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Abstract – The objective of the experience described in the paper consists of extracting crop yield indicators from a
combined use of land cover data, CORINE (CO-ordination of INformation on the Environment), and NOAA-
AVHHR/NDVI data on a regional scale. First, the paper describes the methodology used to integrate the NDVI and the
CORINE data. Then, a case study on Spain for a four year span between 1995 and 1998 is presented in the paper. The
methodology thus developed allows a better exploitation of the NDVI time series by partly reducing the problem of
mixed values. The use of an independent land cover can increase the information content of the extracted time series of
NDVI. It is shown in this experience that indicators based on the CNDVI (CORINE-NDVI) time profiles can be more
closely related to crop yield performances than indicators based on simple NDVI. The advantages of the approach are
confirmed by the case study: good results in terms of crop yield forecast modelling, good discrimination of annual crop
cycles, good desaggregation of average regional NDVI profiles. The application and the results fit the objective of the
MARS (Monitoring Agriculture with Remote Sensing) Crop Yield Forecasting System of the EC, within which the
experience was conducted. The objective of this system is to contribute to an independent, reliable and timely 
production forecasts EC system. 
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1. Introduction

In the framework of the “Monitoring
Agriculture with Remote Sensing” (MARS) pro-
ject of the European Commission (EC), satellite-
derived information is largely used to derive infor-
mation and indicators for national crop production
assessment [1, 3, 7, 18, 20].

Among the different data sets available at the
MARS project, some indicators on vegetation sta-
tus are derived from daily NOAA-AVHRR data.
The NDVI (Normalised Difference Vegetation
Index) is the most frequently used within agro-
meteorological analysis. It is defined as: 

(1)

ρ2 and ρ1 are respectively the reflectance (%) in
the near infrared and in the red channels.

A description of the physical characteristics and
the link with the vegetation behaviour is given by
Tucker et al. [21].

Some efforts have been recently made within
MARS to extract information from the NDVI,
which can be linked to crops. In this framework

two major lines are being followed: the derivation
of growth parameters through energy balance mod-
els [14] and the derivation of indicators to fit statis-
tical models [3, 8, 18, 20, 25]. A challenge in both
the approaches is the decomposition of the NDVI
vegetation mixed values into more reliable values
for single vegetation targets.

In this study, the way chosen to predict yields
with remote sensing data is an empirical way. It
consists of directly linking the crop production to
radiometric measurements combined in vegetation
indices as explained by Guérif [10]. In this, lots of
works have set up strong correlation between them
for various crops [2, 5, 11, 19, 21, 22]. Other ways
are also to combine semi-empirical or mechanistic
crop models with remote sensing data. Different
methods [4] have been tested. An overview of
these different methodologies is done by Vignolles
[24] and by Moulin et al. [15].

The main goals of this study are to exploit more
effectively the time series of NDVI, linking them
as much as possible to crop growing conditions,
extracting indicators which can be related more
closely to crop yield performances and fitting fore-
casting models. More precisely, the final objective
is to find an indicator built from the NDVI profiles,
which can be related to administrative yield statis-
tics. To achieve these objectives, the vegetation

NDVI =
ρ 1 – ρ 2
ρ 1 + ρ 2

Résumé – Méthodologie pour l’utilisation conjointe des données de NDVI et de CORINE land cover pour le suivi
des cultures et la prévision des rendements. Application au cas de l’Espagne. L’objectif de l’expérience décrite
dans cet article consiste à extraire des indicateurs de rendement en utilisant conjointement les données de NDVI
(Normalized Difference Vegetation Index) issues de NOAA-AVHRR et la couverture d’occupation du sol “CORINE
land cover” (COordination of INformation on the Environment), à une échelle régionale. Dans un premier temps,
l’article présente la méthodologie utilisée pour intégrer les données NDVI et CORINE. Ensuite, une étude de cas pour
l’Espagne entre 1995 et 1998 est proposée. La méthodologie développée permet une meilleure exploitation des séries
temporelles de NDVI en réduisant partiellement le problème des valeurs mixtes. L’utilisation d’une cartographie
d’occupation du sol indépendante des données de télédétection de NOAA-AVHRR permet d'accroître le contenu infor-
matif des séries temporelles de NDVI. Il est montré dans cette expérience que les indicateurs issus des profils temporels
CNDVI (CORINE-NDVI) peuvent avoir un lien plus étroit avec le rendement des cultures que les indicateurs issus de
simples profils temporels NDVI. Les avantages de cette approche sont confirmés par l’étude de cas : bons résultats en
ce qui concerne le modèle prévisionnel d’estimation des rendements, reconnaissance du cycle annuel des cultures,
bonne décomposition du profil NDVI moyen régional en profils spécifiques correspondant à des classes de végétation.
L’application et les résultats correspondent aux objectifs d’indépendance et de fiabilité du système d’estimation des ren-
dements des cultures du projet MARS (Monitoring Agriculture with Remote Sensing) de la Commission européenne
dans le cadre duquel l’étude a été réalisée.

indice de végétation / occupation du sol / indicateur de rendement / CORINE / projet MARS / télédétection
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indicator must be re-calibrated to a crop indicator.
The use of an independent land cover can increase
the information content of the extracted NDVI pro-
files in such a way that the information is closer to
crop behaviour than a simple mixed vegetation
profile. In this context the use of CORINE land
cover data as a stratification layer is introduced and
a case study is presented. 

