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Abstract – Nonparametric selective resampling procedures were used to investigate the effect of several factors on the
power of quantative trait loci (QTL) detection, the bias and confidence intervals of their position, effect and heritability.
The factors studied were population size, QTL position, heritability of the QTL and marker coverage, i.e., marker den-
sity and their regular versus random spacing. Confidence intervals obtained using either Normal approximation, the bias
corrected and accelerated (BCa) method and empirical bootstrap with 1 000 selected resamples were compared. The BCa
intervals were found to be very close to classic confidence intervals (CI) assuming normal distribution for sample sizes
above 200, and to be slightly closer to empirical CI for small population sizes. The precision of the QTL position was
found to be mostly affected by population size and heritability, and less by marker spacing, except in the case of sparse
maps with irregular marker spacing. Bias in QTL position estimates can be high for small population sizes when QTL
are located near the end of a chromosome, and, unexpectedly, selective bootstrap does not decrease this bias very much. 

marker regression/ bootstrap / detection power/ QTL heritability / linkage map

Résumé – La puissance et la précision de détection des QTL : études basées sur des méthodes de rééchantillon-
nage sélectif. On a utilisé des méthodes de rééchantillonnage sélectif pour étudier l’effet de plusieurs facteurs sur la puis-
sance de détection des QTL (locus impliqué dans le déterminisme d’un caractère quantitatif), les biais et intervalles de
confiances de leur position, effet et héritabilité (proportion de la variance du caractère expliquée par l’effet additif d’un
QTL). Les facteurs étudiés étaient la taille de la population (haploïdes doublés), la position et l’héritabilité du QTL, la
densité des marqueurs et leur espacement régulier ou au hasard. On a comparé les intervalles de confiance obtenus soit
par l’approximation Normale, soit par la méthode BCa (correction de biais et accélération), soit par bootstrap empirique
avec 1 000 échantillons sélectionnés. Les intervalles obtenus par la méthode BCa sont très proches de ceux obtenus avec
l’approximation Normale pour les tailles de population supérieures à 200, et sont légèrement plus proches des intervalles
empiriques pour les petites populations. La précision de localisation du QTL est surtout affectée par son héritabilité et la
taille de la population, et relativement peu par l’espacement des marqueurs, sauf dans les cas extrêmes de cartes lâches
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1. Introduction

Since the advent of molecular marker linkage
maps, quantitative trait loci or QTL have been
searched for intensively in many crop species dur-
ing the last decade. In addition to better knowledge
of the genetic control of complex traits such as
yield or quality, an improved response to selection
is expected from the use of QTL-associated mark-
ers. Such QTL-marker associations can be used in
two ways. The first is the use of a selection index
including a molecular score, as first proposed [19]
and further investigated [14, 26]. In this case, the
power of QTL detection greatly influences the effi-
ciency of such marker-assisted selection, as does
the proportion of phenotypic variance explained by
the QTL, further referred to as QTL heritability.
The second way of using QTL-related markers in
selection is their direct use as ‘Mendelian’ factors
to be either transferred (e.g., by backcrossing) into
a recipient elite genotype [35] or cumulated in a
single genotype by an appropriate crossing pro-
gramme [1, 4]. For such a use, it is important to
avoid false positives, as a large number of segre-
gating QTL will impede the efficiency of their
transfer using a manageable population size [4],
and to have a good coverage of the confidence
intervals (CI) of QTL by markers to control their
transfer [13].

It stems from these observations that estimates
of detection power, rates of false positive (both
associated with the individual and overall type-I
error rate) and CI for QTL locations, heritabilities
and effects are needed to optimise the use of QTL
in plant breeding. However, most QTL mapping
methods, based either on maximum likelihood [20]
or on regression [12, 16, 24] do not lend them-
selves to a straightforward calculation of a CI for
QTL location, effect or heritability. A widely used

