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Abstract – A major concern in landscape management and precision agriculture is the variable-rate application of herbicides in order to reduce
herbicide treatment load. These applications require a correct assessment and knowledge of the density and potential spatial variability of
weed species within fields. This article addresses the issue of incorporating a digital elevation model as secondary spatial information into
the mapping of main weed species present in two sunflower crops in Andalusia, Spain. Two prediction methods were used and compared for
mapping weed density for precision agriculture. The primary information was obtained from an intensive grid weed density sampling and
the secondary spatial information, e.g., elevation from a digital elevation model. The prediction methods were two geostatistical algorithms:
ordinary kriging and kriging with an external drift, which takes into account the influence of landscape. Mean squared error was used to evaluate
the performance of the map prediction quality. The best prediction method for mapping most of the weed species was kriging with an external
drift, with the smallest mean squared error, indicating the highest accuracy. The results showed that kriging with an external drift with elevation
reduced the prediction variance compared with ordinary kriging. Maps obtained from these kriged estimates showed that the incorporation
of a digital elevation model as secondary exhaustive information can improve the accuracy of predicted weed densities within fields. These
results suggest that kriging with an external drift of weed density data with elevation as a secondary exhaustive variable could be used in such
situations, and in this way, the accuracy of maps for precision agriculture, which is the preliminary step in a precision agricultural management
program, could be improved with little or no additional cost, since a digital elevation model could be obtained as part of other analyses.

digital elevation model / kriging / precision agriculture / weed spatial variability

1. INTRODUCTION

It is well known that weeds are not uniformly distributed
in arable fields, but tend to appear in patches (Heisel et al.,
1996; Jurado-Expósito et al., 2003, 2004). As a consequence,
the preliminary step in a precision weed management program
is to map the weed variability in the area under management.
The combination of a weed map, positioning devices, e.g. Dif-
ferential Global Positioning Systems, DGPS, and a sprayer to
differentiate herbicide application on the basis of the weed in-
festation makes it possible to reduce herbicide use, costs and
environmental pressure.

A number of methods have been proposed for the esti-
mation of spatial and temporal distribution and the creation
of weed density maps: interpolation techniques (e.g. Ersbøll
et al., 1993) such as simple inverse distance calculations (e.g.
Bregt et al., 1992); linear triangulation (Gerhards et al., 1997),
polynomial interpolation (Zanin et al., 1998), or geostatistics.

Geostatistics, which is based on the theory of regional-
ized variables (Journel and Huijbregts, 1978; Goovaerts, 1997,
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1999a), is increasingly preferred because it allows one to cap-
italize on the spatial correlation between neighboring obser-
vations to predict attribute values at unsampled locations. The
geostatistical prediction technique (kriging) weights the aver-
age of observed weed densities and is the only estimator that
provides the variance of prediction error (Cressie, 1991; Isaaks
and Srivastava, 1989; Kristensen and Ersbøll 1995).

Several authors have shown that the geostatistical pre-
diction technique (ordinary kriging) provides better esti-
mates of variability in weed spatial and temporal distribu-
tion variability than conventional methods (Heisel et al., 1996;
Jurado-Expósito et al., 2003, 2004, 2005; Zanin et al., 1998).

In addition to providing a measurement of prediction error,
kriging variance, a major advantage of geostatistical predic-
tion over simpler methods is that sparsely sampled observa-
tions of the primary variable, the variable of interest, i.e. weed
density, can be complemented by secondary variables that are
more densely sampled. The estimation of the primary attribute
is generally improved by taking into account secondary infor-
mation originating from other related categorical or continu-
ous attributes (Goovaerts, 1999b). This secondary information
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is said to be exhaustively sampled when it is available at all
primary data locations and at all nodes of estimation grids,
e.g. spectral data or digital elevation models.

