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Abstract
• The performance of ten commonly used taper equations for predicting both stem form and vol-
ume in balsam fir [Abies balsamea (L.) Mill], red spruce[Picea rubens (Sarg.)], and white pine[Pinus
strobus (L.)] in the Acadian Region of North America was investigated.
• Results show that the Kozak (2004) and Bi (2000) equations were superior to the other equations
in predicting diameter inside bark for red spruce and white pine, while the Valentine and Gregoire
(2001) equation performed slightly better for balsam fir.
• For stem volume, the Clark et al. (1991) equation provided the best predictions across all species
when upper stem diameter measurements were available, while the Kozak (2004) and compatible
taper equation of Fang et al. (2000) performed well when those measurements were unavailable.
• The incorporation of crown variables substantially improved stem volume predictions (mean abso-
lute bias reduction of 7–15%; root mean square error reduction of 10–15%) for all three species, but
had little impact on stem form predictions.
• The best taper equation reduced the predicted root mean square error by 16, 39, and 45% compared
to estimates from the widely used Honer (1965) regional stem volume equations for balsam fir, red
spruce, and white pine, respectively.
• When multiple taper equations exist for a certain species, the use of the geometric mean of all
predictions is an attractive alternative to selecting the “best” equation.

Mots-clés :
sapin baumier /
épinette rouge /
pin Weymouth /
effets mixtes non linéaires /
variables de la couronne

Résumé – Comparaison de formules modèles pour estimer la décroissance de la tige et le vo-
lume des principales espèces de conifères dans la région de l’Acadie en Amérique du Nord.
• Les performances de dix équations de la décroissance de la tige, couramment utilisées pour prédire
à la fois la forme du tronc et le volume pour le sapin baumier [Abies balsamea (L.) Mill], l’Épinette
rouge [Picea rubens (Sarg.)], et le pin Weymouth [Pinus strobus (L.)] ont été étudiées dans la région
de l’Acadie en Amérique du Nord.
• Les résultats montrent que les équations de Kozak (2004) et de Bi (2000) étaient supérieures aux
autres équations pour la prédiction du diamètre sous écorce pour l’épinette rouge et le pin Weymouth,
tandis que l’équation de Valentine et Gregoire (2001) était légèrement meilleure pour la forme du
tronc du sapin baumier.
• Pour le volume de la tige, l’équation de Clark et al. (1991) fourni les meilleures prévisions pour
toutes les espèces lorsque les mesures du diamètre de la partie supérieure de la tige étaient dispo-
nibles, tandis que l’équation de Kozak (2004) et l’équation compatible de défilement de Fang et al.
(2000) conviennent bien lorsque ces mesures n’étaient pas disponibles.
• L’incorporation de variables de couronne a amélioré sensiblement les prédictions du volume des
troncs (réduction moyenne des biais absolu de 7–15 % ; réduction de l’erreur quadratique moyenne
de 10–15 %) pour les trois espèces, mais avait peu d’impact sur les prédictions de la forme du tronc.
• La meilleure équation de décroissance a réduit l’estimation de l’erreur quadratique moyenne de 16,
39, et 45 % par rapport aux estimations largement utilisées avec les équations régionales d’Honer
(1965) pour l’estimation du volume de la tige respectivement pour le sapin baumier, l’épinette rouge
et le pin Weymouth.
• Lorsque plusieurs équations de défilement existent pour certaines espèces, l’utilisation de la
moyenne géométrique de toutes les prédictions est une alternative intéressante pour la sélection de la
“meilleure” équation.
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1. INTRODUCTION

Taper equations provide diameter inside (dib) or outside
bark (dob) estimates at any given height along a tree bole
(Clutter et al., 1983). The ability of taper equations to estimate
total and merchantable stem volume has long been a subject
in the forestry literature. The advantage of estimating volume
through taper equations over existing volume tables lies in the
ability of taper equations to accurately predict the dob or dib
at any given height of individual trees, hence allowing the ac-
quisition of merchantable volume information to any desired
specification.

Numerous taper model forms have been presented in the
forestry literature over the past several decades. A very com-
mon approach in modeling the shape of a tree bole is to divide
a tree into several sections, with each section corresponding
to a regression function depicting stem diameter changes with
increasing tree height. For example, Max and Burkhart (1976)
proposed a segmented polynomial model that uses two joining
points to link three stem sections along the bole: the lower sec-
tion corresponding to a neiloid shape, the upper section corre-
sponding to a conic shape, and the middle section correspond-
ing to a parabolic shape. This idea has been widely accepted
and used in many taper applications (Clark et al., 1991; Jiang
et al., 2007; Leites and Robinson, 2004; Maguire and Batista,
1996). Kozak (Kozak 1988; 2004) and other researchers later
introduced variable-exponent or variable-form taper equations
which uses a changing exponent or a changing form to con-
tinuously describe the shape of a bole from the ground to the
top, exhibiting more flexibility. Other types of taper equations
can also be found in the literature such as polynomial (Kozak
et al., 1969), trigonometric (Thomas and Parresol, 1991), and
nonparametric (Lappi, 2006) approaches.

A well behaved taper equation should not only give unbi-
ased estimates of dib or dob with a minimum variance, but also
have flexibility to adapt to a wide variety of species and give
accurate predictions of stem volume (Kozak and Smith, 1993).
Most published taper equations were developed for a certain
species and often their performance is compared to a limited
number of alternative model forms. Therefore, it is necessary
and beneficial to further study the characteristics of taper pro-
file equations and extend their use to other species besides the
ones for which they were originally developed. For example,
Rojo et al. (2005) compared 31 different model forms on mar-
itime pine [Pinus pinaster Ait.] in Spain and found variable-
form taper functions provided the most accurate predictions of
dob, particularly the Kozak (2004) equation. However, Rojo
et al. (2005) did not compare the taper equations’ performance
in predicting stem volume. Recent work by Diéguez-Aranda
et al. (2006) and Corral-Rivas et al. (2007) have found that
compatible taper equations such as the one suggested by Fang
et al. (2000) work well for predicting both stem form and vol-
ume. Our study seeks to test whether these results hold across
multiple species of varying shade tolerance levels and stand
conditions.