method of CI construction is the so-called LOD
drop-off method [20], where the CI for QTL loca-
tion is calculated by finding the location on either
side of the estimated QTL location that corre-
sponds to a decrease in the LOD score by 1 or 2
units. However, such CI are only valid asymptoti-
cally, and have been shown to be biased down-
wards for small- and medium-sized populations
[23, 27]. For example, for a backcross of 200 indi-
viduals, the empirical probability that the 90% CI
based on the ‘one LOD drop-off’ method contains
the actual QTL location can be as low as 0.74 [23].
Hence this LOD drop-off method is no longer rec-
ommended in practice. Although [23] complex
analytical formulae for CI have been derived for
the case of two flanking markers, most alternative
methods to calculate CI of QTL positions proposed
so far have relied on simulation [7, 23]. Among
them, the bootstrap method [8, 10] has been used
for estimating CI of QTL locations and effects [15,
21, 34]. These authors investigated a wide range of
experimental factors which may affect the width of
CI, including population size, QTL heritability,
QTL position, marker spacing, etc. Hyne et al. [15]
assumed a Gaussian distribution of  empirical dis-
tributions, which may not be correct for a limited
number of bootstrap replicates (200). Alternatively,
Visscher et al. [34] used an empirical CI, i.e., took
the bottom and top 2.5th percentile of the ordered
bootstrap distribution. Again, such a method may
not perform the best, except when the number of
bootstrap replicates is very high.

In this paper, we used the BCa (bias corrected
and accelerated) bootstrap method as proposed by
DiCiccio and Efron [8] in comparison with Normal
approximation and empirical bootstrap to improve
the reliability of CI, and investigated further fac-
tors which would give a better fit for real situa-
tions, particularly that of irregular marker spacing.
Our aim was also to summarise previous results on

avec des marqueurs irrégulièrement espacés. Le biais dans l’estimation de la position d’un QTL peut être important
quand celui-ci est proche de l’extrémité d’un chromosome et, de façon assez inattendue, le rééchantillonnage sélectif ne
permet pas de réduire ce biais.

régression sur les marqueurs/ rééchantillonnage/ puissance de détection/ héritabilité d’un QTL / carte de liai-
son génétique
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detection power, estimation biases and CI length
for QTL position, effect and heritability, and there-
by give practical information to breeders when
planning a QTL experiment.

2. Materials and methods

A linkage group of 160 cM length was generat-
ed with markers regularly spaced every 5 cM,
which is usually considered as a ‘dense’ map,
using the reverse of Haldane mapping function.
The effect of QTL location was investigated by
studying two positions: one near a chromosome
end (2.5 cM), and one far to the extremity  of the
linkage group (52.5 cM), each position being in the
middle of a marker interval, which is the least
favourable position for QTL [35]. The additive
QTL effect was arbitrarily set at a = 1, and a ran-
dom, normally distributed noise with variance σ2

was added to simulate phenotypic values of the
trait, such that the ratio of additive variance
explained by the QTL (a2) on the total phenotypic
variance a2 + σ2 was equal to a specified value
called ‘heritability of the QTL’.

A large population of 10 000 individuals was
generated for each set of parameters studied, then
B resamples of size N were drawn with replace-
ment from this population to generate a bootstrap
distribution. B was not chosen a priori; rather, a
‘while’ loop was used until 1 000 samples had
been selected as having detected one QTL. This is
not exactly the bootstrap procedure as defined in
[10], which consists of resampling with replace-
ment of the whole population observed. However,
the drawback of using a single small population is
that the initially generated set may be biased.
Using a large population avoids this bias.
Moreover, the empirical distribution of a given
parameter obtained in this way is expected to fol-
low bootstrap theory. Consequently, what we have
called a CI in the following does not correspond
exactly to the classical definition of a CI (i.e., an
interval which covers the true value in 95% of
cases), but rather reflects the expected sampling
variation in the outcome of a QTL analysis.

However, we have kept the term confidence inter-
val (CI) for the sake of simplicity.

