Enhancement of development and induction of resistance in tomato plants by the antagonist, Pythium oligandrum
Gaétan Le Floch, Patrice Rey, Franck Déniel, Nicole Benhamou, Karine Picard, Yves Tirilly

To cite this version:
Gaétan Le Floch, Patrice Rey, Franck Déniel, Nicole Benhamou, Karine Picard, et al.. Enhancement of development and induction of resistance in tomato plants by the antagonist, Pythium oligandrum. Agronomie, EDP Sciences, 2003, 23 (5-6), pp.455-460. 10.1051/agro:2003018. hal-00886197

HAL Id: hal-00886197
https://hal.archives-ouvertes.fr/hal-00886197
Submitted on 1 Jan 2003

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Enhancement of development and induction of resistance in tomato plants by the antagonist, *Pythium oligandrum*

Gaétan LE FLOCH, Patrice REY*, Franck DÉNIEL, Nicole BENHAMOU, Karine PICARD, Yves TIRILLY

Laboratoire de Microbiologie, Université de Bretagne Occidentale-Brest, Technopôle Brest-Iroise, 29280 Plouzané, France
Département Recherche en Sciences de la Vie et de la Santé, Pav. Ch.E. Marchand, Université Laval, Sainte-Foy, Québec, GIK7P4, Canada

(Received 3 July 2002; accepted 18 December 2002)

Abstract – To exert an optimal biological control, *P. oligandrum* must colonise roots and persist in the rhizosphere of plants throughout the cultural season. The present study demonstrated that, after inoculation of root system by *P. oligandrum*, it colonised 20 to 40% of roots of tomato plants grown in hydroponic system. Constant presence of the introduced fungus in the rhizosphere over the cultural season is correlated with an increase in tomato yield. The combination of several factors likely explains this *P. oligandrum*-mediated increase. Among them, one may cite mycoparasitism; however, though *P. oligandrum* can parasitize other pathogenic *Pythium* species; root colonisation by the antagonist was not associated with significant reduction in *Pythium* spp. populations. In the present case, the induction of plant resistance seems more prevalent. Indeed, root colonisation with *P. oligandrum* induced systemic resistance. Interestingly, *P. oligandrum*-inoculated plants triggered and amplified PR proteins synthesis only when leaves had been attacked by the pathogen, *Botrytis cinerea*.

mycoparasitism / yield increase / induced resistance / PR proteins / biocontrol agent

1. INTRODUCTION

In soilless culture, although pathogenic fungal species are relatively few in number compared to those observed in conventional cultures, root diseases are frequently noticed and diseases are occasionally more severe than in soil [6, 9, 27]. Additionally, emergence of infecting pathogens specific to hydroponics has been frequently pointed out. For instance, some fungi which are of little or recognised importance under field conditions, e.g. *Pythium* group F [19, 21] and *P. dissotocum* [26], may become of economic importance in hydroponic cultures. Once introduced in the greenhouse, infections can reach an important level because of pathogen development and spreading to the whole cultural system. Several methods are now available to prevent attacks; among them, one can cite: (i) nutrient solution disinfection [5, 22, 25]; (ii) resistant cultivars [27] or (iii) fungicides application [27]. But, each of them has its limits. Nutrient disinfection is mainly effective when used as preventive application. Resistant cultivars against *Pythium* spp. do not exist and few are resistant to the other most frequent pathogens. Additionally, when resistant cultivars are available, they are not always of economical

* Correspondence and reprints
patrice.rey@univ-brest.fr
interest for growers. Application of some fungicides to the
recirculating nutrient solution is relatively easy, but, only few
of them are registered.

This is why the interest for developing alternative patho-
gen-control methods based on the management of microor-
ganisms has been growing in recent years [11, 12, 14, 24].
Such methods may consist of the introduction of antagonists
into the plant nutrient solution or favour the development of
indigenous suppressive microflora in the rhizosphere [15, 16].
Rafin et al. [17] pointed out that antagonistic-Pythium are nat-
urally present, though at low level, in soilless cultures. Previ-
ous experiments performed by our group with one of them, Pythium oligandrum, have shown that it can protect plants
through a tripartite interaction between the biocontrol agent,
the pathogen and the plant. It is generally considered that such
a complex process includes three different effects: (i) the con-
trol of pathogens in the rhizosphere by mycoparasitism and/or
antibiosis [2]; (ii) plant-induced resistance, because tomatoes
inoculated with P. oligandrum or a proteinaceous elicitor pro-
duced by the fungus, sensitise plants to respond more rapidly
and efficiently to pathogen attacks [1, 3, 13] and (iii) plant
growth promotion associated with cucumber [10, 31] or
tomato root colonisation by P. oligandrum. Nevertheless,
these beneficial effects are assumed to occur only when the
biocontrol microorganism is colonising plants and persists in
the rhizosphere. In the literature, it has been reported that,
often, a lack of survival of the introduced microorganisms
resulted in an insufficient biocontrol effect [16].