Therefore, when the variable of interest is scant or poorly
correlated in space, the prediction of this variable over the
whole study area may be improved by accounting for sec-
ondary information exhaustively sampled over the same study
area. The secondary information can be incorporated using
kriging with an external drift. Several authors have reported
accurate prediction maps from sparsely sampled observations
of a primary attribute; for example, maps of rainfall erosivity
(Goovaerts, 1999b), precipitation (Goovaerts, 2000) and evap-
otranspiration (Vanderlinden, 2001), which were completed
by using digital elevation models as exhaustive secondary at-
tributes that are more densely sampled, and applying different
multivariate extensions of kriging. These works were based
on a positive significant correlation between average annual
precipitation and elevation, i.e. precipitation tends to increase
with increasing elevation. Thus, when any exhaustive and usu-
ally cheaper source of secondary information is available, it
could be incorporated into the mapping of weed density in or-
der to increase the accuracy of predicted weed estimates to be
used in precision farming.

Other prediction methods that also incorporate secondary
information available on a large scale, such as digital data from
aerial photographs, have also been developed to extend sparse
and expensive soil measurements. Examples include: simple
linear regression, regression trees and geostatistical methods
such as co-kriging, kriging with an external drift or krig-
ing with varying local means (Bishop and McBratney, 2001;
López-Granados et al., 2005).

Field observations clearly show that the distribution of
weeds across the landscape has spatial dependence, and it
is well known that weed sampling on the ground is labor-
intensive, time-consuming and expensive. So, if an intensive
and cheaper source of secondary information, e.g. a digital el-
evation model, can be used to improve estimation of a sparsely
sampled variable, e.g. weed density, it may be possible to re-
duce weed sampling. Thus, if a digital elevation model is avail-
able, it could be incorporated into the mapping of weed density
in order to increase the accuracy of predicted weed density es-
timates to be used in precision farming. In this study, we focus
on kriging with an external drift as a prediction method that
accounts for an auxiliary variable in the prediction of the vari-
able of interest, because this method has not been widely used
in weed science.

There are very few applications of using the digital eleva-
tion model information for weed science. Liu et al. (2002) ex-
amined the spatial variability of herbicide efficacy in a field in
which corn had been planted continuously for 10 years, con-
cluding that weed biomass was correlated positively with el-
evation and the total amount of atrazine mineralized, whereas
corn biomass was correlated negatively with these parameters.
Shafii et al. (2004) also estimated the likelihood of yellow
starthistle occurrence by incorporating elevation, slope and as-
pect into prediction models by using Bayesian classification.

Sunflower is one of the most important crops in Andalu-
sia, southern Spain, with over 320 000 ha sown annually

(MAYPA, 2005). Spatial distribution of weeds in sunflower
and site-specific management maps have been reported by
Jurado-Expósito et al. (2003). However, the spatial distribu-
tion of weeds occurring in sunflower using a digital elevation
model as a secondary information layer has not yet been as-
sessed.

The objective of this study was to interpolate and map weed
spatial variability in two sunflower fields based on an inten-
sive weed sampling and using different prediction methods for
arriving at the best approach for weed density mapping. Two
different prediction techniques were applied: (a) ordinary krig-
ing: a method that uses only the weed density sampling data
recorded at the two sunflower fields, and (b) kriging with an
external drift: an algorithm that combines weed density data
with a digital elevation model as secondary information, and
to determine the influence of field topography in the accuracy
of predicted weed density to be used in a precision agricultural
management program.

2. MATERIAL AND METHODS

2.1. Study area and weed sampling scheme

The study was carried out in two sunflower (Helianthus an-
nuus L.) fields located in Casilla and Cruce, Córdoba, Spain.
The primary information, i.e., weed density was obtained
through intensive field surveys conducted in selected areas
of 1.96 ha and 1.26 ha, respectively, within a larger field of
around 50 ha, and their borders were at least 50 m from the
main borders of the fields. The monitored fields were cropped
previously with winter wheat (Triticum aestivum L.) shallow
tillage. Sunflower was seeded at 4 kg ha−1 in rows 0.7 m apart,
in late March.