In each sampled dataset of size N, a single QTL
model was fitted using the marker regression
method described in [16], which provided least-
squares estimates of two parameters: QTL position
and effect. In the standard marker regression
method, each linkage group is scanned from its ori-
gin to its end for the presence of a putative QTL.
This means that the range of the QTL position is
bounded by 0 and chromosome length and F.
Hospital (pers. commun.) suggested that  this could
be a source of bias in QTL position estimate when
the true position is close to a chromosome end.
Therefore, for the case of a telomeric QTL, we
used a modified marker regression programme,
which allowed the scanning of a putative QTL to
start at –50 cM, i.e., ahead of chromosome origin.
A third parameter, QTL heritability, was estimated
as the ratio of the square of the QTL effect on the
phenotypic variance of the sample. Once a boot-
strap distribution is obtained, it is straightforward
to estimate its mean and standard deviation, and
thus a CI can be obtained assuming a Gaussian dis-
tribution of the parameter (normal CI). However, if
the distribution does not fit the Gaussian law, the
true (i.e., ‘hypothesis testing’) CI also deviates
from the normal CI, and its estimation is much
more effort-demanding [8]. Therefore we com-
pared three different confidence intervals: 1) the
normal CI, i.e., mean ± z0 standard deviation, z0
being the p = 0.975 quantile of the normal distribu-
tion; 2) the empirical CI, i.e., the 26th and 975th
values of the ordered distribution; and 3) the BCa
CI proposed by Efron and Tibshirani [10], which
accounts for departure in skewness and kurtosis
from the Gaussian distribution. 

By definition, the BCa endpoint is 
θ Bca = G–1 Φ [b0 + (b0 + zα)/(1 − ac (b0 + zα)],
where G is the cumulative distribution function
(cdf) of the B bootstrap replications, Φ is the stan-
dard normal cdf, and zα is Φ−1(α), b0 is the bias
correction and ac is the acceleration parameter,
which  measures how quickly the standard error is
changing on the normalised scale. The computa-
tion of ac and b0  can be found in [8]. It clearly
appears that if  ac and b0 are zero, then P
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θBca = G–1(α), the 100αth percentile of the boot-
strap replications (see empirical CI). According to
[8], the BCa CI is second-order accurate, i.e., its
precision increases as 1/N, N being the sample
size, while the empirical CI is only first-order
accurate (i.e., errors in matching go to zero at rate
1/(N1/2).

As the  power of QTL detection depends largely
on type-I error α, empirical detection power was
established as the proportion of significant regres-
sion F values out of 1 000 trials. A range of indi-
vidual type-I error risk was explored with N = 200
to achieve a global risk of 5%, as suggested in [5].
Further determinations of empirical detection
power were then carried out at α = 0.001, which
yielded an average rate of false positives of 1−2%.
Confidence intervals of QTL position, QTL effect
and QTL heritability were then computed from the
bootstrap trials which led to significant F values.
This procedure is known as selective bootstrap and
has been recently referred to as “conditioning to
the genetic model” in [21]. The space of the para-
meters studied was defined as follows.

– For a dense, regular map of 25 markers, one
every 5 cM, N ranged from 50 to 1 000, and h2

from 0 (false positive) to 0.3. High heritability val-
ues (0.5, 0.75), such as those expected in narrow
base crosses (e.g., between near isogenic lines used
in fine mapping experiments), were also studied.

− For a sparse, irregular map and a medium-
sized population of N = 200, various proportions
from 100 to 25% of randomly chosen markers
were used, in conjunction with heritability ranging
from 0 to 0.3.

− The case of a regular, sparse map (one marker
every 20 cM) was also considered to allow com-
parison with the sparse, irregular map.

All results are presented graphically, except
those corresponding to very high heritabilities.

3. Results

3.1. Global type-I risk of false positives

The individual threshold for QTL testing was
determined empirically by simulating datasets with

no QTL. It clearly appears that an individual risk
of 0.001 or less is necessary to keep the overall
risk below 5%. As the detection power is positive-
ly related toα, the value of 0.001 appears to be a
good compromise between detection power and the
risk of declaring a false QTL, although it may be
too conservative.

3.2. Detection power at α = 0.001

Figure 1a shows the empirical power observed
in 1000 resamplings at various values of popula-
tion size and QTL heritability for a centrally locat-
ed QTL. A 90% threshold line was drawn. With
very small populations (N = 50), it was exceeded
only for highly heritable QTL (h2 > 0.30), while
very large populations (N = 1 000) allowed the
detection of ‘small’ QTL (h2 = 0.025). With the
range of population sizes currently used, the criti-
cal heritability for which 90% power is obtained
ranges from about 0.04 for N = 400 to 0.13 for 
N = 100. Substantial increases in detection power
can thus be gained by increasing population size.
100 DH lines seems to be a critical limit below
which only very large QTL can be detected, except
by chance only. 

For N = 200, detection power appears to be little
affected by irregular marker spacing, at least for
QTL with moderate heritability (h2 > 0.10), as
shown in Figure 1b.