The crown of a tree strongly influences its stem form
because foliage provides carbohydrates for the tree growth

and their vertical distribution influences stem formation
(Larson, 1963). Crown size also determines the growth pat-
tern along the stem as it influences the degree of wind pres-
sure on the tree. However, there is no unified agreement on
whether crown dimensions should be incorporated into taper
equations as previous studies have shown mixed results on
the benefits of adding crown variables in the taper models.
Muhairwe et al. (1994) reported that the addition of crown
ratio variable improved the fit and predictive abilities in the
Kozak (1988) taper equation for lodgepole pine [Pinus con-
torta Dougl. ex. Loud], but found no improvement for several
other species including aspen [Populus tremula (L.)], west-
ern redcedar [Thuja plicata Donn ex. D. Don] and Douglas-
fir [Pseudotsuga menziesii (Mirb.) Franco]. Muhairwe et al.
(1994) also tested if an indicator variable for crown class im-
proved the taper model and found no improvement for any
of their 4 studied species. Leites and Robinson (2004) found
a significant relationship between crown length, crown ratio,
and the estimated random effects for the parameters in the Max
and Burkhart (1976) taper equation for loblolly pine [Pinus
taeda (L.)]. Jiang et al. (2005) also found that the addition of
crown ratio as a predictor variable provided modest improve-
ments for yellow-poplar [Liriodendron tulipifera (L.)], while
Burkhart and Walton (1985) found no strong relationship be-
tween crown ratio and improved predictions for loblolly pine
trees in unthinned stands. In our analysis, we attempt to de-
termine if crown dimensions can improve predictions of both
diameter and volume for several conifer species across a wide
range of tree sizes and stand conditions.

In the Acadian Region of North America, which includes
eastern Maine and part of eastern Canada, balsam fir [Abies
balsamea (L.)], red spruce [Picea rubens Sarg.], and eastern
white pine [Pinus strobus (L.)] are the three primary conifer
species as they currently comprise over 30% of the net growth
in Maine (McWilliams et al., 2005). However, a widely used
regional taper equation does not currently exist and the Honer
(1965) volume equations developed over four decades ago
are still the most common tool used for estimating volume
(Zakrzewski, 1999). Pitt and Lanteigne (2008) indicated that
Honer (1965) volume equation tended to underestimate stem
volume by over 11% on average and the bias increased with
tree size for balsam fir, particularly in thinned stands. Recently,
Weiskittel et al. (2009) found a similar level of bias in the
Honer (1965) volume equation as well as several other addi-
tional volume equations available in the region for both balsam
fir and red spruce.

The goal of this analysis was to develop stem taper equa-
tions for balsam fir, red spruce, and white pine in the Acadian
Region. Specific objectives were to: (1) use mixed-effects to
assess the amount of within- and between-tree variation in
stem profiles; (2) evaluate ten widely used stem taper pro-
file models for predicting both dib and total stem volume;
and (3) assess the level of improvement across a range of
species in dib and stem volume predictions with the incorpo-
ration of additional crown variables.
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Table I. Summary of tree attributes for balsam fir, red spruce, and white pine.

Balsam fir Red spruce White pine
D (cm) H (m) HCB (cm) D (cm) H (m) HCB (cm) D (cm) H (m) HCB (cm)

Mean 14.9 13.4 6.9 15.1 12.9 7.5 30.1 20.2 10.5
Max 39.8 25.2 14.8 42.8 23.5 15.6 83.4 37.2 27.0
Min 4.8 6.4 0.3 4.4 5.9 0.2 5.7 6.1 0.9
Std. 5.7 3.3 2.6 6.2 3.2 2.6 13.9 6.6 4.7

D: Diameter outside bark at breast height. H: Total tree height. HCB: Height to live crown base.

Figure 1. Scatter plots of the relative diameter (diameter inside bark/diameter inside bark at breast height) over relative height (stem height/total
height) for species of balsam fir, red spruce, and white pine.

2. METHODS

2.1. Data

Stem analysis data were obtained from a variety of
sources. For both balsam fir and red spruce, the stem data
were gathered from Honer (1965), Vicary et al. (1984),
Gilmore and Seymour (1996), Maguire et al. (1998), Phillips
(2002), and Meyer (2005). Stem analysis data for white pine
originated from Honer (1965) and Pace (2003). In total, there
were 990 balsam fir, 1 086 red spruce, and 949 white pine trees
available for this analysis (Tab. I, Figs. 1, 2). A variety of sam-
pling schemes were used in these studies and are briefly sum-
marized below.

The Honer (1965) data were originally gathered for the con-
struction of regional form-class volume tables for the Ontario
Department of Lands and Forests. The trees were sampled in
various sites throughout central and eastern Canada. The indi-
vidual tree measurements were taken at stump, breast height,

and every 1/10 section above breast height. Both dib and dob
as well as total tree height and height to live crown base were
recorded. The dataset covered a wide range of stand types and
ages.

The Vicary et al. (1984) data were originally collected be-
tween 1970 and 1977. Stands were located throughout east-
ern, northern, and western Maine. Most trees were younger
than 50 years old at breast height and from even-aged spruce-
fir stands. The trees were felled and taper data were taken at
stump height, breast height, and every 1.22 m (4 ft) above
breast height with dib and dob measured at each section. The
trees were systematically sampled to cover the range of diame-
ters within a stand with emphasis on dominant and codominant
individuals. Height to live crown base was recorded for most
of the trees.

The Meyer (2005) data were collected during the sum-
mer of 2002 from 12 permanent research installations scat-
tered throughout northeastern Maine. The trees were from
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Figure 2. Bean plots for diameter inside bark balsam fir, red spruce,
and white pine. The dotted line is the mean dib across species, while
the black solid line is the mean for each individual species. The length
of white horizontal bars represent the number of observations for a
certain dib.

unthinned, even-aged stands of the spruce-fir forest type that
were ready for either a precommercial or commercial thinning
entry. Trees were taken from a variety of crown classes and
DBH ranged from 4.9 to 34.3 cm. The trees were felled and
dib and dob measurements were made at stump height, breast
height, and every 1 m above breast height.

Gilmore and Seymour (1996) and Pace (2003) study sites
were located on the University of Maine Dwight B. Demeritt
Forest, while the Maguire et al. (1998) and Phillips (2002)
were on the nearby United States Forest Service Penobscot
Experimental Forest. Both forests are within 10 km of Orono,
Maine (44.89 N, 68.69 W) and border the central and southern
climatic zones of the state (Briggs and Lemin, 1992). Stem
analysis data was collected from a range of crown classes.
Disks were sectioned from each tree at 0.15 m, 1 m, 1.3 m, 2 m
and successive 1 m intervals to the tip of the tree. The stands
were generally even-aged, with the exception of the Maguire
et al. (1998) dataset.

The Phillips (2002) and Pace (2003) dataset included trees
that were from both thinned and unthinned stands. Although
thinning can influence stem taper in both balsam fir and red
spruce, the impact is relatively minor and can largely be ac-
counted for by a proper model form (Weiskittel et al., 2009).