2. Description of the data used

2.1. NOAA-AVHRR data

The data available at the MARS project is
acquired using a receiving station placed at the
Joint Research Centre in Ispra (Italy). Data is pre-
processed using the JRC SPACE software (unpub-
lished data) and then composed and re-sampled in
a daily mosaic to obtain a contemporary picture
which covers all of Europe (including Russia, other
eastern countries and northern Maghreb). The final
data obtained is daily European 1.1×1.1 km2 pixel
data (called level 3 format). 

2.2. CORINE land cover data

CORINE land cover has been derived by high-
resolution satellite data (SPOT-HRV, Landsat-TM),
through techniques of photo-interpretation [12,
16]. The data has been validated using local car-
tography and ground surveys [12, 16]. The result-
ing map covers, at the moment, the EU-15 coun-
tries, the Central European Countries and part of
the Maghreb, with 100×100 km2 sheets at a nomi-
nal geographic scale of 1:100000. 

The classes of interest within this application are
the agricultural areas (class 2 of the CORINE leg-
end), which are sub-divided into:

21 Arable land

211 Non-irrigated arable land
212 Permanently irrigated arable land
213 Rice fields

22 Permanent crops

221 Vineyards
222 Fruit trees and berry plantation
223 Olive groves

23 Pastures

231 Pastures

24 Heterogeneous agricultural areas

241 Annual crops associated with permanent
crops

242 Complex cultivation pattern
243 Land principally occupied by agriculture

with significant areas of natural vegetation
244 Agro-forestry areas.

A full description of the nomenclature is given
in the CORINE technical guide [12]. Other issues
related to the accuracy and precision of the
CORINE data can be found in [6] and [16].

3. The methodology for data 
integration

3.1. First step of the methodology: 
obtaining CORINE class NDVI profiles

3.1.1. The calculation of a simple average NDVI
profile

During the image pre-processing phase, the
angle of view information is associated with each
pixel. Previous studies showed that the channel
values are not independent from angle of view
[26]. Off nadir area pixels reach a maximum size
of 6.79 km2 at the edge of the swath, resulting in
mixed non-consolidated pixels. To compensate for
this effect and a not perfect absolute geometric ref-
erence of the image, a re-sampling of the image at
4.4 × 4.4 km2 has been chosen empirically for this
application [26]. The value of the new pixel is
given by an average of the 16 pixels composing the
4.4 × 4.4 km2 window using equation (2):

(2)NDVI =

ρ 2iΣ
i

k

– ρ 1iΣ
i

k

ρ 2iΣ
i

k

+ ρ 1iΣ
i

k

.
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The index i refers to the pixels in the re-sampling
method. Equation (2) is only valid if at least 8 out
of 16 pixels k are cloud free or water free or are not
missing data. Otherwise the window of 16 pixels is
considered to be a single missing value. This selec-
tion method is based on empirical choices of the
MARS project. 

Before or after the NDVI data is calculated at
4.4 × 4.4 km2 pixel level, some options are avail-
able to enhance the information, or to reduce the
noise which is still present:

• Channels re-processing using filtering tech-
niques based on physical environmental charac-
teristics (atmospheric and soil effects). We will
call it ex-ante filtering. Examples in the MARS
project are the GEMI [23] and the SMART algo-
rithm (unpublished data).

• Applications of filtering techniques on the
NDVI are mainly based on empirical assump-
tions and analysis of the final results. We will
call it ex-post filtering. Examples of ex-post fil-
ters are the mvc (Maximum Value Composite)
technique [13], and mathematical smoothing on
curve profiles. Basically these algorithms
depend on parameters defined by the observa-
tion of the raw initial profiles, such as the time
lag of application, and are used empirically. 

Within this experience NDVI profiles were built
by applying a maximum value composite tech-
nique for a ten-day period followed by mathemati-
cal smoothing. Smoothing consisted of a moving
average procedure with lag 3 applied after elimina-
tion of isolated negative picks according to an
empirical distance threshold.

3.1.2. The integration of the CORINE land cover

The two starting data sets consist of:

• MARS SPACE II - NDVI data, with pixel size
of 4.4 × 4.4 km2, averaged as described by equa-
tion (2), reassembled into a mosaic at European
level, in the Albers Equal Area projection
(unpublished data), and to which a ten-day mvc
technique has been applied. 

• CORINE land cover data set release December
1997 EEA (European Environment Agency)
version, scale 1:100 000 (raster version, pixel
size of 100 × 100 m2), Lambert Azimuthal
Equal Area projection.

The approach for the integration consists of cal-
culating the percentage of land cover of each
CORINE class within each new NOAA-AVHRR
pixel of 4.4 × 4.4 km2 (see Fig. 1). This percentage
(pc) is called CORINE incidence for class c. Each
pixel NOAA-AVHRR contains 1936 pixels

Figure 1. Example of incidence of CORINE classes on one pixel re-sampled.
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CORINE of 100 × 100 m2. The class incidence is
obtained by calculation of a simple ratio as shown
by equation (3):

pc = nc /N. (3)

With nc = number of pixels CORINE ∈ class of
interest c and N is the total population of land
cover pixels within each re-sampled NOAA-
AVHRR pixel. It is a fixed number and in our case
N = 1936.