Weed assessments took place in mid-May when the sun-
flower was at the 6- to 8-leaf stage and most weeds were 4 cm
to 10 cm tall, using a grid of 7 m by 7 m, resulting in 449 and
256 sampled points, corresponding to 229 and 203 observa-
tions per ha, in Casilla and Cruce, respectively. The position
of each node was georeferenced using a sub-meter differential
DGPS TRIMBLE PRO-XRS (Trimble Navigation Limited,
749 North Mary Avenue, Sunnyvale, CA 94085, USA) pro-
vided with a TDC-1 unit. The total numbers of plants of each
weed species were recorded at the grid points in 2 m2 squares.
A total of seven weed species were sampled: Convolvulus ar-
vensis L., Ridolfia segetum, Moris., Phalaris spp., Sinapis ar-
vensis L., Amaranthus albus L., Galium aparine L. and Chro-
zophora tinctoria (L.) A. Juss.

The analyses started with the description of weed densi-
ties. Classical descriptors, mean, maximum, standard devia-
tion and skewness, were determined for each weed species.
The descriptive statistics of weed densities suggested that they
were symmetrical: skewness between –2 and 2, and therefore
no transformation was used prior to estimating weed density
maps, following the methodologies described in Zanin et al.
(1998), López-Granados et al. (2002) and Jurado-Expósito
et al. (2003, 2004, 2005).
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Figure 1. Digital elevation maps in sunflower fields: (a) Casilla and (b) Cruce. Axes X and Y are in Universal Transverse Mercator units (m),
Z: elevation (m).

2.2. Creation of a digital elevation model

A digital elevation model is a representation of continuous
elevation values over a topographic surface by a regular array
of z-values, i.e., by coordinates and numerical descriptions of
altitude. The digital elevation model data files are digital rep-
resentations of cartographic information in a raster form. No
existing digital elevation model of reasonable scale was avail-
able, so we had to create our own. The digital elevation model
was derived from topographic contours of 1:10.000 maps, free
from the Andalusia Government. The contours were manually
digitalized at intervals of 10 m, and tagged with the elevation
values, along with specific point elevations such as mountain-
tops or valleys. Thus, a dxf vector file was generated with the
commercial software package Autocad (Autocad 2006, Au-
todesk, Inc., 111 McInnis Parkway, San Rafael, CA 94903,
USA). The continuous raster digital elevation model was gen-
erated with software specifically programed by using IDL lan-
guage (IDL 6.3, Interactive Data Language, Research System
Inc., 4990 Pearl East, Circle, Boulder, CO 80301, USA). This
software extracted the x, y and z coordinates from the previ-
ous dxf vector file, and then a triangulate procedure was used
to generate the digital elevation model raster file. The final re-
sult is a raster map in which each 0.5 m pixel has a unique
elevation value derived from the contours. Elevation values of
the digital elevation model should be very close to the known
elevation values taken during the sampling of weed density
(x, y and z coordinates from the DGPS receiver) (Ley, 1986).
The digital elevation model was visualized with the software
ENVI (ENVI 4.3, Research Systems Inc., 4990 Pearl East, Cir-
cle, Boulder, CO 80301, USA). The elevation of all estimation
grid nodes can be taken directly from this database, obtain-
ing the secondary information to be exported in the kriging
process described below. Figure 1 shows the digital elevation
maps of each field where weed infestation data were assessed.
The elevation range within the area was 276.5 m minimum and
295.6 m maximum in Casilla and between 233.3 m and 246.9
m in Cruce, respectively.

2.3. Prediction methods

The spatial variability of weed species was described by
a semivariogram, which expresses the spatial dependence be-

tween the weed density at different separation distances and
directions (Isaaks and Srivastava, 1989; Webster and Oliver,
2001), using the following equation:

γ(h) =
1

2N(h)

N(h)∑

α=1

[z(uα) − z(uα + h)]2

where γ(h) is the experimental semivariogram value at dis-
tance interval h; N(h) = number of sample value pairs within
the distance interval h; and z(uα), z(uα + h) = sample values
at two points separated by the distance interval h. All pairs of
points separated by the distance hwere used to calculate the ex-
perimental semivariogram. Several semivariogram functions
were evaluated to choose the best fit with the data. Semivar-
iograms were calculated both isotropically and anisotropically
by Variowin (Variowin 2.4 Software for Spatial Data Analy-
sis in 2D, Spring Verlag, New York) software. The anisotropic
calculations were performed in four directions (0, 45, 90 and
135◦) with a tolerance of 22.5◦ to determine whether semivar-
iogram functions depended on sampling direction, i.e., they
were anisotropic or not. The experimental semivariograms
were fitted by the least-squares procedure by Variowin soft-
ware.

