>; cinnamyl benzoate<sup>1t</sup>; cinnamyl caffeate<sup>tv</sup>; butyl caffeate<sup>iwx</sup>; cinnamyl coumarate<sup>1t</sup>; cinnamyl isoferulate<sup>1t</sup>; ethyl benzoate<sup>1t</sup>; ethyl caffeate<sup>1t</sup>; methyl benzoate<sup>1t</sup>; 2-methyl-2-butenyl caffeate<sup>tv</sup>; 3-methyl-2-butenyl caffeate<sup>iwx</sup>; 3-methyl-3-butenyl caffeate<sup>iwx</sup>; 3-methyl-3-butenyl coumarate<sup>1t</sup>; 3-methyl-2-butenyl ferulate<sup>iwx</sup>; 3-methyl-3-butenyl ferulate<sup>iwx</sup>; 2-methyl-2-butenyl isof erulate<sup>iwx</sup>; 3-methyl-3-butenyl isof erulate<sup>iwx</sup>; methyl salicylate<sup>iwx</sup>; phenyl ethyl caffeate<sup>iwx</sup>; phenyl ethyl coumarate<sup>1t</sup>; phenethyl isof erulate<sup>iwx</sup>; pentyl caffeate<sup>1t</sup>; pentenyl caffeate<sup>tv</sup>; pentenyl ferulate<sup>tv</sup>; pentoxy caffeate<sup>1t</sup>; prenyl isof erulate<sup>1t</sup>; pentoxy coumarate<sup>tv</sup>; prenyl ferulate<sup>tv</sup>; prenyl isof erulate<sup>1t</sup></td>
</tr>
<tr>
<td>Chalcones and dihydrochalcones</td>
<td>Alpinetin chalcone<sup>tw</sup>; naringenin chalcone<sup>1t</sup>; pinobanksin 3-acetate chalcone<sup>1t</sup>; pinocembrin chalcone<sup>tw</sup>; pinostrobin chalcone<sup>tw</sup>; sakuranetin chalcone<sup>1t</sup>; 2',6',a-trihydroxy-4'-methoxy chalcone<sup>1t</sup>; 2',6'-dihydroxy-4'-methoxydihydro chalcone<sup>tw</sup>; 2',4',6'-trihydroxydihydro chalcone<sup>tw</sup></td>
</tr>
<tr>
<td>Basic structure</td>
<td>Compound*</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Flavanones</td>
<td>Naringenin<sup>1</sup>; pinobanksin<sup>fr</sup>; pinobanksin-3-acetate<sup>mt</sup>; pinobanksin-3-butyrate<sup>1</sup>; pinobanksin-3-hexanoate<sup>1</sup>; pinobanksin-3-methyl ether<sup>r</sup>; pinobanksin-3-pentanoate<sup>w</sup>; pinobanksin-3-pentenoate<sup>1</sup>; pinobanksin-3-propanoate<sup>fr</sup>; picocembrin<sup>bg</sup>; pinosin<sup>gl</sup>; sakuranetin<sup>gt</sup>; 3,7-dihydroxy-5-methoxyflavanone<sup>y</sup>; 2,5-dihydroxy-7-methoxyflavonane<sup>y</sup></td>
</tr>
<tr>
<td>Flavones and flavonols</td>
<td>Acacetin<sup>hklm</sup>; apigenin<sup>hklm</sup>; apigenin-7-methyl ether<sup>1</sup>; chrysin<sup>hklm</sup>; fisetin<sup>1</sup>; galangin<sup>hklm</sup>; galangin-3-methyl ether<sup>mt</sup>; izalpinin<sup>gn</sup>; isorhamnetin<sup>hklm</sup>; kaempferide<sup>hklm</sup>; kaempferol<sup>hklm</sup>; kaempferol-3-methyl ether<sup>1</sup>; kaempferol-7-methyl ether<sup>1</sup>; kaempferol-7,4'-dimethyl ether<sup>1</sup>; pectolinarin<sup>g</sup>; quercetin<sup>hklm</sup>; quercetin-3,7-dimethyl ether<sup>m</sup>; ramninetin<sup>hklm</sup>; ramnocitrin<sup>lm</sup>; tectocresin<sup>hklm</sup></td>