Similar figures are given for a telomeric QTL in
Figures 1c, d. While the power of detection  of a
telomeric QTL is of the same magnitude as that of
a central QTL for a regular map, it decreases more
rapidly with irregular marker spacing, particularly
in the worst case (one marker picked up at random
out of four). The most likely explanation is that the
detection power should be very low when the only
one marker lying at the left-hand side of the QTL
is not retained in the map.

3.3. Bias and confidence intervals 
for QTL location

Table I summarises the extent of bias in QTL
location, i.e., the difference between the average
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Figure 1. Power of QTL detection as a function of population size (N) and QTL heritability: a: for a centrally-located QTL and a
dense, regular map; b: for a centrally-located QTL, N = 200 and uneven marker spacing (100, 75, 50 or 25% of the markers of the
dense map randomly sampled); c: for a near telomeric-located QTL and a dense, regular map; d: for a near telomeric-located QTL,
N = 200 and uneven marker spacing.
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position estimate over 1 000 samples with a dense,
regular map, and the true (generated) QTL loca-
tion. While this can be neglected for a centrally
located QTL (52.5 cM), except for very low heri-
tability, it may be as high as 40 cM for a telomeric
QTL (2.5 cM). This bias increases as heritability
and population size decrease (e.g., a bias of 10 cM
towards the chromosome centre is found for
N = 100 and h2 = 0.10). When negative position is
allowed for putative QTL, the bias in location esti-
mate is strongly reduced and becomes more
acceptable for h2 ≥ 0.10. The counterpart is a nega-
tive bias for small sample sizes and high heritabili-
ties.

Tables II and III compare the 95% CI obtained
with the three methods, namely empirical, normal
approximation and BCa-bootstrap, for a range of h2

values and N = 200, for a centrally- and terminally-
located QTL, respectively. Clearly, the normal CI
is not appropriate for a telomeric QTL, as it leads
to strongly negative lower bounds. The results of
BCa and empirical bootstrap are very similar. The
BCa method allows for asymmetric CI, which is
not the case for normal CI, and it is less sensitive
than empirical bootstrap to the effect of discrete

scanning of linkage groups (every 1 cM). Although
this asymmetry is not very marked, it may be more
pronounced when the QTL is located towards the
chromosome end [15], and therefore empirical or
BCa CI will be more accurate in any case.

The lengths of the 95% CI obtained from 1000
BCa bootstraps for a centrally located QTL are
shown in Figure 2a. Threshold lines are drawn at
20 and 30 cM on the graph. It clearly appears that
populations of limited size (N < 100) do not allow
accurate estimation of QTL location, even for
those that are highly heritable. Medium-sized pop-
ulations (N = 200) make it possible to locate a
QTL of intermediate heritability (0.10−0.15) with-
in about 30 cM. This length is still rather large for
QTL pyramiding through marker-assisted selec-
tion, as the probability of recombination between
markers and QTL makes it necessary to use large
populations to be able to manipulate several QTL
at a time [4]. Reasonably narrow CI for QTL pyra-
miding can be obtained with N = 400 for interme-
diate heritability and for N = 1 000 (a very large
population with current marker technology) for
low heritability. However, even with large popula-
tions and high heritabilities such as those obtained

Table I. Bias in QTL position estimates, i.e., the difference between the average estimate over 1000 samples and the
true position for a range of population sizes and QTL heritabilities. Values in italics in the second row are those
obtained when negative estimates (up to –50 cM) are allowed.

QTL position   L = 2.5     L = 52.5    
N 50 100 200 400 1000 50 100 200 400 1000  

h2 = 0.025 47.82 38.68 26.75 12.13 6.17 12.10 7.77 –0.24 –1.64 –1.12 
28.44 21.65 12.98 4.56

h2 = 0.05 40.95 26.68 13.14 5.17 1.73 3.55 2.38 0.76 –0.19 0.74 
18.02 15.46 8.80 

h2 = 0.10 25.08 12.12 5.18 2.10 0.89 1.57 2.81 1.49 0.98 0.79
4.40 2.67 0.59 

h2 = 0.15 13.28 6.17 2.51 0.21 –0.62 –0.58 0.02 –0.24 –0.70 –0.69 
3.65 –0.82 

h2 = 0.20 14.48 5.84 1.87 1.93 –0.07 0.90 0.21 0.09 0.12 0.08  
–1.77 –0.57 –1.08 