2.2. Taper equations

Based on the analysis of Rojo et al. (2005) and Diéguez-
Aranda et al. (2006), ten commonly used and well-behaved
taper equations were selected for evaluation. They included:
Max and Burkhart (1976), Kozak (2004) model 3 (referred to
as Model 01), Kozak (2004) model 4 (referred to as Model 02),
Bi (2000), Zakrzewski (1999), Valentine and Gregoire (2001),

Sharma and Zhang (2004), Sharma and Parton (2009), Clark
et al. (1991) and Fang et al. (2000). The Max and Burkhart
(1976) and Clark et al. (1991) are segmented taper equa-
tions, Fang et al. (2000) is a compatible volume-taper model
with segmented-stem form factors, while all seven other taper
equations are either variable exponent (Kozak, 2004; Sharma
and Parton, 2009; Sharma and Zhang, 2004) or variable form
(Bi, 2000; Valentine and Gregoire, 2001; Zakrzewski, 1999)
(Tab. II).

In the Clark et al. (1991) equation, F represents the dib
measurement at the height of 5.27 m. Given that taper equa-
tions that include upper stem measurements generally outper-
form ones that do not (Kozak, 1998), an equation was devel-
oped to predict the required upper stem measurements to en-
sure compatibility with the other examined taper equations.
In the present analysis, diameters at 5.27 m were initially ob-
tained through linear interpolation and then predicted for each
tree using the equation forms presented in Jiang et al. (2005)
as this measurement is generally not made during routine for-
est inventories. The upper diameter values at 5.27 m obtained
from both steps (interpolation and prediction) were used in this
study. The four identity functions in the Clark et al. (1991)
equation were outlined as:

IS =

{
1 if h < 1.37
0 otherwise (1)

IB =

{
1 if 1.37 < h < 5.27
0 otherwise (2)

IT =

{
1 if h > 5.27
0 otherwise (3)

IM =

{
1 if h < 5.27 + β5(H − 5.27)
0 otherwise. (4)

2.3. Statistical analysis

Ordinary least squares is based on the assumption that
the residual errors are independent and identically distributed.
Stem taper data are hierarchical, collected at multiple points on
the same individual tree. The autocorrelation among observa-
tions violates the assumption of independence. Neglect of this
autocorrelation in modeling may incur severe consequences
in statistical inference such as hypothesis tests and confidence
intervals, because standard errors of parameter estimates pro-
vide an inappropriate assessment of estimation error (Davidian
and Giltinan, 1995). Garber and Maguire (2003) stated that
two methods are generally used to deal with autocorrelation
issues with one method being directly modeling the time se-
ries correlation structure in the model fitting process, and the
other method is to incorporate individual tree random effect
in the model. The former can be implemented through gen-
eralized least squares and the latter is built in a mixed-effects
model framework. Chi and Reinsel (1989) suggested to use
both methods to address the within subject correlation because
one method might not be adequate to fully eliminate the exist-
ing correlation among observations, which was also supported
by the results of Garber and Maguire (2003). In the present
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Table II. Ten taper equations and their corresponding mathematical expressions.

Model Expression

Max and Burkhart (1976) d2/D2 = β1 (z − 1) + β2

(
z2 − 1

)
+ β3 (α1 − z)2 I+ (α1 − z) + β4 (α2 − z)2 I+ (α2 − z)

I+ (α1 − z) = 1, if α1 − z ≥ 0 I+ (α1 − z) = 0, if α1 − z < 0
I+ (α2 − z) = 1, if α2 − z ≥ 0 I+ (α2 − z) = 0, if α2 − z < 0

Kozak (2004) Model 01 d = α0Dα1 Xβ0+β1

(
1

eD/H

)
+β2 DX+β3 XD/H

X = (1−(h/H)1/4

1−0.011/4

Kozak (2004) Model 02 d = α0Dα1 Hα2 Xβ1z4+β2

(
1

eD/H

)
+β3 X0.1+β4 (1/D)+β5 HQ+β6 X

X = (1−(h/H)1/3

1−p1/3

Q = 1 − (z)1/3 p = 1.3/H

Bi (2000) lnd = lnB(α1 + α2 sin(zπ/2) + α3 cos(z3π/2) + α4 sin(zπ/2)/z + α5D + α6z
√

D + α7z
√

H)

B = ln sin( π2 z)/ln sin( π2 b)

Zakrzewski (1999) A(h) = K z2+β(z)3+γ(z)4

z−s K = A(1.37)(z0−s)
z2

0+β(z0 )3+γ(z0 )4

z1 = 1 − h/H s = 1 + θ(H/D)
z0 = 1 − 1.3/H

Valentine and Gregoire (2001) A(h) = A(1.37)
(

H−h
H−1.37

)α1+S 1 (h) ( H−h
H−HCB

)α2S 2(h)

S 1(h) = θ1 H
1+(h/(θ3 H))λ1

, 0 < θ3 <
HCB

H

S 2(h) = (h/HCB)λ2

1+(h/HCB)λ2
, ,

Sharma and Zhang (2004) ( d
D )2 = δ( h

1.37 )2−(δ1+δ2z+δ3 z2)( H−h
H−1.37 )

Sharma and Parton (2009) d
D = β0( H−h

H−1.37 )( H
1.37 )β1+β2z+β3 z2

Clark et al. (1991) d = IS

(
D2
(
1 + (1−h/H)β1−(1−1.37/H)β1

1−(1−1.37/H)β1

))

+IB

(
D2 − (D2−F2((1−1.37/H)β4−(1−h/H)β4 )

(1−1.37/H)β4−(1−5.27/H)β4

)
+IT

(
F2
(
β6( h−5.27

H−5.27 − 1)2 + IM( 1−β6

β6
2 )(β5 − h−5.27

H−5.27 )2
))

F = D(θ0 + θ1(5.27/H)2)

Fang et al. (2000) d = c1

√
H(k−β1 )/β1 (1 − z)(k−b)/bqI1+I2

1 qI2

2

c1 =
√
α0Dα1 Hα2−k/β1 /(β1(t0 − t1) + β2(t1 − q1t2) + β3q1t2)

q1 = (1 − p1)(beta2−β1 )k/β1β2 q2 = (1 − p2)(β3−β2)k/β2β3

t0 = 1 t1 = (1 − p1)k/β1 t2 = (1 − p2)k/β2 z = h/H
b = β1−(I1+I2 )

1 βI1
2 bI2

3 z = h/H k = 0.000078539
I1 = 1 if p2 ≥ z ≥ p1, 0 otherwise I2 = 1 if 1 ≥ z > p2, 0 otherwise

H: Total tree height (m); D: diameter outside bark at breast height (cm); h: height above the ground (m); d: diameter inside bark at any given height
h (cm); A(1.37), A(h): cross-sectional area at breast height and at height h, respectively; HCB: height to live crown base; α, β, θ, γ, δ, p: parameters to
be estimated; z: h/H.

study, we considered both the inclusion of an autoregressive
error structure specification and random effects.