To achieve the objective, CORINE was re-pro-
jected using an Albers geographic reference. Then
the ratio pc of each CORINE class for each
NOAA-AVHRR pixel was computed.

3.1.3. Definition of a weighted average mvcNDVI
profile for the CORINE classes

The definition of the calculation for an average
NDVI for a given CORINE class was made by
area of interest (AoI). In the specific case the AoI
coincides with the regions NUTS level 2
(Nomenclature Unités Territoriales Statistiques),
which are EU regions of the GISCO database
available from the Statistical Office of the
European Commission (EUROSTAT). The choice
of the NUTS level 2 as AoI was steered by the
final objective, which is to get NDVI indicators
related to administrative yield statistics. 

The CORINE incidence pc was used as a base to
obtain a weighted average value of mvcNDVI per
CORINE class. As a consequence of the variability
linked to cloud conditions and more generally to
the image acquisition environment, and to the
dimension of the AoI, not all the set of existing
pixels can be observed or acquired regularly. It
means that in order to obtain an average mvcNDVI
for the AoI the pc cannot always be applied to the
observed pixels just because the pixels can be
missing values. However, the pc can be seen as a
system of weights in the hypothesis that all the
population is observed. A system, which calculates
the weight w of each observed pixel within the AoI
on the basis of the actually available pixels, was
defined as follows.

Given a CORINE class c ∈ C (the set of the all
CORINE classes, which is a partition of the territo-

ry). Given a region r (or Area of Interest, AoI) ∈ R
(the set of all regions, for instance administrative,
which constitute a partition of the territory). Given
a period of the year t ∈ T (the set of periods, which
can constitute a partition of the time, for instance t
can be a ten-day period). 

We define an index j on the givenm 4.4 ×
4.4 km2 available (cloud free) pixels in the image and
belonging to the area r. The ws are then defined as:

(4)

The ws are such that

(a)   0 < wj
c, r, t < 1 ∀ pixel j available ∈ r

(b)

The resulting mvcNDVI weighted average for a
given CORINE class c on the region r, is called
CNDVI (CORINE Normalised Difference
Vegetation Index), and is given by:

(5)

The µ value is here estimated by sampled observa-
tions within the AoI. Thus, using equation (5), the
average true µ value is considered to be an estima-
tion obtained by the CNDVI. 

This estimation can be repeated varying the
CORINE class c, the region r (NUTS2), and for
each ten-day period t of the year. The result is a
CNDVI profile for the fixed parameters. It is
stressed here that, the number of pixels m actually
used within the selected region r, is a function of
the image cloud conditions, and then m is princi-
pally variable at the variation of t . The wsare then
re-calculated for each image acquisition on the
time lag t to guarantee conditions (a) and (b).

CNDVI = µ
c, r, t

= mvcNDVIj
c, r, twj

c, r, t .Σ
j = 1

m

wj
c, r, tΣ

j = 1

m

= 1 .

wj
c, r, t =

pj
c, r, t

pj
c, r, tΣ

j = 1

m
=

nj
c, r, t

nj
c, r, tΣ

j = 1

m
.
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Considerations of the consistency of calculations
and the class representativeness of the points of the
profiles are postponed to further communications.
More details on mwill be given later. 

The methodology described here can be applied
to any country and any land cover available. For
the following steps, specific explanations will be
given for the particular context of this study: at a
first stage all experiments were done on the Iberian
Peninsula with the objective of forecasting yields
of two crops, namely wheat and barley. To achieve
this goal, the CORINE class c studied was the
“non-irrigated arable land” class in which all the
main annual crops are included. Currently other
studies are under way using profiles on other
CORINE classes and other AoI.

3.2. Second step of the methodology: conditions
on pixels and regions 

Over time, production of CNDVI on regions
makes it possible to build profiles, which can be
used to monitor the class-dominant-vegetation con-
ditions to detect possible stresses during the year.
However, a more quantitative use of the informa-
tion is sought here. In order to use profiles with a
better relation to the target agricultural classes, and
decrease the measurement error, two directions
have been tested. The first is a series of conditions
on the pixels, the second is a series of conditions
on the regions (AoI).

3.2.1. Conditions of keeping the pixels

First, conditions on the choice of the pixels
affect the number m of observations used for the
CNDVI estimates. The first parameter to be set is
the angle of view (θ) just after the pre-processing
phase. For the application an angle threshold of ±
30° is chosen to keep information as homogeneous
as possible. This means that only the pixels with an
average angle of view –30°≤ θ ≤ +30° are kept. 

The next parameter t to be set is the time unit for
the composition of the mvc (Maximum Value
Composite) image. The time lag within the experi-
ment was fixed as a unit of 10 days. This is a rea-
sonable period in which to obtain good results

south of the 45° parallel north. In the northern
areas this period could be revised to a larger size.
Holben [13] has shown that the use of this tech-
nique minimises different effects due to variable
atmospheric conditions, view and illumination
geometry. 