Spherical and exponential models were fitted to the exper-
imental semivariograms. The parameters of the model: range,
nugget and sill, were determined. Nugget is the variance at
zero distance; range is the distance beyond which two mea-
surements become statistically independent and the sill is the
asymptotic plateau of the semivariogram function and is used
to estimate the range.

The ratio between the nugget and the total semivariance or
sill was used to define different classes of spatial dependence
for every weed density variable (Cambardella and Karlen,
1999; López-Granados et al., 2002; Jurado-Expósito et al.,
2003, 2004, 2005). If the ratio was less than or equal to 25%,
the variable was considered as being strongly spatially depen-
dent or strongly distributed in patches; if the ratio was between
25 and 75%, the variable was considered to be moderately spa-
tially dependent, and if the ratio was greater than 75%, the
variable was considered weakly spatially dependent.

Semivariogram models were cross-validated (trial-and-
error-procedure) to check the validity of the models and to
compare values estimated from the semivariogram model with
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the actual values (Isaaks and Srivastava, 1989). In this proce-
dure one weed density observation is temporarily deleted at
a time from the data set and predicted from remaining data
using kriging: this procedure is repeated for all observations
of weed densities (Goovaerts, 2000). Differences between es-
timated and actual values were assessed and compared using
the following cross-validation statistics: i.e. mean estimation
error, not significantly different than zero; mean squared error
less than the variance of the sample values (Hevesi et al., 1992)
and standardized mean squared error was within the interval
1±2
√

2/n) (Isaaks and Srivastava, 1989; Hevesi et al., 1992;
Webster and Oliver, 2001). Spatial and geostatistical analy-
ses were performed using Variowin and WinGSlib software;
cross-validation was conducted using WinGSLIB software.

Once cross-validated, the parameters of the semivariogram
models described above were used to interpolate the weed den-
sity variables by using two prediction methods: ordinary point
kriging and kriging with an external drift.

2.3.1. Ordinary point kriging

Weed density data were interpolated using the ordinary
kriging method. Kriging is a generalized least-squares regres-
sion technique that allows one to account for the spatial de-
pendence between observations, as revealed by the semivar-
iogram, into spatial prediction (Goovaerts, 2000). A detailed
presentation of the theory of applied geostatistics is given in
Isaaks and Srivastava (1989), and Goovaerts (1997).

Ordinary kriging interpolation amounts to estimating the
unknown weed density z at the unsampled location u as an
unbiased linear combination of observations at neighboring lo-
cations (uα) (Goovaerts, 1997, 2000) according to:

z∗OK(u) =
n(u)∑

α=1

λOK
α (u)z(uα) with

n(u)∑

α=1

λOK
α (u) = 1.

The ordinary kriging weights λOK
α (u) are determined such as

to minimize the estimation variance, while ensuring the un-
biasedness of the estimator via the condition that the sum of
kriging weights λOK

α (u) be one (Goovaerts, 2000). The only
information required by the kriging system is semivariogram
values for different lags, and these are readily derived once a
semivariogram model has been fitted to experimental values.

The semivariogram model parameters described above
were used to map weed density by ordinary kriging on a
regular grid of 2 m. Spatial distribution maps of weed den-
sity were constructed using SURFER contour mapping soft-
ware (SURFER 6.04, Golden Software Inc., 809, 14th Street,
Golden, CO 80401-1866, USA), based on WinGSLIB ordi-
nary point kriged estimates.

2.3.2. Kriging with an external drift

In order to improve the prediction, the weed density data
were interpolated using kriging with an external drift. This

kriging method is an interpolation that uses secondary exhaus-
tive information to derive the local mean or trend m∗KED of
the primary attribute z (weed density), then performs simple
kriging (SK) on the corresponding residuals (Goovaerts, 1997,
2000):

z∗KED(u) − m∗KED(u) =
n(u)∑

α=1

λSK
α (u)

[
z(uα) − m∗KED(uα)

]

where
m∗KED(u) = a∗0(u) + a∗1(u)γ(u).