h2 = 0.25 8.59 2.62 1.07 0.69 0.27 –0.45 –0.68 –0.51 –0.36 –0.52 
–4.32 –2.77 

h2 = 0.30 6.30 3.58 0.45 0.13 –0.28 0.14 0.46 –0.05 –0.10 0.02 
–6.19 –5.44 
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Table II. Comparison of different CI obtained for a ‘centrally’ located QTL (L = 52.5) from 1 000 resamples with
N = 200 and various QTL heritabilities: lower and upper bounds (in brackets) and CI length (in italics), for normal
approximation, bias correction and acceleration (BCa), and empirical distribution.

N = 200 Bootstrap mean Normal BCa Empirical  

h2 = 0.75 52.54 47.46–57.62 47.30–57.46 47–58
10.16 10.16 11

h2 = 0.50 52.36 46.19–58.53 46.44–58.79 46–58
12.34 12.35 12

h2 = 0.30 52.44 43.48–61.40 43.76–61.68 44–62
17.92 17.92 18

h2 = 0.25 52.46 41.90–62.07 41.04–61.18 43–63
20.17 20.14 20

h2 = 0.20 52.58 41.97–63.20 41.72–62.94 42–63
21.23 21.22 21

h2 = 0.15 52.28 39.95–64.57 40.89–65.53 40–64
24.62 24.64 24

h2 = 0.10 53.94 35.65–72.33 36.06–72.74 36–73
36.68 36.68 47

h2 = 0.05 53.25 22.87–83.64 27.31–88.22 22–86
60.77 60.91 64

h2 = 0.025 54.90 3.27–106.54 12.16–115.96 0–120
103.27 103.80 120

Table III. Comparison of different CI obtained for a QTL located near a chromosome end (L = 2.5) from 1 000 resam-
ples with N = 200 and various QTL heritabilities: lower and upper bounds (in brackets) and CI length (in italics), for
normal approximation, BCa, and empirical distribution. Location values in italics on the second line are those obtained
when negative estimates (up to –50 cM) are allowed.

N = 200 Bootstrap mean Normal BCa Empirical  

h2 = 0.75 3.21 –1.87–8.30 0.06–10.30 0–8
(2.11) 10.17 10.35 8

h2 = 0.50 3.18 –2.64–9.01 –0.30–11.44 0–11
(1.09) 11.65 11.74 11

h2 = 0.30 4.66 –3.63–14.85 –0.86–17.66 0–17
(1.55) 18.38 18.52 17

h2 = 0.25 4.26 –5.54–14.06 –1.32–18.47 0–19
(1.57) 19.60 19.79 19

h2 = 0.20 5.38 –5.78–16.53 –3.21–19.21 0–22
(1.42) 22.31 22.42 22

h2 = 0.15 5.23 –12.03–20.49 –2.50–31.36 0–32
(0.68) 32.52 33.86 32

h2 = 0.10 7.68 –17.17–32.53 –3.45–47.29 0–43
(3.09) 49.70 50.753 43

h2 = 0.05 15.66 –40.34–71.66 –2.91–112.27 0–115
(11.30) 112.0 115.18 115  

h2 = 0.025 29.25 –43.74–102.24 –11.11–109.54 0–139
(15.48) 145.98 120.65 139
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Figure 2. Length of CI by BCa bootstrap for QTL position as a function of population size and QTL heritability: a: for a centrally-
located QTL and a dense, regular map; b: for a centrally-located QTL, N = 200 and uneven marker spacing; c: for a near telomeric-
located QTL and a dense, regular map; d: for a near telomeric-located QTL, N = 200 and uneven marker spacing.
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in fine mapping designs, the accuracy of QTL
location is far from the 1 cM precision required for
chromosome walking and gene cloning (about
10 cM for h2 = 0.75 and N = 1 000).

Figure 2b shows that the accuracy of the QTL
position is little affected by irregular or wide mark-
er spacing, except for the poorest case (an irregular
map with an average interval length of 20 cM).
However, at intermediate heritabilities, a substan-
tial gain in detection power can be obtained by
using a dense map (e.g., for h2 = 0.10, p = 0.82
with a sparse map, 0.95 with a dense map).