Most often, the exact information of variance-covariance
structure of the data is lacking, and thus an appropriate se-
lection of correlation structure is critical. The most common
intra-individual correlation structure used in forestry is the
first-order autoregressive error structure (AR1). Because stem
taper data were collected with an unequal distance along the
bole, we opted to use the CAR1 correlation structure, which is
a continuous version of AR1 and defined as:

Corr(εt, εs) = φ|t−s| (5)

where φ represents the correlation between two observations
one unit apart, t and s refer two observational heights col-
lected from the same tree, and |t − s| is the distance between
them. In other words, the value of correlation between two ob-
servations on the same tree depends on the absolute distance
between them. This correlation structure can be used to de-
scribe unbalanced unequally spaced taper data (Gregoire et al.,
1995). Other correlation structures were also tested in prelim-
inary analysis and the results suggested minimal differences
between the structures.

Mixed-effects models account for both the general popula-
tion pattern through fixed effects and individual tree variation
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through random effects. Therefore, it maintains the flexibility
to account for small between-tree variations without the loss
of generality. Further, complicated variance-covariance struc-
tures can also be specified and included in the mixed-effects
models to compensate the within tree auto-correlations that are
not fully eliminated by random variables.

The mixed-effects model framework was formulized as fol-
lows:

yi j = f (θi j, xi j) + εi j (6)

where
i = 1, ...,K
j = 1, ..., ni

θi j = Ai j + Zi jbi

b1, ..., bK
iid∼ N(0,Φ)

here, yi j denotes the jth observation on the ith tree where we
have K trees in total, and ni observations in ith group. xi j de-
notes a vector of covariates corresponding to response yi j. bi

is a vector of random effects for the ith tree with a variance-
covariance matrix Φ. The matrices Ai j and Zi j are model ma-
trices for the fixed and random effects, respectively.

Within-tree variance heterogeneity in mixed-effects ta-
per equations have been reported in the taper literature
(e.g. Trincado and Burkhart (2006); Valentine and Gregoire
(2001)). Preliminary analysis also indicated that heteroge-
neous variance existed in all fitted taper models, as the vari-
ance tended to increase with increasing diameters. To further
improve parameter estimation, a power or an exponential vari-
ance function was used depending on the model form and the
data, to take into account heteroscedasticity. These two vari-
ance functions were defined to be:

Var(εi) = σ2|υi|2δ (7)

Var(εi) = σ2exp(2δυi) (8)

where σ2 is the residual sum of squares, υi is the weighting
variable (relative height in the stem in this study), and δ is the
variance function coefficient.

In short, the statistical analysis techniques of mixed-effects
modeling were used in the present study with a specified cor-
relation structure and a variance function to improve infer-
ence validation and increase prediction accuracy. Furthermore,
mixed-effects models also depicted variations among different
datasets, plots, and trees through random effects as well as de-
scribing the general population trend. Likelihood ratio tests
indicated significant improvements in model fit (p < 0.0001)
when both the correlation error structure and variance function
were added.

2.4. Evaluation criteria

Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC) are two widely accepted goodness of
fit criteria for comparing non-nested models (Gregoire et al.,
1995) as they essentially represent a penalized likelihood crite-
ria. Unfortunately, in this study they were not appropriate cri-
teria for selecting and comparing taper functions, because the

response variable for each taper function was not all the same
(i.e. dib vs. dib/D). Therefore, AIC and BIC were only used to
select appropriate submodels using the same taper equations
with different formulations of random effects, covariance, and
weight parameters.

Instead of using AIC or BIC, the performance of the taper
equations were evaluated using mean absolute bias (MAB),
root mean squared error (RMSE), and mean percentage of bias
(MPB) as well as residual plots. MAB, RMSE, and MPB were
calculated as:

MAB =
1
n

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣ (9)

RMSE =

√√√√√√√ n∑
i=1

(Yi − Ŷi)
2

n
(10)

MPB = 100 ×

n∑
i=1

∣∣∣Yi − Ŷi

∣∣∣
n∑

i=1

Yi

(11)

where, Yi and Ŷi are actual and predicted values of diameter in-
side bark or stem volume of ith observation (ith observation of
diameter measurement or ith individual tree for stem volume
estimates), and n is the total number of observations (number
of diameter estimates or number of trees for stem volume es-
timates). For both dib and volume predictions, only the fixed
effects were utilized. One alternative to selecting the “best”
model based solely on its validation statistics is to compute
the geometric mean of all predictions (W.T. Zakrzewski, per-
sonal communication). For comparison, the MAB, RMSE, and
MPB were also calculated using this approach.

2.5. Volume estimation

Most taper equations used in this study either do not have
corresponding closed-form volume equations or their inte-
grated volume equations are difficult to derive and calculate. In
order to obtain an estimated volume for each individual tree,
we divided each tree into 100 sections. Smalian’s formula was
then used to calculate the volume for each section, and the
summation of volumes of all sections resulted in the estimated
individual tree volumes. Since most trees in our study had at
least 10 observations per tree, a short interval between mea-
surements, and observations were along the entire stem, the
observed stem volumes were also derived through Smalian’s
formula. Using Smalian’s formula to estimate tree volume
has been reported many times in the literature (Corral-Rivas
et al., 2007; Diéguez-Aranda et al., 2006; Hibbs et al., 2007;
Maguire et al., 1998; Ozcelik, 2008; Zakrzewski, 1999; Zhang
et al., 2002), although it may incur small bias on estimating
the volumes of the stem tip.

Since it is widely used in the Acadian Region and most of
our observations were from the same dataset, our predictions
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Table III. Absolute mean bias (MAB), root mean square error (RMSE) and mean percentage of bias (MPB) of diameter inside bark for balsam
fir, red spruce, and white pine.