In the kriging with an external drift approach the regression
coefficients a∗0 (u) and a∗1(u) are implicitly estimated through
the kriging system within each search neighborhood, i.e. the
relation between elevation and weed density is assessed lo-
cally, which allows one to account for changes in correlation
across the study area.

The regression coefficients can be computed and mapped
for interpretation purposes (Goovaerts, 1997) but they are not
required for estimation. So, the usual and equivalent expres-
sion for kriging with an external drift estimate is (Goovaerts,
1997, 2000; Wackernagel, 1998):

z∗KED(u) =
n(u)∑

α=1

λKED
α (u)z(uα).

The kriging weights λKED
α (u) are the solution of the following

system of (n(u) + 2) linear equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n(u)∑
β=1
λKED
β (u)γR(uα − uβ) + μKED

0 (u)

+μKED
1 (u)γ(uα) = γR(uα − u) α = 1, ..., n(u)

n(u)∑
β=1
λKED
β (u) = 1

n(u)∑
β=1
λKED
β (u)γ(uβ) = γ(u)

where μKED
0 (u) and μKED

1 (u) are two Lagrange parameters. In
practice the residual semivariogram (γR) could be inferred
from pairs of z values that are unaffected or slightly affected
by the trend, i.e. from data pairs such that γ(uα) ≈ γ(uα + h).
This condition is generally satisfied for small separation dis-
tances. Thus, the residual semivariogram may be identified
with the corresponding z-semivariogram γ(h) (Hudson and
Wackernagel, 1994; Wackernagel, 1998; Goovaerts, 1999b,
2000).

The geostatistical estimation method of kriging with an ex-
ternal drift requires a linear relationship between the variable
of interest, i.e., primary variable, weed density and the sec-
ondary variable, elevation. If this is not the case, an appropri-
ate transformation of the secondary variable could make that
relation linear (Goovaerts, 1999b). Pearson linear correlations
were established between weed density and elevation values,
accepting a confidence level of 95%.
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Table I. Summary of statistical data of main weed species sampled in Casilla and Cruce.

Mean Maximum Variance Standard Skew
Location Weed (plants m−2) Deviation
Casilla Convolvulus arvensis 2.31 51.0 59.04 7.68 1.50
(n∗ = 499) Ridolfia segetum 0.54 12.0 1.88 1.37 1.41

Phalaris spp. 3.31 51.0 55.90 7.48 1.43
Sinapis arvensis 2.36 51.0 10.05 3.17 0.84

Amaranthus albus 16.32 51.0 479.60 21.90 0.55

Cruce Convolvulus arvensis 5.29 51.0 85.90 9.27 1.60
(n∗ = 256) Ridolfia segetum 2.17 40.0 27.40 5.23 1.20

Phalaris spp. 18.6 51.0 193.50 13.90 1.10
Galium aparine 0.69 10.0 1.90 1.38 1.93

Chrozophora tinctoria 5.82 40.0 45.50 6.75 1.05

∗ n: number of georeferenced counting units.

In this paper, the elevation data, available at all estimation
grid nodes, were introduced as exhaustive secondary informa-
tion into the kriging system to estimate weed density in the
sunflower fields. This method was applied to the weed species
showing absolute correlations |r| > 0.2 with elevation values.
Spatial distribution maps of those weed species density were
constructed using SURFER, based on WinGSLIB kriging with
an external drift estimates.

2.3.3. Comparison between prediction methods

According to Goovaerts (2000), the prediction quality of
the two interpolators used, ordinary kriging and kriging with
an external drift, was assessed and compared using cross-
validation. The comparison criterion used was the mean square
error of prediction, which measures the average square differ-
ence between the true density observation z(uα) and its esti-
mate z∗(uα) which is based on all other observations except
z(uα):

MSE =
1
n

n∑

α=1

[
z(uα) − z∗(uα)

]2

where n is the number of weed density data (Goovaerts, 2000;
Bishop and McBratney, 2001; López-Granados et al., 2005).