Results for a telomeric QTL are given in Figures
2c, d. Regarding detection power, the CI of the
position of a telomeric QTL is more affected than
that of a central QTL by a very irregular spacing of
markers.

3.4. CI of QTL effect and heritability

The main feature to be noticed in Figure 3 is that
the accuracy of QTL effect estimates is very poor
for QTL with low heritability, and decreases only
slowly with increasing heritability: a CI width of
0.5 (for a simulated additive effect of 1) is reached
only for a QTL heritability of > 0.15 with N = 400.
The consequence is that prediction of genetic gain
by cumulating favourable QTL alleles will be very
inaccurate. Again, the effect of irregular marker
spacing is very small, unless markers are very
sparse (Fig. 3b, d).

The same remarks can be made for QTL heri-
tability CI, shown in Figure 4a and c for a central-
ly-located and a telomeric QTL, respectively.
Indeed, heritability has been estimated as the ratio
of the square of the additive effect on the pheno-
typic variance. Its accuracy is thus expected to be
poorer than that of the QTL effect, as both the
numerator (its variance being four times that of the
QTL effect) and the denominator are subjected to
sampling errors. A lower CI bound of zero means
that the experiment lacks power. It should be
noticed that very high estimates of QTL heritabili-
ty can be highly overestimated in small samples
(N < 200), even for a simulated QTL with moder-
ate heritability. Moreover, Figures 4b and d clearly

show that heritability estimates are biased upwards
for low heritabilities and small sample sizes. This
must remind us that ‘big’ QTL obtained in real
experiments with low- or medium-sized popula-
tions should be treated with caution, and validated
in a separate experiment as often as possible. There
are very small difference in CI estimates among
regularly and irregularly spaced marker maps,
except for very sparse ones (results not shown).

4. Discussion and conclusion

The power and accuracy of QTL detection have
been investigated in several studies, either analyti-
cally or by means of simulations. The theoretical
aspects of the use of analysis of variance
(ANOVA) to detect linkages between marker locus
and QTL have been reported [2, 11, 17, 18, 30−
33]. These studies were based on the use of single
markers, and thus the recombination rate between
marker and QTL has to be taken into account,
either explicitly [30], or implicitly [11]. More
recently, it has been shown that initial theoretical
computations based on ANOVA markedly underes-
timated detection power [3], because expectations
of mean squares were wrong. The correction pro-
posed fitted previous results based on simulation
much better. The detection power of interval map-
ping methods, such as that proposed in [20], has
been investigated by means of simulation [2, 27].
Rebai et al. [29] showed that interval mapping
methods are only slightly more powerful than one-
way ANOVA, at least for intervals < 30 cM.

Confidence intervals for QTL location and effect
have been mostly explored through simulation
studies. Mangin et al. [23] proposed an analytical
method for constructing an unbiased CI of the
location parameter, estimated by the maximum
likelihood method. However, the difficulty of their
method lies in the computation of the correct
threshold for the maximum likelihood ratio test.
Mangin and Goffinet [22] worked further on this
method and proposed an approximation for the
threshold. They also carried out a simulation to
compare the length of their asymptotically similar P
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Figure 3. Length of CI by BCa bootstrap for QTL effect as a function of population size and QTL heritability: a: for a centrally-
located QTL and a dense, regular map; b: for a centrally-located QTL, N = 200 and uneven marker spacing; c: for a near telomeric-
located QTL and a dense, regular map; d: for a near telomeric-located QTL, N = 200 and uneven marker spacing.
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Figure 4. Lower and upper bound and average bias of QTL heritability estimate as a function of population size and QTL heritabili-
ty: a: CI for a centrally-located QTL and a dense, regular map; b: bias for a centrally-located QTL and a dense, regular map; c: CI
for a near telomeric-located QTL and a dense, regular map; d: bias for a near telomeric-located QTL and a dense, regular map.
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CI to that of an empirical symmetrical one which
had been previously proposed [7], and found that
their CI could be half the length of the symmetrical
one, particularly when detection power is low.
Alternatively, bootstrap has been proposed [21, 34]
as an intuitively  simpler method, although requir-
ing computer time. In a more recent study [36],
several bootstrap procedures to construct CI in
QTL mapping have been compared: the non-para-
metric method, as used in this study, was found to
produce results close to expectation, while the
parametric method performed poorly.