To overcome this problem, our aim was to introduce P. oli-
gandrum in an experimental hydroponic greenhouse and to
assess its ability to colonise roots throughout the cultural sea-
son. To verify the positive impact of P. oligandrum-root colo-
nisation both on plant development and resistance, tomato yield
was studied and compared to those of non-inoculated plants.
The control of Botrytis cinerea, one among the most important
agent responsible for foliar diseases observed in greenhouse-
cultivated tomatoes [4], was concomitantly investigated.

2. MATERIALS AND METHODS

2.1. Plant culture

2.1.1. Assessment of tomato root colonisation

by P. oligandrum and consequence on yield

Experiments were performed with seeds of tomato cv. Dan-
iela (Hazera) and cv. Tradiro (De Ruiter) sown in rockwool-
cubes and fertilised daily with a nutrient solution containing in
meq. 14.5 NO3; 1.8 H2PO4; 7.5 K; 8.8 Ca; 4.0 Mg and
0.5 NH4. After 4 weeks in a nursery greenhouse, the plants
were installed in the gulleys of a greenhouse as soon as the
first flowercluster appeared. In this N.F.T. (Nutrient Film
Technic) system, roots developed freely in the nutrient solu-
tion described above. The pH of the nutrient solution and the
greenhouse temperature were regularly monitored and ranged
from 5.5 to 6.2 and 18 to 22 °C, respectively. Eight indepen-
dent units were used, 4 per cultivar. For each cultivar, 2 units
(34 plants per unit) were inoculated with P. oligandrum,
whereas 2 others were used as control. Tomato fruits were col-
clected every week from March to September and the yield
per m² was assessed. Data were analysed with StatGraphics
and means separated with the Student’s t-Test.

2.1.2. Assessment of tomato protection by P. oligandrum

against B. cinerea

Tomato seeds, cv Prisca, (Novartis), were sterilised by
immersion in 70% ethanol for 5 minutes, soaked in 5% aque-
ous sodium hypochlorite for 10 minutes and thoroughly rinsed
3 times in sterile distilled water. Seeds were, then, placed for
one week on water-soaked filter paper (Whatmann No. 1) in
Petri dishes in the dark at 25 °C. Then, they were put for
another week in a plastic cuvette filled with vermiculite, then
transferred into pots (10 × 10 × 11 cm) filled with peat and
vermiculite (50/50) and grown for 5 weeks in a greenhouse
under a 14-h-light 16 °C/10-h-dark 25 °C photoperiod. Plants
were regularly fed with Solufeed (ICI Agrochemicals) nutrient
solution.

2.2. Plant inoculations with fungi

2.2.1. Root inoculation with P. oligandrum

P. oligandrum Dreschler, Strain No. 1133, was kindly
provided by Professor John Hockenhull, The Royal Veterinary
and Agricultural University, Copenhagen, Denmark. It was
grown on yeast malt agar at 24 °C in the dark and regularly
subcultured. For the production of inoculum, P. oligandrum
was cultured in a liquid medium containing 1.02 g KH2PO4;
0.17 g K2HPO4; 0.5 g MgSO4 7H2O; 30 g cane molasses and
30 mg ergosterol per liter of distilled water. Plastic bottles
containing 150 ml of culture medium autoclaved at 121 °C for
15 minutes were inoculated with 4 disks of P. oligandrum
(10 cm in diameter), then incubated in the dark for 14 days at
25 °C. Mycelial mats were then removed and fragmented into
distilled water using a Waring blander.