For each prediction method, the mean square error of each
species was calculated as an overall indication of the map pre-
cision quality. Mean square error should be less than the vari-
ance of sample values, otherwise the prediction method would
be worse than predicting the weed density by the overall mean
equally at all locations, and smaller values of mean square er-
ror indicate a greater accuracy than larger values (Goovaerts,
2000).

3. RESULTS AND DISCUSSION

3.1. Prediction methods

Table I records mean, variance, standard deviation and
skewness of weed species. Skewness ranged between +2 and
–2 and therefore no transformation of data was carried out.

A. albus in Casilla, and Phalaris spp. in Cruce were by far the
two most dominant species and had the highest density val-
ues, with a mean of 16.32 and 18.6 plants m−2, respectively.
R. segetum in Casilla, and G. aparine in Cruce were present at
very low density: 0.54 plants m−2 and 0.69 plants m−2, respec-
tively. In Cruce, C. arvensis and C. tinctoria were present at a
moderate density: 5.3 and 5.8, respectively.

Directional semivariograms did not show differences in
spatial dependence with directions, therefore isotropic semi-
variograms were chosen. Spherical and exponential isotropic
models were defined for all weed species studied for both
fields. Figure 2 shows some of the experimental semivari-
ograms of weed density with the model fitted. These mod-
els were used to generate weed density maps. The semivari-
ogram parameters and associated levels of spatial dependence
are listed in Table II. Weed species displayed differences in
spatial dependence as determined by semivariogram analyses.
Semivariogram parameters strongly varied among species and
between fields. Range is the distance beyond which spatial de-
pendence between weed density samples ceases to exist and it
can be used as an indicator of the maximum cell size for a field
survey in site-specific management. Thus, range is important
to establish the sampling interval for future surveys. Accord-
ing to Kerry and Oliver (2005), the sampling interval should be
less than half the semivariogram range and one should choose
additional sites at half that range interval.

The sill parameter gives the variance of weed densities
separated by a distance greater than the range, where spatial
dependence ceases to exist. The sill strongly varied among
species and between locations (Tab. II). For example, for C.
arvensis the sill values were 28.3 and 46.4 in Casilla and
Cruce, respectively. A similar variation was observed for the
sill variance of Phalaris spp., which was also present in both
locations.

The nugget effect was greater than zero in all cases, mean-
ing that observations separated by small distances were dis-
similar (Isaaks and Srivastava, 1989). The nugget variance ex-
pressed as a percentage of the sill was used to define different
classes of spatial dependence for weed densities (Tab. II). Low
nugget ratios, from 9.5–16%, indicating a strong spatial de-
pendence, were found for all weed species sampled in Casilla
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Figure 2. Experimental (•) and modeled (-) semivariograms of weed density (plants m−2) corresponding to sampling in (a) Casilla and (b)
Cruce. Axis X is lag distance (m).

Table II. Spatial distribution characteristics of main weed species.

Location Weed Model Range (m) Nugget Sill Nugget ratio∗ (%) Spatial class†

Casilla Convolvulus arvensis Spherical 22.7 27.10 28.3 95.75 W

(n§ = 499) Ridolfia segetum Exponential 28.8 0.24 1.5 16.00 S

Phalaris spp. Spherical 41.5 5.60 40.9 13.70 S

Sinapis arvensis Spherical 24.5 1.21 8.2 14.70 S

Amaranthus albus Spherical 44.0 33.60 355.2 9.50 S

Cruce Convolvulus arvensis Spherical 30.1 31.80 46.4 66.80 M

(n§ = 256) Ridolfia segetum Spherical 27.3 4.50 12.6 35.70 M

Phalaris spp. Exponential 49.7 44.00 126.0 34.90 M

Galium aparine Spherical 27.5 0.80 0.8 94.10 W

Chrozophora tinctoria Spherical 46.1 10.60 33.6 31.50 M

∗ Nugget ratio = (Nugget semivariance/total semivariance) × 100.
† Spatial class: S = strong spatial dependence; M = moderate spatial dependence; W = weak spatial dependence.
§ n: number of georeferenced counting units.
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Figure 3. Weed density maps (plants m−2) obtained using ordinary point kriging in (a) Casilla and (b) Cruce. Axes are in Universal Transverse
Mercator units (m), Z: elevation (m).

with the exception of C. arvensis, which presented a high
nugget ratio, 95.7%, indicating its weak spatial dependence. In
Cruce, medium nugget ratios, from 31.5–66.8%, were found
for most of the weeds sampled, indicating moderate spatial
dependence.