</tr>
<tr>
<td>Hydrocarbons esters, ethers, hydroxy and keto waxes</td>
<td>Heneicosane<sup>swy</sup>; hentriacontane<sup>swy</sup>; heptacosane<sup>swy</sup>; hexacosane<sup>w</sup>; nonacosane<sup>swy</sup>; pantacosane<sup>swy</sup>; tricosane<sup>swy</sup>; tripentacane<sup>y</sup>; tritriacontane<sup>rswy</sup>; dotriacontylhexadecanoate<sup>u</sup>; dotriacontyl-[{(Z)-octadec-9-enoate}]<sup>v</sup>; hexacosylhexadecanoate<sup>u</sup>; hexacosyl-[{(Z)-octadec-9-enoate}]; octacosylhexadecanoate<sup>u</sup>; octacosyl-[{(Z)-octadec-9-enoate}]; tetracosylhexadecanoate<sup>u</sup>; tetracosyl-[{(Z)-octadec-9-enoate}]; tetraoctylhexadecanoate<sup>u</sup>; tetraoctyl-[{(Z)-octadec-9-enoate}]; triacontylhexadecanoate<sup>u</sup>; triacontyl-[{(Z)-octadec-9-enoate}] <sup>u</sup></td>
</tr>
<tr>
<td>Waxy acids</td>
<td>Arachidic acid<sup>h</sup>; behenic acid<sup>tu</sup>; cerotic acid<sup>tu</sup>; lauric acid<sup>tu</sup>; linoleic acid<sup>tu</sup>; lignoceric acid<sup>rswy</sup>; montanic acid<sup>r</sup>; myristic acid<sup>u,v</sup>; oleic acid<sup>tu</sup>; palmitic acids<sup>u,v</sup>; stearic acid<sup>r</sup></td>
</tr>
<tr>
<td>Ketones</td>
<td>Acetophenone<sup>r</sup>; p-acetophenolacetophenone<sup>r</sup>; dihydroxyacetophenone<sup>v</sup>; methylacetophenone<sup>y</sup>; hept-5-en-2-one<sup>1</sup>; 6-methylketone<sup>e</sup></td>
</tr>
<tr>
<td>Terpenoids and other compounds</td>
<td>α-Acetoxybutenol<sup>ehl</sup>; β-bisabolol<sup>ehl</sup>; 1,8-cineole<sup>e</sup>; α-copene<sup>e</sup>; cymene<sup>e</sup>; limonene<sup>e</sup>; pterostibine<sup>e</sup>; styrene<sup>e</sup>; xanthorreeol<sup>e</sup>; xylool<sup>e</sup>; naphthalene<sup>e</sup>; 4-hexanolactone<sup>e</sup>; sesquiterpene alcohol<sup>r</sup>; sesquiterpene alcohol<sup>r</sup>; sesquiterpene diol<sup>r</sup></td>
</tr>
<tr>
<td>Steroids</td>
<td>Calinasterol acetate<sup>e</sup>; β-dihydrofucosterol acetate<sup>e</sup>; ucosterol acetate<sup>e</sup>; stigmastanol acetate<sup>e</sup></td>
</tr>
<tr>
<td>Sugars</td>
<td>Fructofuranose-1<sup>rnx</sup>; fructofuranose-2<sup>rnx</sup>; α-D-glucopyranose<sup>nx</sup>; β-D-glucopyranose<sup>nx</sup></td>
</tr>
</tbody>
</table>