For experiment in N.F.T. greenhouse, P. oligandrum
inoculum consisted of oospores-mycelium homogenate
(30 000 oospores·ml–1). Twenty ml of the inoculum were
deposited at the collar level of each plant on January. First
inoculation was performed with 10-week-old plants. A sec-
ond inoculation was carried out 4 weeks later using 20 ml of
the inoculum poured in the gulleys on each side of the plants.

For the experiment conducted to control B. cinerea, plants
were inoculated 3 times with the P. oligandrum oospores-
mycelium homogenate (50 000 oospores·ml–1). The first
inoculation was done in a plastic cuvette, whereas the two oth-
ers were performed 3 and 4 weeks after plant transfer to pots.

2.2.2. Leaf inoculation with B. cinerea

The isolate of B. cinerea (Collection of Laboratoire de
Microbiologie, ESMISAB, France) was grown on yeast malt
agar at 24 °C in the dark and regularly subcultured.
Inoculation with the pathogen was performed by depositing
20-µl droplets of conidial suspension onto the upper surface
of each leaf (500 spores·droplet–1, 10 droplets·leaf–1). Infections
were scored according to a disease index with a relative scale
of 0 to 10 built on the basis of necrotic-lesion development.
The lesions restricted to the deposition area were scored from
0 to 4; those spreading out of it from 5 to 10.
2.3. Root sampling

2.3.1. Assessment of *P. oligandrum*-root colonisation

Tomato (cv. Daniela and cv. Tradiro) roots from control and *P. oligandrum*-inoculated plants were sampled monthly in N.F.T. gulleys from February to August in 6 randomly-selected sites per unit. For each sample, roots taken from all parts of the root system were cut into 5-mm segments and cultured onto a selective *Pythium* isolation medium coded CMA-PARP at 25 °C in the dark. Sixty root segments were plated per unit (10 per sites). After 32 to 48 h, *P. oligandrum* thalles were counted, and results were expressed as the percentage of root pieces from which *P. oligandrum* thalles were recovered.

2.3.2. Assessment of *Pythium* spp. root colonisation

Similarly from above, tomato (cv. Daniela and cv. Tradiro) roots from control and *P. oligandrum*-inoculated plants were sampled monthly in N.F.T. gulleys from February to August in 3 randomly-selected sites per unit. Ninety root segments were plated per unit (30 per sites). The method previously described was used to count and to determine *Pythium* spp.

2.4. Tomato plant protection against *B. cinerea*: PR-proteins analysis

Acid-soluble proteins extracted from infected leaves as described by Renault et al. [18] were subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Protein extracts were mixed with equal volumes of SDS sample buffer; the mixtures were boiled for 3 minutes and subjected to electrophoresis. Samples were applied to stacking and resolving gels usually containing 5 and 13.5% (w/v) of polyacrylamide, respectively. After electrophoresis, proteins were directly transferred onto 0.2-µm nitrocellulose filters (Schleider and Schüll, IKA-Filtrax) in electrophoresis buffer supplemented with methanol (Tris 25 mM pH 8.3, Glycine 192 mM, SDS 0.1%, methanol 20%) at 200 mA for 30 min. After electrotransfer and subsequent incubation of the blots with tobacco PR-3b (Q) and PR-5a (S) antisera, the antigen-first antibody complexes were detected with a second antibody phosphatase-conjugated goat anti-rabbit. The different polyclonal antibodies raised against PR-3b (Q) and PR-5a (S) purified from tobacco plants, were kindly provided to us by Pr. Fritig (IMBP, Strasbourg, France). A high degree of homology between PR proteins from tobacco and tomato plants has been documented by Van Loon and Van Strien [30].

3. RESULTS

3.1. *P. oligandrum*-root inoculation of plants grown in N.F.T. system

3.1.1. Assessment of root colonization by *P. oligandrum*

Figure 1 clearly shows a substantial colonisation of the roots of both tomato cultivars by *P. oligandrum* further to its introduction inside the greenhouse. Root colonisation by *P. oligandrum* remained relatively stable over the whole experimental period, i.e. April–September. For the tomato cultivars, Tradiro and Daniela, *P. oligandrum* was detected from about 20 to 30% of the roots sampled and 20 to 40%, respectively.

3.1.2. Tomato yield of plants inoculated or not with *P. oligandrum*

Except for the first month of tomato production, when roots were colonised by *P. oligandrum* there was a yield increase for both cultivars (Fig. 2). This increase in yield was statistically significant over the last months of the cultural season, i.e. August and September for Daniela cultivar (Fig. 2), and July and September for Tradiro one (data not shown).