However, none of these studies considered the
same type of progenies, and this makes the com-
parison of results difficult. Let us consider the pro-
portion of phenotypic variance explained by a
QTL, often called heritability of the QTL, which is
appropriate when only an additive effect is
assumed. For a given value of additive effect of
allele substitution, a, and assuming no dominance
effect, the heritability of the QTL is a2/σp

2 (σp
2 =

σe
2 + a2) in a DH population, a2/2σp

2 (σp
2 = σe

2 +
a2/2) in an F2 population and a2/4σp

2 (σp
2 = σe

2 +
a2/4) in a BC population, where σp

2 is the pheno-
typic variance and σe

2 is the phenotypic variance
not explained by the QTL. If the QTL under study
was the only one affecting the trait, then σe

2 is the
true non-genetic variance. Only in this case, and
for a2 small compared to σe

2, the heritability of the
QTL is twice as high in an F2 population as in a
BC population, and four times as high in a DH
population, and one could conclude that an F2 pop-
ulation is roughly twice as powerful and a DH pop-
ulation nearly four times as powerful for detecting
a certain QTL as a BC population. However, these
two-fold (F2) or four-fold (DH) genetic variances
hold for other QTL as well (if there is more than
one QTL) [27]. Therefore, the phenotypic variance
not explained by the QTL considered also increas-
es substantially, even if the true non-genetic vari-
ance remains the same. Hence, the fraction of the
variance explained by a given QTL in an F2 will
be less than two-fold, and that of a DH population
less than four-fold this fraction in a BC population.

Thus, comparison of simulation results is very
dependent on the parameters used in the simula-
tions. For example, Carbonell et al. [2] simulated
BC and DH populations of 250 individuals with six
QTLs having various heritabilities. With these
parameters for doubled haploids, they  found a
detection power of about 90% for QTL heritabili-
ties as low as 0.05, while to obtain a similar power
for backcrosses the heritability attributable to an
individual QTL should be around 14%. 

Moreover, this heritability attributable to an
individual QTL may not be the appropriate para-
meter to be used in comparing results from the lit-
erature. Recently Dupuis and Siegmund [9] gave
precise theoretical results to compare powers of
QTL detection and lengths of CI for a dense map.
Their formulae involve a non-centrality parameter,
i.e., ξ = {N ln (1 + a2/σe

2)} 1/2 for doubled haploids
and ξ = {N ln (1 + a2/4σe

2)} 1/2 for backcrosses. So
it could be suggested that results for DH should be
compared with those for BC using these  parameter
functions instead of the fraction of the total vari-
ance explained by the QTL. However, it is often
not possible to estimate this non-centrality parame-
ter from published data. Therefore, we will restrict
the comparison of our results to those obtained
with simulated DH populations. We have deliber-
ately chosen this type of progeny, which has
become a favourite material in genetic studies,
since it can be produced quickly in a range of crops
and provide ‘fixed’ genotypes, which are suited for
replicated trials.

The study in [15] compared the accuracy of
QTL detection in both F2 and DH populations, and
is the only work which used the marker regression
approach [16], as in the present study. As expected,
the results of Hyne et al., based on normal distribu-
tion assumptions and only 100 resamplings, are
very similar to ours for a centrally-located QTL.
However, we have simulated a wider range of con-
ditions, particularly for population size, and cannot
fully agree with their conclusions. Although there
is little increase in accuracy from using 150 instead
of 100 DH lines, as stated in [15], we report that
significant improvement in accuracy could be
gained by using, for example, N = 400 instead of
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N = 100 to allow practical manipulation of QTL.
Hyne et al. [15] also compared a dense (every
5 cM) versus sparse (every 20 cM) marker map,
and found that both results were in good agree-
ment. They also compared CI obtained by assum-
ing fixed marker position (i.e., known without
error) to those obtained by re-estimating marker
position in each simulated dataset, and found few
differences. We also carried out this comparison
and can confirm their conclusion. Moreover, the
observed trend is that slightly larger CI are
obtained when using re-estimated marker posi-
tions. Last but not least, Hyne et al. [15] also stud-
ied the case in which a QTL is located near a chro-
mosome end. They found a considerable bias in
mean location estimates towards the middle of the
chromosome, ranging from 4 cM for h2 = 0.10 to
up to 20 cM for h2 = 0.02, for a population size of
300 F2 (or 150 DH) in both cases. This bias
towards the centre is caused, according to Walling
et al. [36] and Xu [37], by the detection of false
positives uniformly distributed along the chromo-
some. Hyne et al. [15] considered all simulated
subsets, whether or not the QTL was significant.
One  therefore expects that this bias should disap-
pear by using selective bootstrap, i.e., using only
those subsets where a significant QTL has been
detected for constructing CI [21]. Results with a
simulated QTL at 2.5 cM from the end shows that
the bias still exists, although we performed selec-
tive bootstrap, and that it increases when the QTL
effect is small, thus confirming the results of Hyne
et al. [15]. Again this bias is not reduced, but rather
further increased when using re-estimated marker
position based on the samples instead of their
‘true’ locations. A possible explanation may be
that selective bootstrap is not stringent enough, and
that many false-positive QTL, randomly distrib-
uted, do escape the selection step when using small
populations. More recently, Walling et al. [36]
reported that the bias of position in QTL mapping
varied within a marker interval, being positive in
the middle and negative at the marker position, and
noted the relative inefficiency of selective boot-
strap in correcting this bias. Alternatively, allowing
negative estimates of  QTL locations led to a
strong reduction of bias. Obviously, on simulated