Model
Balsam fir Red spruce White pine

MAB (cm) RMSE MPB (%) MAB (cm) RMSE MPB (%) MAB (cm) RMSE MPB (%)
Max and Burkhart (1976) 0.5319 0.8007 5.1889 0.5922 0.9294 5.5515 1.3647 1.9219 6.7420
Kozak (2004) Model 01 0.6883 0.9602 6.7140 0.8704 1.2052 8.1600 1.6792 2.2257 8.2959
Kozak (2004) Model 02 0.5042 0.7620 4.9184 0.5375 0.8179 5.0392 1.1564 1.6546 5.7128
Bi (2000) 0.4954 0.7587 4.8322 0.5384 0.8254 5.0472 1.1937 1.7213 5.8971
Zakrzewski (1999) 0.5104 0.7706 4.9787 0.6220 0.9363 5.8312 1.2974 1.9166 6.4095
Valentine and Gregoire (2001) 0.4801 0.7443 4.6830 0.5725 0.8581 5.3667 1.2800 1.8112 6.3235
Sharma and Zhang (2004) 0.5403 0.8120 5.2703 0.6292 0.9649 5.8982 1.3195 1.8292 6.5189
Sharma and Parton (2009) 0.5437 0.8497 5.3040 0.6245 1.0120 5.8544 1.3342 1.8863 6.5914
Clark et al. (1991) I 0.5229 0.7505 5.1003 0.5809 0.8517 5.4454 1.4205 2.0432 7.0176
Clark et al. (1991) II 0.6417 0.8730 6.2595 0.7216 0.9932 6.7647 1.6174 2.2108 7.9907
Fang et al. (2000) 0.5521 0.8129 5.3852 0.6177 0.9283 5.7907 1.3454 1.8623 6.6469
Geometric mean 0.4742 0.7196 4.6257 0.5269 0.8066 4.9393 1.1468 1.6315 5.6657

Clark et al. (1991) I: upper stem diameters at 5.27 m were obtained by linear interpolation. Clark et al. (1991) II: upper stem diameters at 5.27 m were
predicted based on the regression form presented in Clark et al. (1991).

were also compared to the Honer (1965) volume equations.
The estimated parameter values of the Honer (1965) volume
equation for balsam fir, red spruce and white pine were defined
and specified as:

V =
D2

α + β/H
(12)

α = 2.139, β = 301.634 for balsam fir; α = 1.226, β =
315.832 for red spruce; α = 0.691, β = 363.676 for white
pine.

2.6. Influence of crown variables

As previously stated, the influence of crown variables on
taper models depends on species, the range of crown sizes in
the fitting dataset, and the particular taper equation used. In
the present study, we added each of the three crown variables,
namely crown length, crown ratio and height to live crown
base, into the best fitted model identified for each species.
Comparisons were made between fitted models with and with-
out crown variables in terms of the bias values for the stem
diameter and volume predictions.

All statistical analysis were carried out in R using the nlme
library (Pinherio and Bates, 2000).

3. RESULTS

3.1. Diameter inside bark estimates

MAB of most taper equations for balsam fir and red spruce
generally ranged between 0.5 and 0.7 cm, whereas MAB for
white pine ranged between 1.1 to 1.7 cm (Tab. III). The Kozak
(2004) Model 02 model performed the best for both red spruce
and white pine trees (MAB: 0.538, MPB: 5.039% for red
spruce; MAB: 1.156, MPB: 5.713 for white pine), while the
Valentine and Gregoire (2001) and Bi (2000) equations both

performed slightly better for balsam fir (MAB: 0.480, MPB:
4.683%; MAB: 0.495, MPB: 4.832%;). On this dataset, the
most biased model across the species was the Kozak (2001)
Model 01 equation (MAB: 0.688 cm, MPB: 6.714% for bal-
sam fir; MAB: 0.870 cm, MPB: 8.160% for red spruce; MAB:
1.679 cm, MPB: 8.296% for white pine). The equations of Bi
(2000), Valentine and Gregoire (2001), and Clark et al. (1991)
with observed upper stem diameters performed quite well in
terms of MAB and MPB for all three species. The most sta-
ble taper equations (i.e. the smallest RMSE) were the Valen-
tine and Gregoire (2001) for balsam fir and the Kozak (2004)
Model 02 for both red spruce and white pine. The Kozak
(2004) Model 01 equation exhibited the largest variability for
all three species. Although white pine had MAB almost twice
as large as the other two species, the MPB did not show a
significant difference as all models had less than 9% bias for
the three species. Results also show that using the regression
form provided in Clark et al. (1991) to predict the upper diam-
eter at 5.27 m largely increased the bias for estimating dibs,
compared with using interpolation method to obtain the upper
diameter values (over 20% higher for both balsam fir and red
spruce, 13% higher for white pine). Compared with the best
taper equation, the geometric mean of estimated dibs from the
ten taper equations further reduced the bias by 1.2%, 1.9% and
0.8% for balsam fir, red spruce and white pine respectively in
terms of MAB when compared to the best performing equa-
tion. Residual plots of all fitted models are presented in Fig-
ures 3–5 for balsam fir, red spruce, and white pine, respec-
tively.

3.2. Stem volume estimates

The performance rank of volume prediction among the
ten taper equations showed a slightly different trend than
the dib results. Although the Kozak (2004) Model 01 and
Valentine and Gregoire (2001) equations still performed well,
the Clark et al. (1991) equation with observed upper diameter
values at 5.27 m superseded them with a significantly lower
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Table IV. Absolute mean bias (MAB), root mean square error (RMSE) and mean percentage of bias (MPB) of stem volume for balsam fir, red
spruce, and white pine.

Model
Balsam fir Red spruce White pine

MAB(m3) RMSE MPB(%) MAB(m3) RMSE MPB(%) MAB(m3) RMSE MPB(%)
Max and Burkhart (1976) 0.0110 0.0243 8.1573 0.0115 0.0270 7.9398 0.0951 0.2091 10.9017
Kozak (2004) Model 01 0.0100 0.0189 7.3840 0.0098 0.0180 6.7521 0.0624 0.1037 7.1535
Kozak (2004) Model 02 0.0090 0.0171 6.6734 0.0087 0.0159 5.9555 0.0574 0.0996 6.5803
Bi (2000) 0.0090 0.0172 6.6428 0.0092 0.0174 6.3123 0.0557 0.0997 6.3860
Zakrzewski (1999) 0.0091 0.0173 6.7331 0.0100 0.0175 6.8875 0.0557 0.1003 6.3843
Valentine and Gregoire (2001) 0.0085 0.0162 6.3062 0.0092 0.0185 6.3125 0.0649 0.1254 7.4402
Sharma and Zhang (2004) 0.0104 0.0200 7.6699 0.0109 0.0231 7.5071 0.0723 0.1465 8.2871
Sharma and Parton (2009) 0.0108 0.0238 7.9902 0.0118 0.0285 8.1418 0.0875 0.1895 10.0282
Clark et al. (1991) I 0.0082 0.0147 6.0595 0.0070 0.0128 4.7888 0.0540 0.1025 6.1865
Clark et al. (1991) II 0.0105 0.0200 7.7710 0.0110 0.0220 7.5495 0.0748 0.1516 8.5723
Fang and Bailey (2000) 0.0091 0.0169 6.7673 0.0088 0.0158 6.0287 0.0577 0.0964 6.6159
Honer equation (1967) 0.0099 0.0176 7.3374 0.0110 0.0231 7.5901 0.0855 0.1671 9.8005
Geometric mean 0.0069 0.0137 5.1013 0.0079 0.0162 5.4171 0.0497 0.0848 5.6970

Clark et al. (1991) I: upper stem diameters at 5.27 m were obtained by linear interpolation.
Clark et al. (1991) II: upper stem diameters at 5.27 m were predicted based on the regression form presented in Clark et al. (1991).