In equation (5) the number m, which can be
assumed to be a sample size for the estimate of the
regional NDVI for a given CORINE class, is then a
function of the cloud conditions, the angle of view
and the time of acquisition t:

m= f(cc, θ , t) 
cc= cloud conditions
θ = angle of view
t = time lag of acquisition or period of observation.

We observe that while cc and θ are limiting condi-
tions on the size of m, the bigger t is the more
straightened  the observed sample is. 

Besides, m can also be constrained by other con-
ditions:

m can be fixed according to criteria of sampling
representativeness for the target class and on the
sampling design. In this context it is worthwhile
for the application to know if the number of
hectares for the target class c, in the regions (AoI),
covered by the available m guarantees a certain
theoretical precision and accuracy of the indicator
derived from the CNDVI estimate. Are we really
observing class c pixels sufficiently to have a
sound description of the class c vegetation behav-
iour? This simple and reasonable question involves
many issues such as error measurement, error
propagation and definition of a sampling plan. As a
consequence m could also vary according to the
degree of precision required. At this stage, and
within this experience, the only answer is given by
the good fit of the final forecasting model obtained
as compared to the observed reference official
regional crop yield data. 

Moreover, we have to reflect on the purity of the
signal. Spectrally the NDVI values by 4.4 ×
4.4 km2 pixels are dominated by the main land-
covering class. How much of the NDVI can be
purely related to the target land cover class?
Thresholds on the minimum level of incidence for
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the CORINE class (here referred to as TD, thresh-
old of dominance) can be established a priori per
pixel. Thus, the pixels are included in the sample if
the CORINE incidence (pc) is higher than a certain
threshold (TD). The use of thresholds implies the
inclusion/exclusion in the calculations of many
pixels and so influences the m number of observa-
tions. Within the experience m becomes a 
function of

m= f(cc, θ, t, TD).

TD is normally accepted to be the maximum level
of pc given a minimum level of representativeness.
The level is calculated per region (AoI).
Explanations on the use of thresholds are that indi-
cators can be linked to the degree of concentration
of the target crop in the area. The more a crop cov-
ers an area the more the NDVI value is dominated
by the crop reflectance. In other terms, the more
the crop covers the area of observation, the more it
spectrally dominates the vegetation response. In
the hypothesis of large crop cover this allows a
decrease of TD, thus a higher m. In this situation
TD can also be increased resulting in a lower m but
not necessarily in a degraded estimation of NDVI
as shown later. In this study, different TD were
tested thus CORINE class NDVI profiles were
built for the following thresholds: 5%, 10%, 20%,
30%, 40%.

Figure 2 shows the steps of the methodology.

3.2.2. Conditions of keeping the regions (AoI)

Looking at the relationship between the CNDVI
estimates and the observed regional crop yields,
some further conditions were tested to include or
exclude regions in order to improve model perfor-
mance. 

– Condition 1: all the regions for which a profile
can be built have been retained;

– Condition 2: a region is accepted as AoI if the
crop area represents 10% or more of the arable
land area;

– Condition 3: a region is kept as AoI if the
Utilised Agricultural Area (UAA) is predomi-

nant in the total area and if the arable land area
is predominant in the UAA;

– Condition 4: the region is kept as AoI if the con-
dition 3 is realised and if the crop area repre-
sents strictly more than 10% of the arable land
area.

Figure 2. Flow charts on the average mvcNDVI calculation
by CORINE classes.
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3.3. Third step of the methodology: extraction
of the yield indicators

The indicators extracted from the CORINE class
NDVI profiles to fit statistical models are based on
a hypothesis of crop dominance. The integral of
the profile on different periods of the reckoned
cycle is used. For instance, between the stem elon-
gation and the anthesis period for wheat as sug-
gested by Tucker et al. [21], and between flower-
ing and ripening as suggested by Benedetti and
Rossini [1]. Some studies have also shown that the
maximum value reached as suggested by Cabezon
and Taylor [3] could be used. It has been shown
that the percentage of land cover of the class of
interest could also influence the result [1]. 

In this paper, a case study on Spain is presented.
Simple linear regressions were calculated by test-
ing several periods of CNDVI integrated at region-
al level versus regional crop yield data. Regional
crop yield data for wheat and barley in Spain is
provided by the Spanish Ministry of Agriculture.
For wheat, crop regression analyses were per-
formed in a three year span between 1995 and
1997. For barley, data from 1998 was available and

then regressions were realised for four years
between 1995 and 1998. For wheat crop, six peri-
ods of integration were tested. Therefore, the sum
of CNDVI values was calculated:

– between flowering and ripening (Period of
Integration 1),

– over six decades after reaching the maximum
NDVI (PI 2),

– between shooting and ripening (PI 3),

– between shooting and flowering (PI 4),

– between ear emergence and flowering (PI 5),

– between ear emergence and ripening (PI 6). 

For barley, the phenological calendar available at
JRC only allowed the sum of CNDVI values
between ear emergence and ripening dates. All the
dates of these phenological stages were provided
by K.U. Leuven Research and Development [27].
In the work of Leuven, average cropping calendar
data (sowing and harvesting) and flowering dates
were collected through ground observations and
literature, then using a crop thermal calendar the
other phenological stages were estimated. Tables I
and II show the corresponding dates for both the

Table I. Phenological calendar for wheat.