such as caffeic acid were found to have a weak activity against influenza although vaccinia and adenovirus were more sensitive than polio and parainfluenza virus (Vanden Berge et al, 1986). Debiaggi et al (1990) studied the effect of propolis flavonoids on the infectivity and replication of some herpes virus, adenovirus, coronavirus and rotavirus strains. The cytotoxicity of flavonoids, including chrysine, kaempferol, acacetin, galangin and quercetin was evaluated.

The antiviral activity of constituents of propolis, such as esters of substituted cinnamic acids, have been studied in vitro. One of them, isopentyl ferulate, significantly inhibited the infectious activity of influenza virus A (Hong Kong strain) at 50 mg/ml (Serkedjieva et al, 1992). Similar results were found by Amoros et al (1994) when the in vitro activity of 3-methylbut-2-enyl caffeate identified in propolis samples was tested against herpes simplex virus type 1 (HSV-1). The same synthetic compound showed strong inhibition of HSV-1 growth at a concentration of 25 mg/ml. Some authors suggested that the antiviral activity of propolis is due to both the main constituents and the minor components like 3-methylbut-2-enyl caffeate and 3-methylbutyl ferulate (Bankova et al, 1987; Amoros et al, 1994).

Antifungal activity

Millet-Clerc et al (1987) reported that propolis exhibited an important antifungal activity against *Trichophyton* and *Microsporum* in the presence of propylene glycol, which interacts synergistically at a 5% concentration. Combinations of some antimycotic drugs with propolis (10%) increased their activity on *Candida albicans* yeasts. The greatest synergistic effect against most strains was obtained when propolis was added to antifungal drugs (Holderna and Kedzia, 1987). Valdés et al (1987) tested 30 propolis samples produced in Cuba against 2 strains of *C albicans*. Lisa et al (1989) verified the antifungal activity of propolis extracts (10% in ethanol) against 17 fungal pathogens. The EEP inhibited *Candida* and all tested dermatophytes. Fernandes Junior et al (1994) evaluated the antifungal activity of EEP against *C albicans, C parapsilosis, C tropicalis and C guilliermondii*. 98% of fungi samples were sensitive to EEP concentrations of less than 5.0%. Lori (1990) observed that in *in vitro* tests, propolis concentrations of 5 or 10% prevented growth of *Trichophyton verrucosum*. The antifungal activity of propolis was observed in some plant fungi in vitro (La Torre et al, 1990).

Cytotoxic activity

Extracts of propolis have been examined for *in vitro* cytotoxic activity by different methods of tissue culture in some cell lines. Hladón et al (1980) investigated the cytostatic activity of propolis extracts on human KB (nasopharinx carcinoma) and HeLa (human cervical carcinoma) cell lines. The ethereal propolis fraction (DEEP) exhibited the strongest cytostatic activity. The secondary fractions of ethyl acetate and butanol of DEEP presented a good activity. Intermediate activity was verified in the CHCl₃/DEEP fraction. The killing action of propolis on HeLa cells was tested by Ban et al (1983). A concentration of 10 mg/ml caused 50% inhibition of colony-forming ability. In assessing the killing action of propolis, flavonoids were also tested. HeLa cells were found to be more sensitive to quercetin and rhamnatin, but less sensitive to galangin. Grunberger et al (1988) described caffeic acid phenethyl ester (CAPE) as the compound partially responsible for the cytostatic properties of propolis. The effect of CAPE on human cancer cell lines was tested in breast carcinoma (MCF-7) and melanoma (SK-MEL-28 and
SK-MEL-170) cell lines in culture. A dose of 10 μg/ml of CAPE completely inhibited the incorporation of [3H]thymidine into the DNA of breast carcinoma. More dramatic effects were observed in the melanoma, colon (HT 29) and renal carcinoma cell lines, but the CAPE effect on normal fibroblasts and melanocytes was significantly less. Because the cytostatic action of CAPE is more effective in transformed cells, it is reasonable to assume that it is responsible for the claimed carcinostatic properties of propolis.

The antitumoral activity of caffeic acid derivatives, eg, methyl ferulate, methyl acetyl ferulate, methyl acetyl isoferrulate and methyl diacetyl caffeate, was reported by Inayama et al, 1984. The effect of other caffeic acid derivatives has been investigated by König (1988). Ross (1990) reported that the cytotoxic effect of propolis in vitro against Chinese hamster ovary cancer cell lines was due to naphthalene derivatives in propolis. In vitro tests of extracts of Brazilian propolis from A mellifera on human hepatocellular carcinoma, KB and HeLa cell lines showed that the cytotoxic effects were caused by quercetin, caffeic acid and phenyl ester constituents of propolis (Matsuno, 1992). Scheller et al (1989c) reported a cytotoxic activity of propolis in mice bearing Ehrlich carcinoma in vivo.