MAB, RMSE, and MPB for all three species (Tab. IV). The
MAB values for the Clark et al. (1991) taper equation were
0.0082, 0.0070, and 0.0540 m3 for balsam fir, red spruce,
and white pine, respectively. The second best equation var-
ied across the species, which were the Valentine and Gregoire
(2001), the Kozak (2004) Model 02 and Zakrzewski (1999) for
balsam fir, red spruce, and white pine, respectively, in terms of
MAB. The corresponding Honer (1965) volume equation pro-
duced biases of 0.0099, 0.0110, and 0.0855 m3 for balsam fir,
red spruce, and white pine, respectively. The poorest perform-
ing taper equation for predicting stem volume on this dataset
was the Max and Burkhart (1976) (MAB: 0.011 m3, MPB:
8.157% for balsam fir; MAB: 0.012 m3, MPB: 7.940% for red
spruce; MAB: 0.095, MPB: 10.902% for white pine). In gen-
eral, white pine trees exhibited more bias and larger variability
in predicting stem volume than the other two species. In short,
the best performing taper equation of Clark et al. (1991) re-
duced the stem volume RMSE by 16%, 45%, and 39% when
compared to the commonly used Honer (1965) volume equa-
tion for balsam fir, red spruce, and white pine, respectively.
When observed upper stem diameter measurements were not
available, the Fang et al. (2000) equation reduced the stem
volume RMSE by 4%, 32%, and 42% when compared to the
Honer (1965) volume equation. On average, most taper equa-
tions had less than 8% bias. Similar as dib predictions, the geo-
metric mean of estimated volumes from the ten taper equations
further reduced the bias by 16% and 8% for balsam fir and
white pine, but no improvement was observed for red spruce.

3.3. Influence of crown variables

The variable exponent taper equation Kozak (2004)
Model 02, the segmented taper equation Clark et al. (1991),
and the volume compatible taper equation Fang et al. (2000)
were selected for evaluating the effects of the incorporation of
additional crown variables. Crown ratio (CR), crown length
(CL), and height to live crown base (HCB) variables were

added into Kozak Model 02, Clark et al. (1991) and Fang
et al. (2000) taper equations. Their corresponding mathemati-
cal equations were:

Kozak (2004) Model 02:

di = α0Dα1 Hα2 X
β1z4

i +β2

(
1

eD/H

)
+β3X0.1

i +β4(1/D)+β5 HQi+β6Xi+β7CRWN

i
(13)

Clark et al. (1991):

d2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IS

(
D2
(
1 + (1−h/H)β1−(1−1.37/H)β1

1−(1−1.37/H)β1

))
+IB

(
D2 − (D2−F2((1−1.37/H)β4−(1−h/H)β4)

(1−1.37/H)β4−(1−5.27/H)β4

)
+IT

(
F2
(
β6

(
h−5.27
H−5.27 − 1

)2
+ IM

(
1−β6

β2
6

) (
β5 − h−5.27

H−5.27

)2))
+β7CRWN

(14)
Fang et al. (2000):

d = c1

√
H(k−β1)/β1 (1 − z)(k−b)/bqI1+I2

1 qI2
2 (15)

c1 =

√
(α0 + α3CRWN)Dα1 Hα2−k/β1/(β1(t0 − t1) + β2(t1 − q1t2) + β3q1t2)

(16)
where CRWN is the crown variable, which represented either
CR, CL, or HCB, and β7 and a3 are the parameters related
to this crown variable that needs to be estimated. All other
notation is the same as defined previously.

For the dib prediction, all three crown variables had posi-
tive effects in the Kozak (2004) Model 02 across the species,
except for HCB in white pine (Tab. V). The addition of CR im-
proved the model performance the most for balsam fir and red
spruce trees by reducing MAB 2.2% and 2.5% respectively.

The effects of crown variables in the Clark et al. (1991)
equation were mixed across species. For the Clark equation
using interpolated upper diameter values at 5.27 m, CR had
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Table V. Absolute mean bias (MAB), root mean square error (RMSE) and mean percentage of bias (MPB) of diameter inside bark with and
without crown variables for balsam fir, red spruce, and white pine.

Model
Balsam fir Red spruce White pine

MAB (cm) RMSE MPB (%) MAB (cm) RMSE MPB (%) MAB (cm) RMSE MPB (%)
Kozak (2004) Model 02 without Crown 0.5042 0.7620 4.9184 0.5375 0.8179 5.0392 1.1564 1.6546 5.7128
Kozak (2004) Model 02 with CR 0.4933 0.7402 4.8115 0.5242 0.7959 4.9143 1.1548 1.6514 5.7050
Kozak (2004) Model 02 with CL 0.4982 0.7481 4.8593 0.5269 0.7992 4.9395 1.1571 1.6528 5.7162
Kozak (2004) Model 02 with HCB 0.4966 0.7460 4.8440 0.5317 0.8066 4.9843 1.1535 1.6534 5.6988
Clark et al. (1991) I without Crown 0.5229 0.7505 5.1003 0.5809 0.8517 5.4454 1.4205 2.0432 7.0176
Clark et al. (1991) I with CR 0.5003 0.7214 4.8806 0.5676 0.8106 5.3211 1.4024 2.0221 6.9281
Clark et al. (1991) I with CL 0.5042 0.7253 4.9182 0.5678 0.8126 5.3225 1.4587 2.0952 7.2062
Clark et al. (1991) I with HCB 0.5178 0.7428 5.0511 0.5953 0.8455 5.5805 1.5344 2.1777 7.5804
Clark et al. (1991) II without crown 0.6417 0.8730 6.2595 0.7216 0.9932 6.7647 1.6174 2.2108 7.9907
Clark et al. (1991) II with CR 0.6291 0.8595 6.1362 0.7060 0.9683 6.6187 1.6203 2.2154 8.0046
Clark et al. (1991) II with CL 0.6335 0.8628 6.1796 0.7105 0.9709 6.6608 1.6539 2.2745 8.1710
Clark et al. (1991) II with HCB 0.6459 0.8791 6.3003 0.7410 1.0066 6.9464 1.7006 2.3484 8.4015
Fang et al. (2000) without crown 0.5521 0.8129 5.3852 0.6177 0.9283 5.7907 1.3454 1.8623 6.6469
Fang et al. (2000) with CR 0.7578 1.0078 7.3920 0.6888 1.0042 6.4575 1.3737 1.9041 6.7866
Fang et al. (2000) with CL 0.6431 0.9250 6.2733 0.6582 0.9835 6.1706 1.3783 1.9083 6.8092
Fang et al. (2000) with HCB 0.9925 1.2837 9.6810 0.7800 1.0935 7.3125 1.3246 1.8350 6.5437