NUTS2 name NUTS2 Sowing Emergence Tillering Shooting Ear Flowering Ripening
code date date date date emergence date date

date

Galicia ES11 291 305 305 55 106 118 204
P. Asturias ES12 290 303 349 47 99 112 202
Cantabria ES13 290 302 346 46 99 112 203
País Vasco ES21 289 302 345 46 99 112 201
C. Navarra ES22 290 302 348 54 103 114 200
La Rioja ES23 289 300 345 53 101 112 202
Aragón ES24 290 302 350 59 106 117 201
C. Madrid ES3 289 300 339 78 97 109 209
Castillon y León ES41 290 301 309 60 103 114 207
Castilla la Mancha ES42 293 304 332 56 96 107 205
Extremadura ES43 297 309 327 47 93 104 206
Cataluña ES51 291 304 307 71 119 129 201
C. Valenciana ES52 292 305 334 51 101 114 199
Islas Baleares ES53 290 304 349 46 103 116 197
Andalucía ES61 319 332 80 50 85 94 183
Región di Murcia ES62 310 324 184 54 95 105 193
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crops. They are given in Julian days for each AoI
(NUTS2 regions).

4. Results

4.1. Results on the integration of the CORINE
land cover

In order to show the usefulness of the integra-
tion of CORINE land cover data, comparisons
between simple average mvcNDVI profiles and
CORINE integrated profiles have been realised.
Figure 3 represents profiles for average mvcNDVI
and profiles obtained on different CORINE classes
between 1995 and 1998 in Andalucia (Spain). It
shows that CORINE class NDVI profiles present
better dynamics and that clear vegetation cycles
can be recognised when annual crops are present.
In addition, it could be seen that on the Y-axes a
higher variability of the NDVI can possibly be
associated with vegetation conditions. Figure 3
shows for example that the 1995 low data can be

interpreted as low crop performances. In fact we
know from meteorological data that the area during
that period was affected by a severe drought. 

Condition 4 of paragraph 3.2.2. on the AoI was
tested running linear regressions of regional crop
yield data versus sum of CNDVI values between
the flowering and ripening dates and versus aver-
age NDVI on the same regions (AoI). As 
shown, under condition 4, all the regression indica-
tors improve using the CNDVI (see Fig. 4). 
Condition 4 is considered the strictest in terms of
crop presence in the AoI. Under this condition
acceptable results can be obtained without any use
of a land cover. However it is shown here that even
in the most favourable conditions for using NDVI,
the integration of a land cover can improve the
results (an increase of the correlation coefficient is
shown). Nevertheless, it also has to be noticed that
this increase can be not significant. In the example
the coefficient of determination (R2) goes up from
0.751 to 0.884 (increase of 17.7%) while the stan-
dard error goes down to 0.315 t/ha (decrease of
31.7%).

Table II. Phenological calendar for barley.

NUTS2 name NUTS2 Sowing Emergence Asumed end of Ear emergence Ripening
code date date initial stage date date date

Galicia ES11 33 72 109 150 211
P. Asturias ES12 32 65 99 141 206
Cantabria ES13 30 62 96 137 202
País Vasco ES21 34 65 98 138 200
C. Navarra ES22 49 78 108 143 197
La Rioja ES23 40 74 107 144 198
Aragón ES24 53 82 111 145 196
C. Madrid ES3 30 74 109 147 200
Castillon y León ES41 31 70 106 145 201
Castilla la Mancha ES42 35 73 108 145 199
Extremadura ES43 * * * * *
Cataluña ES51 55 88 115 146 195
C. Valenciana ES52 52 80 108 142 196
Islas Baleares ES53 58 81 108 141 195
Andalucía ES61 * * * * *
Región di Murcia ES62 * * * * *

* No data.
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4.2. Results using the four conditions on the AoI

4.2.1. For wheat

As explained before, several conditions to
accept, or not, a region as AoI have been tested.
These conditions are based on indexes (ratios) like
crop area against total arable land area, arable land
area against UAA (Utilised Agricultural Area) and

UAA against total area of the NUTS2 (see 
Sect. 3.2.2.). Simple linear regressions were made
using only two of the six periods of integration to
test these four conditions. The two periods of inte-
gration selected were PI 1 and PI 2. Table III
shows the results. In the table, the number of
observations is given. It is the number of statistical
units (CNDVI indicators on the regions) used in

Figure 3. CORINE class
NDVI profiles for different
classes (CNDVI) compared to
a simply averaged NDVI
(AVERAGE NDVI – no-
cover) for the region of
Andalucia between 1995 and
1998. The NDVI values are re-
scaled with a factor of 200 for
a better legibility.