![Figure 1](image1.png)

**Figure 1.** Root colonisation by *P. oligandrum* of tomato plants (cv. Daniela and cv. Tradiro) grown in hydroponic greenhouse (N.F.T. system). Data are expressed in percentage of colonised roots (60 roots per sample). Light grey bars: cv. Tradiro; black bars: cv. Daniela.

![Figure 2](image2.png)

**Figure 2.** Tomato yield of plants (cv. Daniela) inoculated or not with *P. oligandrum*. Data correspond to the means of each month, the bars with the same letter do not differ significantly at $P \geq 0.05$ determined by Student's *t*-Test. Light grey bars: control plants; black bars: *P. oligandrum* inoculated plants.
3.1.3. Assessment of *Pythium* spp. on roots colonised or not with *P. oligandrum*

On *P. oligandrum*-inoculated or control roots, *Pythium* spp. thalles were consistently and regularly isolated from samples of roots of both cultivars. No clear relation was found between the extent of root colonisation by *Pythium* spp. and the type of treatment undergone. Colonisation by *Pythium* spp. is relatively equal on roots treated or not with the antagonist fungus (Fig. 3) (for Tradiro roots, data are not shown).

3.2. *P. oligandrum*-mediated protection against *B. cinerea* attacks

3.2.1. Assessment of leaf protection against *B. cinerea*

About 80% of the roots from plants inoculated with *P. oligandrum* were colonised by the fungus. Ten days after inoculation of tomato leaves with *B. cinerea* alone, an important necrosis leading to complete senescence was recorded, and then leaves detached from the stem (Fig. 4). Pre-inoculation of tomato roots with *P. oligandrum* before *B. cinerea* challenge on the leaves significantly reduced grey mould severity; in addition, defoliation was not observed.

3.2.2. Analysis of PR-3b proteins in leaves of tomato plants

Western blotting revealed that the leaves of both control and *P. oligandrum*-inoculated plants (Figs. 5, 6a) synthesised only a 27-kDa protein. This result was observed with each tested sample (Fig. 6a). When plants were inoculated with *B. cinerea* alone, one additional 30-kDa band was detected (Figs. 5, 6b). The synthesis of this PR-3b protein was enhanced in the plants pre-inoculated with *P. oligandrum* and challenged by *B. cinerea*; whereas a third protein of about 32 kDa was detected (Figs. 5, 6c).

3.2.3. Analysis of PR-5 proteins in leaves of tomato plants

PR-5a proteins were not monitored in the leaves of both control and *P. oligandrum*-colonised plants (data not shown). A 24-kDa protein was detected in *B. cinerea*-infected leaves. Its synthesis was enhanced in infected leaves upon pretreatment with *P. oligandrum* (Fig. 7).

4. DISCUSSION

In recent years, numerous studies have highlighted different aspects of *P. oligandrum* interactions with plants or pathogenic microorganisms in appropriate environments [1, 2, 3, 10, 13, 20, 31]. The present paper reports on a crucial point for plant protection by *P. oligandrum*: root colonisation and persistence of the antagonist at potential infection sites. During the whole cultural season, the antagonist was detected on about 20 to 40% of roots of the plants grown in greenhouse hydroponics, here the N.F.T. system. This relative constant colonisation is achieved in a cultural system known for its high...
receptivity to *Pythium* spp. [6, 19, 22, 27]. Indeed, within hydroponics, several environmental conditions are controlled in such a way that they facilitate spreading and development of *P. oligandrum*. For instance, water abundance favours dispersion of *P. oligandrum* zoospores. Wulff et al. [31] reported on the accumulation of *P. oligandrum* zoospores on the roots of cucumber; but they were less numerous than those of pathogenic *Pythium* species. However, alike other zoosporic fungi, once produced, zoospores can spread within the whole system via the nutrient solution [27]. In addition, in greenhouse the temperature is relatively constant [27]; generally, it is close to the one required for *P. oligandrum* growth. It facilitates the development of the fungus in the rhizosphere of tomatoes.