3.1.1. Ordinary point kriging

Some of the maps from the ordinary kriging estimates for
each weed species are shown in Figure 3a for Casilla and Fig-
ure 3b for Cruce, respectively. A visual assessment reveals a
moderate to strong spatial dependence; all the maps generally
indicated a patchy distribution, which is also supported by the
semivariogram analyses.

3.1.2. Kriging with an external drift

The Pearson linear correlations, r, between weed density
data and elevation data ranged from –0.590 to 0.290 (Tab. III),
not far from 0. However, the sample sizes were very high,
so these empirical correlation values sufficed to prove statis-
tically (α = 0.05) that the correlations between these two vari-
ables were different from zero, except the species C. arvensis
in Casilla and C. arvensis, R. segetum and G. aparine in Cruce,
where we could not prove this.

Figure 4 shows experimental semivariograms of elevation
computed from the digital elevation model of Figure 1, with

Table III. Pearson linear correlation coefficients between weed den-
sity (plants m−2) and elevation (m).

Location Weeds Coefficients

Casilla Convolvulus arvensis 0.020ns

(n† = 499) Ridolfia segetum 0.296**
Phalaris spp. –0.235**

Sinapis arvensis –0.243**
Amaranthus albus –0.590**

Cruce Convolvulus arvensis 0.115ns

(n† = 256) Ridolfia segetum 0.071ns

Phalaris spp. –0.357**
Galium aparine 0.033ns

Chrozophora tinctoria 0.290**

† n: number of georeferenced counting units.
* , ** Significant at the 0.05 and 0.01 levels, respectively; ns: not
significant.

the model fitted. They show that there are consistencies in
the semivariogram ranges of the weed density sampled and
elevation. In general, to perform kriging with an external drift
for any two properties they should be at least moderately cor-
related and have semivariograms with similar ranges.

Weeds showing absolute correlations |r| > 0.2 with eleva-
tion were considered for kriging with an external drift, i.e.,
R. segetum, Phalaris spp., S. arvensis and A. albus in Casilla
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(b)

(a)

Figure 4. Experimental (•) and modeled (-) semivariograms of ele-
vation computed from the Digital Elevation Model in (a) Casilla and
(b) Cruce. Axis X is lag distance (m).

and Phalaris spp. and C. tinctoria in Cruce. Figures 5a and 5b
show the maps of weed density estimates obtained using KED
for Casilla and Cruce, respectively. There is a similarity in
the pattern of weed density as produced by ordinary kriging
(Figs. 3a, b). However, ordinary kriging over-smoothed the
spatial variability of weed density.

3.1.3. Comparison between prediction methods

The cross-validation statistics for the prediction methods
compared are listed in Table IV. Mean square error was used
to compare the prediction performances of the two geostatisti-
cal interpolation algorithms. Generally, the estimation method
using elevation gave more favorable mean square error results
than the interpolation method using only weed density data,
ordinary kriging, indicating that the correlation of weed den-
sity with elevation data is very important for mapping weed
density. Thus, the least accurate estimation for ordinary krig-
ing with the highest mean square error values was because el-
evation data were ignored and only the spatial component of
weeds was considered.

R. segetum and C. tinctoria showed positive correlations
with elevation, which means that these weeds were domi-
nant in areas with high elevation values. On the other hand,

Phalaris spp., S. arvensis and A. albus showed negative cor-
relations with elevation, so they were predominant in areas
with low values of elevation. The results of this work indi-
cate that kriging with an external drift may become useful for
describing weed infestation maps according to the elevation of
the field, which could be used to design intermittent spraying
strategies.