Antiprotozoan activity

Scheller et al (1977b) reported antiprotozoan activity of propolis (EEP) in vitro on 3 strains of Trichomonas vaginalis. EEP solutions in vitro presented a lethal activity on strains at a concentration of 150 mg/ml.

The antiprotozoan activity of propolis was verified in experimental animals infected with Eimeria magna, E media and E perforans treated with 3% EEP and other antiprotozoan drugs. The coccidiostatic effect of propolis was higher than other drugs (Hollands et al, 1988a). Propolis preparations were classified as a good coccidiostat against Chilomona parasitica (Hollands et al, 1988b). Torres et al (1990) evaluated the effect of EEP on the growth of the protozoan parasite Giardia lamblia in vitro. At an EEP concentration of 11.6 mg/ml there was a 98% inhibition effect.

Other properties

Toxicity

As propolis use increases, its side-effects are observed more frequently (Wanscher,
Propolis contains some compounds which cause toxicity. Beekeeper's dermatitis due to propolis is well known and an apparent association between sensitivity to propolis and to poplar resins has been observed (Hausen et al, 1987a, b).

Hausen et al (1987b) described the incidence of nearly 200 cases of allergic contact dermatitis due to propolis. They identified a substance 1,1-dimethylallyl caffeic acid (LB-1) responsible for the allergy. They also described the sensitizing properties of LB-1 in guinea pigs provoked by several propolis samples, demonstrating that this compound is the main sensitizer in propolis. The flavonoid tectochrysin was considered a second allergen, although Schmalle et al (1986) stated that tectochrysin was a very weak sensitizer. Hashimoto et al (1988) verified the allergenic properties of phenylethyl and prenyl esters of caffeic acids from propolis.

Observations of propolis used orally suggest that intestinal absorption could play an important role in propolis sensitization. Limiting the extent of oral administration may be useful in preventing propolis allergy (Angelini et al, 1987; Hausen et al, 1987a, 1988; Kleinhans, 1987; Trevisan and Kokelj, 1987; Machácková, 1988).

Therapeutic activity

Propolis has been used since ancient times in the remedies in folk medicine in many parts of the world (Ghisalberti, 1979). It has a long tradition of medicinal use in many parts of the world. Many European countries are interested in natural products to heal diseases and propolis is an important product used for this purpose. It is found in pharmaceutical and cosmetic products, such as anti-acne lotion, face creams, ointments, lotions and solutions (Debuyser, 1983; Lejeune et al, 1988; Pons and Cueto, 1988, 1989; Goetz, 1990).

Propolis in dermatology

Bolshakova (1975) treated 110 patients infected with *Trichophyton* on the hairy zone of the head with 50% propolis (as an unguent). In 97 patients, it was found to produce excellent results. Other examples of the treatment of dermatological diseases were described when propolis was used as an antiseptic (Bolshakova, 1975; Gafar et al, 1986), antmyotic (Holderna and Kedzia, 1987; Millet-Clerc et al, 1987), bacteriostatic (Soboleva et al, 1990; Dobrowolski et al, 1991; Stark and Glinski, 1993; Ventura Coll et al, 1993), antiviral (Giurcaneanu et al, 1988; Vachy et al, 1990) and fungistatic (Millet-Clerc et al, 1987) agent. Many other propolis applications in dermatology have been described. It has been used for wound healing, tissue regeneration, treatment of burns, neurodermatitis, microbial eczema, contact dermatitis, leg ulcers, psoriasis, morphea, herpes simplex and genitalis, pruritus ani, dermatophytes, trophic ulcers, pulp gangrene and as an astringent (Bolshakova, 1975; Molnar-Toth, 1975; Scheller et al, 1977a, 1978; Ghisalberti, 1979; Korsun, 1983; Gafar et al, 1986; Hausen et al, 1987a; Giurcaneanu et al, 1988; Ponce de Leon and Benitez, 1988; Goetz, 1990; Fierro Morales, 1994).