In this context of relative constant root colonisation by *P. oligandrum*, increased tomato yield production was noticed. Root growth stimulation has already been described on young cucumber plants [10, 31]. Nevertheless, the present study pointed out that, in appropriate conditions, the beneficial effect exerted on young plants can persist throughout the growing season as demonstrated by the yield increased obtained at the end of the growing season. Three among the factors that may partially explain the *P. oligandrum*-mediated growth response should be considered: enhanced plant hormone production, minor pathogen control or induced plant resistance. (i) Regarding the first point, it has been convincingly shown that pathogenic *Pythium* species [23], but also *P. oligandrum*, produce auxin compounds. Only with the antagonist, absorption of fungal-auxin compound in appropriate concentrations by the root system was associated with increased plant growth (unpublished data). However, the level of implication of these molecules on yield increase still remains to be determined. (ii) Although *P. oligandrum* mycoparasitism against pathogenic *Pythium* species has been convincingly demonstrated by Benhamou et al. [2], it does not seem to be the main factor in the present case: root colonisation by *Pythium* spp. was not different in roots treated or not by *P. oligandrum*. In fact, as the level of *Pythium* spp. population is always high in hydroponics [19, 22, 27], one can assume that *P. oligandrum* parasitizes other *Pythium* species, but cannot destroy them to significantly reduce their population. It is also noticeable that the minor pathogenic *Pythium* group F, which accounts for 75 to 90% of all *Pythium* isolates in hydroponics [19], has no negative impact on plant growth. One can speculate that (iii) induced resistance is the prevalent phenomenon in our experiments and that minor pathogens cannot penetrate in the roots to induce their deleterious effect on plants. Previous experiments have supported this assumption because it was shown that roots colonised by *P. oligandrum* developed resistance against *Fusarium* root rot [1].

In conclusion, the investigations reported here demonstrate that under specific and favourable cultural conditions provided by hydroponic systems, *P. oligandrum* can colonise and exert its beneficial effect on plants throughout the cultural season. Further studies are needed to assess its positive impact on plants in different cultural systems. Similarly, the present study demonstrates that under conditions favourable for root colonisation by *P. oligandrum*, plant systemic resistance against the foliar pathogen, *B. cinerea* is also induced. In systemic resistance, the expression of PR-protein genes is considered as a marker of late defence genes [28]. Interestingly, the synthesis of PR-proteins was enhanced in leaves pre-inoculated with *P. oligandrum*, and challenged by *B. cinerea*. Only for this condition, synthesis of PR-3b and

![Figure 6](image1.png)

*Figure 6.* (a) Time course induction of PR-3b protein in leaves of plants treated three times with *P. oligandrum* alone. J0 to J10 correspond to 0 to 10 days after the last inoculation with *P. oligandrum*. (b) Time course induction of PR-3b protein in leaves of plants inoculated with *B. cinerea* alone. (c) Time course induction of PR-3b protein in leaves of plants treated three times with *P. oligandrum*, then *B. cinerea.*

![Figure 7](image2.png)

*Figure 7.* Time course induction of PR-5a proteins in plants treated with either the sole *B. cinerea* or *P. oligandrum*, then *B. cinerea* at 0, 4 and 10 days after inoculation with *B. cinerea.*
PR-5a proteins was increased concomitantly with the induction of a new PR-3b protein. However, PR-proteins are not always induced by antagonist microorganism as a system of defence [7, 8]. In a relevant manner, it has been demonstrated that induction of systemic resistance in tomato plants or radish by a biocontrol agent, *Penicillium oxalicum* [7] or by a non-pathogenic rhizobacterium, *Pseudomonas fluorescens* [8] is not associated with accumulation of PR-proteins. Considering the existence of different signalling pathways of systemic resistance within plants, one can assume that, depending on the biocontrol agent concerned together with the elicitors it produces, the synthesis of PR-proteins is induced or not. As reported above, pre-inoculation of tomato plants with *P. oligandrum* triggered PR-protein synthesis, which was amplified upon pathogen attack by *B. cinerea*. On the one hand, it suggests that such a defence system is very efficient in terms of reduction of energy costs for tomato plants. One the other hand, it is likely that accumulation of PR-proteins is not a pre-requisite for the induction of resistance though they contribute to the protective state [29].

Acknowledgments: We thank Dr. M.P. Friocourt for critical discussion of this work. Financial support for this research was provided by the Brittany and the Pays de la Loire Regional Councils (GIS-LBIO program).

REFERENCES