Figure 4. Regression criteria:
CNDVI vs. observed crop
yields and NDVI (no use of
CORINE) vs. observed crop
yields.
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the regression, taking into account the number of
years and the number of areas of interest retained.
For instance, under condition 1, the 48 observa-
tions used in the regression correspond to the 16
regions NUTS 2 on three years (1995, 1996 and
1997). Table IV shows the acceptance/rejection of
NUTS2 regions under the four conditions. Results
show that whatever the period of integration
retained, the regression criteria are better under the
fourth acceptance/rejection condition. It means that
the results increase when the arable land area is

prevalent against the UAA and when the wheat
area is more than 10% of the total arable land area.
Similar results showing the importance to have a
certain representiveness of the crop of interest in
the area studied have already been obtained by
Benedetti and Rossini [1] in Emilia Romagna
(Italy) on wheat.

4.2.2. For barley

The same type of experiment was realised for
barley. Table IV shows the number of regions

Table III. Results of the simple linear regressions testing the four conditions to accept or reject the areas of interest for
wheat between 1995 and 1997.

Condition 1 Condition 2 Condition 3 Condition 4
PI 1 PI2 PI 1 PI2 PI 1 PI2 PI 1 PI2

Correlation coefficient (R) 0.447 0.422 0.814 0.677 0.787 0.520 0.940 0.838
Determination coefficient (R2) 0.200 0.178 0.662 0.459 0.620 0.270 0.884 0.702
Stand error (t/ha) 1.024 1.037 0.720 0.912 0.572 0.792 0.315 0.506
Number of observations 48 48 27 27 27 27 15 15

Table IV. List of regions NUTS2 (areas of interest) according to the acceptance/rejection conditions of the region for
wheat and barley.

NUTS2 Wheat Barley

Name Code Under condition

1 2 3 4 1 2 3 4

Galicia ES11 1 0 0 0 1 0 0 0 
Principado de Asturias ES12 1 0 0 0 0 0 0 0 
Cantabria ES13 1 0 0 0 1 0 0 0 
País Vasco ES21 1 1 0 0 1 1 0 0 
Comunidad F. Navarra ES22 1 1 1 1 1 1 1 1 
La Rioja ES23 1 1 0 0 1 1 0 0 
Aragón ES24 1 1 1 1 1 1 1 1 
Comunidad de Madrid ES3 1 1 1 1 1 1 1 1 
Castilla y León ES41 1 1 1 1 1 1 1 1 
Castilla la Mancha ES42 1 0 1 0 1 1 1 1 
Extremadura ES43 1 1 1 0 0 0 0 0 
Cataluña ES51 1 1 0 0 1 1 0 0 
Comunidad Valenciana ES52 1 0 0 0 1 1 0 0 
Islas Baleares ES53 1 0 1 0 1 0 1 0 
Andalucía ES61 1 1 1 1 0 0 0 0 
Región de Murcia ES62 1 0 1 0 0 0 0 0 

1 for region accepted and 0 for region rejected.
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retained under each acceptance/rejection condition.
Under condition 1 (where normally all the regions
are kept), the number of regions is different than
for wheat. It is due to the non-presence of barley in
the region of Asturias and to the non-availability of
crop calendar data for the regions of Extremadura,
Andalucia and Murcia. Table V gives results of the
regression analysis. The conclusions are the same
as for wheat: the best regression performances are
obtained under condition 4.

4.3. Results on different indicators extracted
from CNDVI

Simple linear regressions were done to test the
six periods of integration mentioned before (see

Sect. 3.3). Regression analyses were realised under
condition 4 and by using regional wheat yield data.
Results are given in Figure 5. Except for the two
periods ear emergence – flowering and shooting –
flowering, the coefficient of determination (R2)
obtained is higher than 60%. Best results are yield-
ed when the sum of the CNDVI values is made
during the flowering – ripening period. Benedetti
and Rossini [1] and Rossini and Terpessi [18] have
found similar results. This result is not surprising
because in the process of wheat yield formation,
the main substance accumulation in storage organs
is realised between the flowering and the wax
ripeness stages [1].

Table V. Results of the simple linear regressions testing the four conditions to accept or reject the areas of interest for
barley between 1995 and 1998.

Condition 1 Condition 2 Condition 3 Condition 4

Correlation coefficient (R) 0.342 0.727 0.717 0.88
Determination coefficient (R2) 0.117 0.528 0.513 0.775
Stand error (t/ha) 0.967 0.700 0.638 0.416
Number of observations 48 36 24 20

Figure 5. Results of simple lin-
ear regressions by testing dif-
ferent periods of integration.
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4.4. Results using land cover percentage 
thresholds

Finally, the experiment on the land cover class
threshold of dominance (TD) to keep or reject a
pixel j within a region r, was made. 