Propolis in otorhinolaryngologic (ORL) diseases

Matel et al (1973) described the treatment of 126 subjects suffering of external otitis, chronic mesotympanic otitis and tympan perforation with propolis solutions (5–10%) which had a positive therapeutic result in
most cases. Propolis effects in other ORL diseases were reported: acute inflammations of the ear (Kachnii, 1975; Palos et al., 1989), treatment of mesotympanitis (Popnikolov et al., 1973), pharyngitis (Doroshenko, 1975), tuberculosis (Karimova and Rodionova, 1975), chronic bronchitis (Chuhrienko et al., 1989; Scheller et al., 1989a), rhinopharyngolaryngitis (Isakbaev, 1986), pharyngolaryngitis (Lin et al., 1993a) vasomotor catarrh treatment (Zommer-Urbanska et al., 1987) and rhinitis (Nuñez et al., 1988/1989).

Propolis in gynecological diseases

Zawadzki and Scheller (1973) investigated 90 cases of therapeutic activity of 3% EEP in cases of vagina and uterus cervix inflammation caused by S pyogenes. They observed that more than 50% of the cases responded well to treatment with EEP. The action of propolis to treat inflammatory and distrophic lesions of the female genital system caused by protozoan and fungi has been studied. Some 137 cases of diffuse inflammations, ulcerations and ex-ulcerations of cervix uteri diseases were investigated by Roman et al. (1989). After 20–25 d of associated treatment (allopathic and apitherapeutic) very good results were obtained in 53 cases, good results in 24, and satisfactory in 28 cases. The results obtained by Roman et al. (1989) confirm that propolis potentiates the antiseptic, antifungal and antitrychomonas actions of specific chemical medicines. Stojko and Stojko (1993) also reported the use of propolis preparations for treatment of gynecological disorders.

Propolis in stomatology

Mirayes et al. (1988) described a clinical assay with an extract of propolis that showed its efficacy against giardiasis. Some 138 patients were studied, 48 children and 90 adults, and treated with propolis (in children, concentration of 10% and adults 20%). At these concentrations, 52% of the children showed a cure. In adults, the propolis effect was the same as tinidazole, an antiprotozoan drug. When the propolis concentration was elevated to 30%, there was a higher efficacy (60% cure versus 40% with tinidazole). Some authors described the use of propolis in the following therapies: acute colitis, chronic colitis, acute gastric ulcers, and acute duodenal ulcers (Gorbatenko, 1971; Makarov 1972; Nikolov et al., 1973; Kabanov et al., 1989).

Propolis in odontology

Paintz and Metzner (1979) verified the anaesthetic properties of propolis. Scheller et al. (1978), Gafar et al. (1986), Magro Filho and Perri de Carvalho (1990) and Ding et al. (1993) observed regeneration of dental pulp with gangrene in the presence of propolis. The healing effect of propolis was evaluated in periodontitis (Wang et al., 1993), plaque and gingivitis (Neumann et al., 1986) and buccal affections (Draganova et al., 1989). Neumann et al. (1986) suggested that a propolis preparation could be a useful subsidiary treatment in oral hygiene.

Other propolis uses in therapy

The use of propolis has been reported for other diseases (human and veterinary) including osteoarthritis (Lin et al., 1993b), eyes diseases (Popescu et al., 1993), as an antiinflammatory agent (Mihail et al., 1984; Christova, 1985; Busciglio, 1988; Soboleva et al., 1990; Olinescu, 1991; Fierro Morales, 1994), angiology (Gonzalez et al., 1988/1989) and orthopedic treatment (Que-sada and Cueto, 1988/1989). The diverse use of propolis in clinical trials shows that its
therapeutic efficacy lies mainly in diseases caused by microbial contaminations.