CR: Crown ratio. CL: Crown length. HCB: Height to live crown base.
Clark et al. (1991) I: upper stem diameters at 5.27 m were obtained by linear interpolation.
Clark et al. (1991) II: upper stem diameters at 5.27 m were predicted based on the regression form presented in Clark et al. (1991).

Table VI. Absolute mean bias (MAB), root mean square error (RMSE) and mean percentage of bias (MPB) of stem volume with and without
crown variables for balsam fir, red spruce, and white pine.

Model
Balsam fir Red spruce White pine

MAB (m3) RMSE MPB (%) MAB (m3) RMSE MPB (%) MAB (m3) RMSE MPB (%)
Kozak (2004) Model 02 without crown 0.0090 0.0171 6.6734 0.0087 0.0159 5.9555 0.0574 0.0996 6.5803
Kozak (2004) Model 02 with CR 0.0085 0.0156 6.2899 0.0086 0.0161 5.8985 0.0587 0.1014 6.7258
Kozak (2004) Model 02 with CL 0.0085 0.0156 6.3153 0.0086 0.0161 5.9332 0.0582 0.1008 6.6668
Kozak (2004) Model 02 with HCB 0.0087 0.0165 6.4656 0.0086 0.0163 5.9139 0.0583 0.1014 6.6838
Clark et al. (1991) I without Crown 0.0082 0.0147 6.0595 0.0070 0.0128 4.7888 0.0540 0.1025 6.1865
Clark et al. (1991) I with CR 0.0070 0.0131 5.1463 0.0065 0.0109 4.4702 0.0469 0.0924 5.3738
Clark et al. (1991) I with CL 0.0070 0.0129 5.1798 0.0068 0.0115 4.6791 0.0541 0.1015 6.2023
Clark et al. (1991) I with HCB 0.0078 0.0143 5.7969 0.0079 0.0130 5.4126 0.0641 0.1125 7.3535
Clark et al. (1991) II without crown 0.0105 0.0200 7.7710 0.0110 0.0220 7.5495 0.0748 0.1516 8.5723
Clark et al. (1991) II with CR 0.0098 0.0188 7.2301 0.0108 0.0198 7.4272 0.0731 0.1477 8.3773
Clark et al. (1991) II with CL 0.0098 0.0187 7.2870 0.0109 0.0195 7.4755 0.0781 0.1576 8.9493
Clark et al. (1991) II with HCB 0.0106 0.0201 7.8187 0.0119 0.0215 8.2216 0.0856 0.1696 9.8180
Fang et al. (2000) without crown 0.0091 0.0169 6.7673 0.0088 0.0158 6.0287 0.0577 0.0964 6.6159
Fang et al. (2000) with CR 0.0086 0.0153 6.3329 0.0086 0.0154 5.8940 0.0576 0.0963 6.6065
Fang et al. (2000) with CL 0.0084 0.0151 6.1996 0.0085 0.0154 5.8388 0.0577 0.0963 6.6145
Fang et al. (2000) with HCB 0.0086 0.0153 6.3526 0.0086 0.0155 5.9427 0.0576 0.0963 6.6057

CR: Crown ratio. CL: Crown length. HCB: Height to live crown base.
Clark et al. (1991) I: upper stem diameters at 5.27 m were obtained by linear interpolation.
Clark et al. (1991) II: upper stem diameters at 5.27 m were predicted based on the regression form presented in Clark et al. (1991).

a positive effect across the three species, CL also had a posi-
tive effect for balsam fir and red spruce, while HCB only im-
proved the model performance for balsam fir. For the Clark
et al. (1991) equation using predicted upper diameter values
at 5.27 m, the addition of crown variables had similar effects
on the model performance. Both CR and CL variables im-
proved the model performance for balsam fir and red spruce.
The largest improvement in dib prediction in the Clark et al.
(1991) equation was due to the inclusion of CR for balsam fir,
where the MAB was decreased by 0.023 cm and the value of

RMSE was reduced by 0.03 cm. However, all the improve-
ments were very small. The effects of crown variables in the
Fang et al. (2000) equation were mostly negative as all three
crown variables increased the biases for all three species, ex-
cept for HCB variable for white pine, which only slightly im-
proved the model performance.

For the stem volume prediction, significant improvements
were observed in the Clark et al. (1991) equation using inter-
polated upper diameters due to the inclusion of the CR vari-
able for balsam fir (14.6%), red spruce (7.1%), and white pine
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(13.1%) (Tab. VI). In the Kozak (2004) Model 02 equation,
both CR and CL variables reduced the bias by 5.5% for balsam
fir. Modest improvements were also produced for red spruce
with the addition of the CL and HCB variables in both equa-
tions of the Kozak (2004) Model 02 and Clark et al. (1991)
with predicted upper diameters. However, white pine showed
very little sensitivity to crown variables in both equations. In
the Fang et al. (2000) equation, CR reduced the bias by 7.7%
for balsam fir. Other modest improvements were also observed
with the addition of crown variables for red spruce and white
pine.

4. DISCUSSION

Taper equations are invaluable tools, but selecting an ap-
propriate model that works well across multiple species and
various stand conditions can be difficult because of the variety
of forms that are currently available. In this study, an extensive
regional database for three ecologically distinct conifer species
was compiled and used to compare ten commonly used ta-
per equations. Across the species, the variable-exponent taper
equation of Kozak (2004) Model 02 and the segmented taper
equation of Clark et al. (1991) were identified as the most re-
liable and accurate taper equations for predicting both dib and
total stem volume, respectively. The Valentine and Gregoire
(2001) taper equation, which includes HCB as an input vari-
able, performed well for balsam fir in stem form and volume
predictions. The inclusion of crown variables such as crown
ratio and crown length only slightly improved stem form pre-
dictions, despite the large range of crown sizes available in
this analysis. However, inclusion of crown ratio largely im-
proved stem volume predictions for balsam fir and red spruce.
Compared with the widely used Honer (1965) regional vol-
ume equation, most taper equations in our study have a better
predictive ability for estimating individual tree stem volume.