Bishop and McBratney (2001) also found that KED was
the best prediction method for mapping soil properties us-
ing bare soil aerial photographs as secondary information. So,
when secondary information is available, it should be used be-
cause generic geostatistical techniques that only use the pri-
mary variable, such as ordinary kriging, do not obtain the pre-
diction performance of methods incorporating that secondary
information.

The mean square errors for the different approaches
(Tab. IV) show that the generic geostatistical technique, or-
dinary kriging, exhibited the highest mean square error values
because it ignores the secondary information and only used
the primary weed density variable. The kriging with an exter-
nal drift mean square error results for R. segetum, Phalaris
spp., S. arvensis and A. albus of 0.93, 13.9, 8.2 and 99.1
in Casilla indicated 16%, 11%, 17% and 9% improvements
in performance relative to ordinary kriging, respectively, and
with regards to Phalaris spp. and C. tinctoria in Cruce, mean
square error values of 82.06 and 21.6 indicated 13% and 8%
improvements in performance relative to ordinary kriging, re-
spectively. These improvements are due to the relationship be-
tween the primary and secondary variables being evaluated
locally, which permits taking into account changes in the cor-
relation across the sampling area. (Hevesi et al., 1992).

According to López-Granados et al. (2005), our results in-
dicated that even when a moderately correlated (r < 0.5) sec-
ondary attribute is available, the methods incorporating this
secondary variable into the map of the primary variable, i.e.,
kriging with an external drift, perform better than other ap-
proaches which only incorporate the target weed density vari-
able, such as ordinary kriging.

4. CONCLUSION

In conclusion, the estimation method using a digital eleva-
tion model gave more favorable mean square error results than
prediction methods using only a primary variable. These re-
sults suggest that kriging with an external drift of weed density
data with elevation as a secondary exhaustive variable could be
used in such situations, and in this way, the accuracy of maps
for precision agriculture could be improved with little or no
additional cost, since the digital elevation model could be ob-
tained as part of other analyses.

The growing interest of weed scientists in multivariate geo-
statistics has arisen because they realize more and more that
quantitative spatial prediction should incorporate the spatial
correlation among observations. Also, geostatistics offers an
increasingly wide range of techniques well suited to the di-
versity of problems and information that weed scientists have
to deal with. Multivariate geostatistical interpolation such as
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Figure 5. Weed density maps (plants m−2) obtained using kriging with an external drift in (a) Casilla and (b) Cruce. Axes X and Y are in
Universal Transverse Mercator units (m), Z: elevation (m).

Table IV. Cross-validation statistics for the prediction methods compared when estimating weed density.

Location Weed OK∗ KED†

MEE‡ MSE§ SMSE# MEE MSE SMSE
Casilla
(n & = 499) Ridolfia segetum 0.000 1.11 0.82 –0.01 0.93 0.79

Phalaris spp. 0.020 15.60 1.08 –0.07 13.90 1.06
Sinapis arvensis 0.010 9.90 1.67 –0.04 8.20 1.06

Amaranthus albus –0.004 108.90 1.08 –0.09 99.10 1.01

Cruce
(n = 256) Phalaris spp. 0.040 94.53 0.78 –0.08 82.06 0.80

Chrozophora tinctoria –0.040 23.61 1.06 –0.08 21.60 1.00

∗ OK: Ordinary Point Kriging.
† KED: Kriging with an External Drift.
‡ MEE: Mean Estimation Error.
§ MSE: Mean Squared Error.
# SMSE: Standardized Mean Squared Error.
& n: number of georeferenced counting units.

kriging with an external drift allows one to complement a few
expensive measurements of the attribute of interest, e.g., weed
density with more abundant data on correlated attributes that
are cheaper to determine, e.g., elevation. There is still research
to be done on the incorporation of secondary variables mea-
sured on different supports, in particular the combination of
field data, e.g. yield data, weed or soil sampling, the primary

variable, with reflectance data from remote-sensing images,
the secondary variable.

This study demonstrated that maps from kriging with an ex-
ternal drift estimates combining geostatistical techniques and
elevation data were accurate enough to improve the identifica-
tion of weed density patches, which is the first step for site-
specific weed management.
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