Comparisons of CNDVI profiles at different TD
for the non-irrigated arable land class were made.
Some examples are given in Figure 6. On the one
hand, whatever the area of interest and the year, a
difference between CNDVI values at different
thresholds can be noticed. On the other hand, a
similar dynamics over time is shown with some
differences in terms of time lag. A mean absolute
difference in percentage between CNDVI values
calculated at different TD and CNDVI values with
no TD was calculated for each year and AoI. As
shown in Figure 7 the difference increases when
TD increases. The difference between CNDVI val-
ues with a threshold of 5% and CNDVI values
without threshold is very low. It is always lower
than 2% except for the region NUTS2 ES53 (Islas
baleares) where the difference is at 2.42% (1995
value). When TD = 40%, then the differences
increase without reaching 14% except for the
region NUTS2 ES52 (Valenciana) with a value of
22.31% in 1995. Table VI sums up the mean
absolute differences between CNDVI values
obtained by using a threshold of 40% and the val-
ues obtained without the use of a threshold. It is
hypothesised that the kind of spatial concentration
of the class of interest (non-irrigated arable land)
within the regions has an effect on the level of
CNDVI. However, this effect is not regular and
further studies are necessary to explain the differ-
ences observed among the regions. The experience
has shown that most of the time, with a high
threshold the resulting profiles of CNDVI are well
separated from those obtained without threshold.
The question now is whether this difference is an
improvement of the profiles: are the profiles better
related to the non-irrigated arable land class? In
other terms, could this difference with a high
threshold lead to a better separation among
CORINE classes? To analyse the effect of a selec-
tion on pixels by using different levels of TD on
the final crop yield forecasts linear regressions

were calculated for each of the respective indica-
tors extracted. The experience was realised for
wheat crop. The sum of the CNDVI values on the
first two periods of integration selected (PI 1 and
PI 2) were used as indicators. The regressions were
performed also crossing the four conditions of
region acceptance. It is shown that in general, inde-
pendently from the threshold retained, the best fit-
tings are obtained when condition 4 for a region is
applied and when the NDVI is integrated between
the flowering and ripening dates (PI 1). Within this
case, the effect of a selection on pixels by using
thresholds of dominance on the CORINE class per-
centage pc has been analysed. Figure 8 shows the
results. A small degradation of the regression per-
formances is shown when the threshold increases,
but it is not significant. In this case, the selection of
a pixel according to its percentage of land cover
does not improve the results.

Nevertheless, if the same type of results is
observed without selection of the regions (condi-
tion 1), that is, in a condition when no further crop
information is available, a different conclusion can
be drawn (see Fig. 9).

Despite the regression, results are worse than 
the ones obtained by adding condition 4 to the

Table VI. Mean absolute differences (%) between
CNDVI values with a threshold of 40% and CNDVI
values without threshold.

NUTS2 name NUTS2 1995 1996 1997
code

País Vasco ES21 8.06 7.89 10.69 
Comunidad F. Navarra ES22 11.06 8.63 8.23 
La Rioja ES23 2.99 3.30 3.74 
Aragón ES24 12.60 10.21 6.88 
Comunidad de Madrid ES3 3.44 3.28 3.70 
Castilla y León ES41 5.48 6.08 5.59 
Castilla la Mancha ES42 5.37 5.22 5.09 
Extremadura ES43 12.97 8.66 7.50 
Cataluña ES51 9.36 7.37 7.07 
Comunidad Valenciana ES52 22.31 11.56 13.34 
Islas Baleares ES53 13.34 6.19 4.03 
Andalucía ES61 8.28 5.33 4.98 
Región de Murcia ES62 3.00 4.03 3.19 



G. Genovese et al.104

Figure 6.Comparison of CNDVI values at different thresholds of dominance for different regions and several years.
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Figure 7. Mean absolute difference (%) per year, between CNDVI values at different thresholds of dominance and CNDVI values
without threshold for different regions.
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experience; an improvement of the results can be
seen when the TD used increases up to 30%. The
coefficient of determination (R2) goes up from
20% to 69.8% and the standard error decreases
from 1.024 to 0.683 t/ha. The role of the selection
on pixels to obtain CNDVI profiles related to the
target vegetation class is shown clearly in this case.
It is likely that the geometric accuracy of the
NOAA-AVHRR data could affect this result. In
fact the choices mentioned in Section 3.1.1. should
reduce this effect but not completely.

As a conclusion we can say that a selection
based on the AoI can get better regression results
than a selection based on TD. However, the first
situation implies further information available on
target crops areas. 

4.5. Crop yield estimations

In order to go for a national forecast, we stress
that we calibrated a model using only the 
significant regions based on the conditions of 
Section 3.2.2.

4.5.1. Wheat yield estimation for the significant
regions

A yield estimation model was obtained through
simple linear regression analysis. Various models
were tested using different sets of
observations/indicators. The one for which the
determination coefficient (R2) and the correlation
coefficient were the highest and the standard error
the lowest was selected as the best predicting one.
The best simple linear regression model combines
1995, 1996 and 1997, under condition 4 and inte-
grate CNDVI profiles between flowering and
ripening (PI 1). Under condition 4, only five AoI
were kept, namely Communidad F. Navarra
(ES22), Aragón (ES24), Communidad di Madrid
(ES3), Castilla y León (ES41) and Andalucia
(ES61). The R2 was 88.4%, the coefficient correla-
tion was 94% and the standard error was 
0.315 t/ha. The model obtained for wheat using the
observed yields in the Spanish regions (NUTS 2
level) is the following:

(6)Y = – 3.26 + 9.36 × 10– 3 CNDVI .Σ
P / 1

Figure 8. CNDVI vs. observed crop yields. Results of regres-
sions by testing different land cover class thresholds under the
condition 4.

