REPRODUCTION OF VARROA JACOBSONI DURING SUCCESSIVE BROOD CYCLES OF THE HONEYBEE

Arie De Ruijter

To cite this version:

Arie De Ruijter. REPRODUCTION OF VARROA JACOBSONI DURING SUCCESSIVE BROOD CYCLES OF THE HONEYBEE. Apidologie, Springer Verlag, 1987, 18 (4), pp.321-326. <hal-00890722>

HAL Id: hal-00890722
https://hal.archives-ouvertes.fr/hal-00890722

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SUMMARY

Newly capped worker brood cells were numbered on a sheet of transparent plastic, temporarily attached to the top bar using two thumbtacks. Into each cell an adult female Varroa mite was introduced. After ten days the cells were opened and the contents studied. Those females still present and alive were introduced into newly capped brood cells and so on.

Varroa mites are capable of reproducing up to seven times this way. The maximum number of eggs laid was 30 per female. Females that produced male offspring only kept doing so in subsequent brood cycles. Though in contact with adult males several times, no successful mating had occurred. Probably only young females mate successfully.

INTRODUCTION

During the last few years substantial progress has been made in chemical control of Varroa jacobsoni (Ritter et al., 1983; Ritter, 1986; de Ruijter, 1986). However, most scientists working on Varroa control agree on the fact that more knowledge has to be gathered on the biology of the mite in order to develop biotechnical control methods (Arbeitsgemeinschaft, 1986). In this respect the reproduction of Varroa is of utmost importance.

Although sampling of Varroa-infested brood can give information concerning reproduction, more information can be gathered when mites are reared inside the colony, using the method developed by Ifantidis (Ifantidis, 1980).

The objectives of this study were to establish the maximum number of successive reproduction cycles and the maximum number of eggs laid by a single female.
MATERIALS AND METHODS

Worker brood cells containing old larvae were marked on a sheet of transparent plastic, temporarily attached to the top bar, using two thumbtacks. The comb was put back into the colony and a few hours later the capped cells were numbered. From capped brood cells adult female mites, both «mothers» and «daughters», were collected. Into each newly capped cell one of these female Varroa mites was introduced by opening the cell carefully, letting the mite in and closing the cell thoroughly again.

After 10 days the cells were opened to examine the contents. Those females still present and alive were introduced into newly capped brood cells and so on.

RESULTS AND DISCUSSION

In 315 cells the female mite was regained alive, 250 with offspring, 65 without offspring (20.7 %). If there is no offspring, this does not always mean that the mite is infertile. Twenty one mites interrupted egg laying for one period or more and resumed egg laying in the next period. This may be due to the lack of stimulus, perhaps a result of the haemolymph composition of the pupa. Six mites did not lay eggs at all. The percentage of mites without offspring may be an important criterion for selecting Varroa-resistant bees. It should be kept in mind however, that the first time mites are introduced this percentage may be slightly higher than later on, because very young mites do not lay eggs during the first period.

Fig. 1. — Reproduction of Varroa jacobsoni in honey bee cells during successive periods of 10 days each

number of females

with offspring
without offspring
cell empty, female gone
female dead

periods

1 2 3 4 5 6 7 8
Figure 1 shows the reproduction in 8 successive periods of 10 days each. Offspring were found in 7 periods. Only a few mites were found to be dead. Most of the mites disappeared because the bees refused the cells we opened and did not close completely again. The bees uncapped these cells and cleaned them out.

Fig. 2. — Frequency of the number of successful reproduction cycles of Varroa jacobsoni. All females

Fig. 3. — Frequency of the number of successful reproduction cycles of Varroa jacobsoni, not including females that were lost
The frequency of the number of successful reproductive cycles is shown in Fig. 2. Zero or one successful cycle were the most frequent. Two, 3, 4, 5 or 6 cycles occurred also and the maximum was 7 cycles with offspring. If we exclude the mites that were lost, due to the method, and only look at the
mites that were found dead or were regained alive, 5 or 6 successful cycles were most frequent (Fig. 3). To determine if there was a decrease in the number of eggs laid in successive periods, we selected those mites that had offspring in 4 periods or more. When offspring of both sexes occurred (Fig. 4), the number of eggs per period was about 4, with a slight decrease until the sixth period and then dropped to 2 eggs. In those cases where females were unmated and had male offspring only, the average number of eggs was 2 per period. The total number of eggs laid per individual female increased with the number of successful periods (Fig. 5). The maximum number of eggs laid by unmated females was much smaller. Females that produced male offspring only kept doing so in subsequent brood cycled. Though in contact with adult males several times, no successful mating had occurred. Probably only young females mate successfully.

CONCLUSION

Varroa mites are able to reproduce up to seven times and are capable of producing up to 30 eggs. Contact with adult bees is not indispensable for reproduction. In spite of our manipulating these mites, some of them lived over 2.5 months in summer.

Whether this maximum reproduction is reached in nature depends on different factors inside the bee colony, of which we have only limited knowledge.

Received for publication in November 1986.
Accepted for publication in March 1987.

RÉSUMÉ

REPRODUCTION DE VARROA JACOBSONI
AU COURS DE CYCLES SUCCESSIFS DE COUVAIN CHEZ L’ABEILLE

On a numéroté des cellules récemment operculées de couvain d’ouvrières sur 1 feuille de plastique transparent, attaché momentanément à la baguette supérieure par 2 punaises. On a introduit dans chaque cellule une femelle adulte de Varroa. Au bout de 10 jours on a ouvert les cellules et étudié leur contenu. Les femelles encore présentes et vivantes ont été introduites dans des cellules de couvain nouvellement operculées et ainsi de suite.

Les acariens Varroa peuvent se reproduire de cette manière jusqu’à 7 fois (Fig. 1-5). Le nombre maximum d’œufs pondus a été de 30 par femelle. Les femelles qui n’ont donné que des descendants mâles ont continué de la même façon pendant les cycles suivants. Bien qu’en contact avec des mâles à plusieurs reprises, aucune femelle n’a réussi à s’accoupler. Vraisemblablement seules les femelles jeunes parviennent à s’accoupler.
ZUSAMMENFASSUNG

FORTPFLANZUNG VON VARROA-MILBEN WÄHREND AUFEINANDERFOLGENDER BRUTZYKLEN DER HONIGBIENE


REFERENCE