data, we know that negative estimates are unrealis-
tic, and therefore we did not consider this possibili-
ty in a first step. But on real data it is rarely known
whether the terminal markers are truly on telom-
eres, and the possibility of putative QTL outside
the covered linkage group must be considered.

Most of the previous studies considered a regu-
lar, dense genetic map with one marker every 5 or
10 cM. Rebai et al. [29] tested a range of marker
intervals, and found a loss in power of about 15%
between d = 0 and d = 40 cM. We found a similar
result (Fig. 1b). However, with specific heritability
corresponding to the inflexion point of the power
curve, the reduction in power may be greater, as
observed from 1 000 simulations for h2 = 0.05 and
N = 200 (p = 0.616 for d = 5 cM and p = 0.44 for
d = 20 cM). The effect of irregular marker spacing,
which had never been reported before, is very low
(e.g., for h2 = 0.05 and N = 200 and for an average
spacing of 20 cM, p = 0.424 for random distribu-
tion of markers, versus p = 0.444 for regular spac-
ing). 

The results of our simulations largely confirmed
previously published results. Some of the discrep-
ancies might be due to the use of different methods
for QTL detection and mapping. Indeed, most
methods are based on maximum likelihood and
LOD scores, while we used linear regression
because it is straightforward to programme and
fast-running. However, Kearsey and Hyne [16]
have shown that the estimates of QTL location and
effect by marker regression are consistent and as
reliable as those given by conventional interval
mapping methods. It is therefore unlikely that our
results would have been changed significantly by
using another QTL analysis method. Population
size and QTL heritability are the main factors
affecting detection power, which could therefore
be improved by reducing the residual variance.
This can be achieved by controlling environmental
variation by means of replications, or by control-
ling genetic variation caused by other QTL. Gallais
and Rives [11] have already stressed this increase
in detection power of small QTL when including
previously detected larger QTL in the model.
Another main feature is the relative inaccuracy of
estimates of QTL location and effect, which can be P
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expected from current-sized experiments. This lack
of power and accuracy has also been reported in
real QTL analysis in maize [25]. Probably, for a
preliminary scan of a segregant population, it
would be more appropriate to use the term ‘QT
regions’, rather than ‘QT loci’. As already men-
tioned by Hyne et al. [15], there is little to be
gained in accuracy by using a dense versus a
sparse genetic map. Our results, obtained in a more
realistic way (i.e., non-constant marker spacing),
are very similar and show that an optimum average
marker spacing could be estimated, depending on
the relative costs of genotyping and trait evalua-
tion, as suggested by Darvasi and Soller [6]. As a
concluding remark, it should be stressed that even
for highly heritable QTL, the CI for location
should never fall below 1 cM, a threshold com-
monly proposed to achieve positional gene
cloning. Other strategies such as fine mapping
based on near isogenic lines [28] or the use of gene
homology with fully sequenced model genomes
should be preferred. However, QTL identified in
medium-sized populations (N = 200−400) could be
manipulated as statistical objects [1, 4]. The CI of
interactive QTL will be dealt with in a subsequent
paper.
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