Figure 9. CNDVI vs. observed crop yields. Results of regres-
sions by testing different land cover class thresholds under the
condition 1.
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The crop calendar of each region [27], (see 
Sect. 3.3.), was used to sum the CNDVI between
flowering and ripening. The results (see Tabs. VII
and VIII) are quite satisfying except for the region
of Madrid for which in 1996 and in 1998, the per-
centage prediction error is above 30%. In most
cases, there is similarity between official yields
and estimated ones. The 1998 data not included in
the regression, and used to validate the prediction,
also shows good results.

A final comparison of the regional estimated
wheat yields with the official data is given in
Figure 10. The figure shows a good linear relation
between the modelled and the official data with a
determination coefficient reaching 76.5%. As a
first approach we considered the linear relationship
to be a reference. Non-linear relations are to be
taken into account in further studies. 

4.5.2. Wheat yield estimation at a national level

Using the regional estimated wheat yields( ) 
and the regional wheat areas (Sr

d), an estimated
production for all the five kept regions ( ) has

been calculated per year. The regional official sta-
tistics (yields, productions and areas) were provid-
ed by the Spanish Ministry of Agriculture.

(7)

where d represents the year.

Considering that the production of the five AoI
retained to build the simple linear yield estimation
model represents respectively for the four years
73.8%, 75.7%, 75.4% and 70.1% of the Spanish
production, it was possible to estimate a national
production (PN

d) per year. 

(8)

where QR
d corresponds to the ratio between the

wheat production of the kept regions and the total
wheat production of Spain.

Then the national estimated yield ( ) per year
was obtained by dividing the national estimated

YN

d

PN

d
=

PR

d

QR
d

PR

d
= Yr

d
Sr

dΣ
r = 1

5

PR

d

Yr

d

Table VII. Wheat yields estimation at regional level for 1997 and 1998.

NUTS2 1998 1997

Code Name Estimated Y Reported Y Error (%) Estimated Y Reported Y Error (%)

ES22 Navarra 3.36 3.45 –2.55% 3.07 3.34 –8.11%
ES24 Aragon 2.55 2.29 11.56% 2.27 2.12 6.98%
ES3 Madrid 3.73 2.36 58.03% 1.76 1.75 0.37%
ES41 Castilla Leon 4.10 3.61 13.45% 2.30 2.65 –12.97%
ES61 Andalucia 3.15 2.46 27.82% 1.91 1.88 1.31%

Table VIII. Wheat yields estimation at regional level for 1995 and 1996.

NUTS2 1996 1995

Code Name Estimated Y Reported Y Error (%) Estimated Y Reported Y Error (%)

ES22 Navarra 3.35 3.53 –4.83% 3.06 2.98 2.45%
ES24 Aragon 1.94 2.21 –12.14% 1.16 1.20 –3.45%
ES3 Madrid 2.49 1.91 30.42% 1.00 1.05 –4.32%
ES41 Castilla Leon 3.63 3.43 5.99% 2.54 2.04 24.53%
ES61 Andalucia 2.51 3.07 –18.32% 0.83 0.67 24.48%
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production ( ) by the total wheat area (ST
d). The

national official statistics (yields, productions and
areas) were provided by EUROSTAT (CRONOS
database).

Finally, the national predictions ( and )
were compared to the national official statistics.
Table IX shows the results. For 1996 and 1997, the
difference with the official “observed” data is
lower than 6%. For 1995 and 1998, the difference
is higher than 6% but remains lower than 18%.
These results are encouraging for a country like
Spain where the inter-annual wheat yield variabili-
ty, even at national aggregated level, can be very
high (40% in average) and difficult to predict with
low margins of error. This also shows the potential-
ity of the methodology to obtain acceptable nation-
al forecasts in an operational and independent way.
This is confirmed by the 1998 predictions formu-
lated with this approach. Besides, it is shown in
Figure 11 that the annual dynamics of the forecasts
obtained follows the same pattern as the reference
data. 

5. Conclusions and further 
developments

Many advantages and improvements have been
shown by integrating NOAA-AVHRR profiling on
a given land cover in terms of:

• Desaggregation of the average profiles;

• Better discrimination of annual crop cycles;

• Extraction of indicators better related to crop
yield performances, thus good forecasting mod-
els for national crop yield. However, limited
benefit is drawn when the region is already well
covered by the target crop. In that case a region-
al average NDVI with no land cover integration
gives similar results to using the CNDVI tech-
nique.

Further directions of investigation, which can be
further developed starting from these results, is
within pixel signal decomposition studies.

As far as crop yield forecasts are concerned, a
further step to prove the validity of this approach is
to extend the application to other countries, crops
and to more years of observations. Other models

YN

d
PN

d

PN

d

Figure 10. Comparison between regional official
yields and regional estimated yields.
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than simple linear ones are being tested. The expe-
rience is progressing to test multiple linear regres-
sions taking into account several indicators based
on CNDVI, like the integrated CNDVI, the maxi-
mum CNDVI, the decade when the maximum
CNDVI occurs, the regionally averaged rainfall,
the latitude of regions. Indeed, Cabezon and Taylor
[3], Groten [9], Quarmby et al. [17] and Ruddorf
and Batista [19] have shown the usefulness of the
integration of meteorological parameters to
improve the prediction of yields.
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