DISCUSSION

Based on the very complex chemical composition of propolis and its pharmacological and therapeutic properties, we conclude that propolis is a very powerful natural product produced by bees. It can be used to treat human and veterinary diseases with great success. Nevertheless, it is evident that propolis cannot be a remedy for all diseases and any who make such claims are guilty of deception and harm the reputation of all hive products (Tóth, 1985). The great problem with propolis, as with some other hive products, is that its composition varies with the flora of a given area, the time of collection and the inclusion of wax contaminants. This further adds to the problem of defining propolis for medicinal use since the product’s quality varies so greatly. Although standardization is possible in principle, exact chemical tests have not been applied yet for the purpose of quality control. The problem of quality control is well demonstrated by the propolis products currently marketed in various countries (Tóth, 1985). It is expected that this review will provide some aid to further investigations about propolis, “the purple gold of the beehive” (Asis, 1989).

ACKNOWLEDGMENTS

The author is grateful to F Yukio Fujiwara for assistance in reviewing the English text and P Cesar Muniz de Lacerda Miranda for computer assistance.

propolis / composition chimique / activité antimicrobienne / toxicité / activité thérapeutique

Propolis / Phenole / antimikrobielle Aktivität / Toxizität / therapeutische Aktivität
REFERENCES

Amoros M, Simões CMO, Girre L, Sauvager F, Cormier M (1992b) Synergistic effect of flavones and flavonols against Herpes Simplex virus Type 1 in cell culture. Comparison with the antiviral activity of propolis. J Nat Prod 55, 1732-1740

Angelini G, Vena GA, Meneghini CL (1987) Psoriasis and contact allergy to propolis. Contact Dermatitis 17, 251-253

Busciglio JA (1986) Antinflammatory topical composition containing lidocaine and diphenhydramine [and propolis]. USA Patent 4 748 022, 5 pp

Cizmárik J, MateI I (1970) Examination of the chemical composition of propolis. I. Isolation and identification of the 3,4-dihydroxyxinnamic acid (caffeic acid) from propolis. Experimenta 26, 713

Cizmárik J, MateI I (1973) Examination of the chemical composition of propolis. II. Isolation and identification of 4-hydroxy-3-methoxyxinnamic acid (ferulic acid) from propolis. J Apic Res 12, 63-65

Ghisalberti EL (1979) Propolis: a review. Bee World 60, 59-84

Ghisalberti EL (1979) Propolis: a review. Bee World 60, 59-84

Lin YL, Ye JY, Luo XR, Zeng XX, Chen YX (1993b) Observaciones acerca de 60 casos de osteoartritis, tratada mediante ionofresis con propóleos y ácido acético glacial. *Proc XXXIII Int Congr Apiculture* Beijing, China, Apimondia, Bucharest, Romania, 139

Lori GA (1990) Acción fungicida del propóleos en la dermatomiositis bovina. *Ind Apic* 1, 38-43

Machacková J (1985) Contact dermatitis to propolis. *Contact Dermatitis* 13, 43-44

Mucsi I, Pragai BM (1985) Inhibition of virus multiplication and alteration of cyclic AMP level in cell cultures by flavonoids. *Experientia* 41, 6-7

Nagy E, Pápay V, Litkei Gy, Dinya Z (1985) Investigation of the chemical constituents, particularly the flavonoids components of propolis and *Populi gemma* by the GC/MS method. In: *Flavonoids and Bioflavonoids* (L Farkas, M Gábor, F Kallay, eds), Elsevier, Amsterdam, The Netherlands, 233-240

Petersen HO (1977) Hypersensitivity to propolis. *Contact Dermatitis* 3, 278-279

Ross PB (1990) The effects of propolis fractions on cells in tissue culture. MPhil thesis, University of Wales College of Cardiff, UK, 193 p

Rudzki E, Gryniew Z, Pomorski Z (1985) New data on dermatitis from propolis. *Contact Dermatitis* 13, 43-44

Scheller S, Stojko A, Szwarnowiecka I, Tustanowski J, Obuszko Z (1977a) Biological properties and clinical application of propolis VI. *Arzneim-Forsch Drug Res* 27, 2138-2140

Soboleva VA, Khotyupak YI, Kabachnyi GI, Vysochanskaya N, Rogozhin BA (1990) Comparison of the antibacterial and antiinflammatory activities of soft dosage forms with different bases. *Farm Zh (Kiev)* 5, 68-69 (in Ukrainian)