The Kozak (2004) Model 02 equation has previously been
shown to work well across a range of species and biogeocli-
matic zones. In maritime pine in Spain, Rojo et al. (2005) also
found that the Kozak (2004) Model 02 had the lowest mean
square error (MSE) of 31 different taper equations for predict-
ing dob and its MSE was 4.5% lower than the next best per-
forming equation. The Clark et al. (1991) taper equation was
also developed to work well across multiple species as it was
originally applied to 58 different tree species in the Southern
US. In comparison to the Max and Burkhart (1976) equation,
Jiang et al. (2005) found the Clark et al. (1991) reduced the
standard error of estimate by 16 to 23% in predicting dob and
dib of yellow-poplar. In predicting dib in this present study,
the best equation depended on species, as the Kozak (2004)
Model 02 equation had a RMSE that was lower than the next
best performing equation for red spruce and white pine, re-
spectively. For balsam fir, the Kozak (2004) Model 02 and
Valentine and Gregoire (2001) equations performed equally
well as the difference in RMSE was less than 2.3%. This sug-
gests that variable exponent equations like the Kozak (2004)
Model 02 may have greater flexibility and ease in representing
variation in stem form than significantly more complex equa-
tions. In addition, the Kozak (2004) Model 02 equation pro-

vided a smooth continuous taper profile for each tree, while
other taper equations such as Valentine and Gregoire (2001),
and Clark et al. (1991) equations described the tree shape in
three segmented sections.

A taper equation not only needs to predict stem form
well, but also provide accurate estimates of stem volume. A
relatively limited number of studies have compared the ac-
curacy of stem taper equations in predicting actual stem vol-
ume because of the difficulty in measuring the true stem vol-
ume. Filho and Schaaf (1999) indicated that the Clark et al.
(1991) equation was the best at estimating true stem volume
(determined with a xylometer) of the models examined in their
study. Most studies must obtain observed stem volume by us-
ing either Smalian or Huber’s formula, which often leads to an
underestimation of a taper equation’s true error (e.g. Filho and
Schaaf 1999). Although Smalian’s formula can be highly bi-
ased, its use in this study was believed justified as the distance
between observations was taken along the full length of the
stem and generally they were less than 2 m apart. The numeri-
cal integration of natural cubic splines for each individual tree
volume were also tested and the difference between Smalian’s
and the derived splines were less than 1% of the average tree
volume. Thus, the results of this study further suggest that the
Clark et al. (1991) equation was significantly superior across
multiple species at estimating volume when upper stem diam-
eter measurements are available, which supports the results
of several other studies (e.g. Filho and Schaaf 1999; Jiang
et al. 2005). In this present study, the Clark et al. (1991) equa-
tion reduced the RMSE by 9.3, and 19.5% when compared
to the next best equation for balsam fir and red spruce, re-
spectively. For white pine, the Clark et al. (1991) equation
still gave the best predictions of stem volume, but its RMSE
was slightly poorer than that of Bi (2000), Zakrzewski (1999),
Kozak (2004) Model 02 and Fang et al. (2000). Clearly, the
segmented form-class approach of Clark et al. (1991) excels
at estimating stem volume. Further, it does not require nu-
merical integration like the variable exponent equations. How-
ever, the accuracy of predicting upper diameters at 5.27 m was
important in determining the model’s performance, as there
was a significant difference in the model performance when
observed versus predicted upper diameters were used. When
measurements at 5.27 m are not available, other well-behaved
taper equations should be considered. In our study, the Valen-
tine and Gregoire (2001), Kozak (2004) Model 02 and Bi
(2000) all performed well depending on species.

Compatible taper and volume equations offer several ben-
efits such as additivity and flexibility over traditional taper
equations (Fang et al., 2000). Diéguez-Aranda et al. (2006)
compared 15 different compatible taper equations for Scots
pine [Pinus sylvestris (L.)] and found the compatible ta-
per/volume system of Fang et al. (2000) provided the best
overall performance in estimating total stem volume, while
its prediction of stem form was similar to those provided by
a continuous variable form equation. A similar result was
recently found by Corral-Rivas (2007) for five major pine
species in Durango, Mexico. Although comparing the merits
of compatible and traditional taper equations was not an ex-
plicit objective of this present analysis, we did find the Fang
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Table VII. Estimated parameters and standard errors of the best two models for balsam fir, red spruce, and white pine.

Balsam fir Red spruce White pine
Estimate std. CAR σ R2 Estimate std. CAR σ R2 Estimate std. CAR σ R2

Kozak (2004)

α0 0.911 0.015

0.718 0.827 0.984

0.940 0.017

0.743 0.861 0.983

1.057 0.025

0.840 2.416 0.982

α1 1.026 0.007 0.998 0.006 0.991 0.010
α2 –0.005 0.011 0.010 0.011 –0.031 0.014
β1 0.368 0.006 0.508 0.005 0.372 0.006
β2 –0.645 0.045 –0.636 0.038 –0.824 0.048

Model 02 β3 0.502 0.012 0.355 0.010 0.335 0.010
β4 1.780 0.141 1.687 0.129 4.711 0.246
β5 0.096 0.002 0.078 0.002 0.112 0.002
β6 –0.487 0.013 –0.242 0.011 –0.556 0.017

Clark et al. (1991) I

β1 68.258 1.186

0.836 0.792 0.984

67.542 1.128

0.843 0.830 0.982

58.278 1.183

0.916 2.613 0.972
β4 1.292 0.058 1.369 0.062 1.743 0.145
β5 0.702 0.004 0.696 0.004 0.730 0.003
β6 1.795 0.015 2.107 0.0170 2.534 0.026

Clark et al. (1991) II

β1 67.375 1.174

0.873 0.909 0.979

66.895 1.121

0.871 0.944 0.975

57.420 1.178

0.920 2.808 0.968
β4 1.218 0.060 1.211 0.063 1.526 0.144
β5 0.693 0.005 0.695 0.004 0.729 0.004
β6 1.748 0.016 2.095 0.018 2.521 0.027
θ1 0.8959 0.0024

0.998
0.8804 0.0027

0.997
0.8418 0.0023

0.997
θ2 –0.8791 0.0156 –0.6849 0.0161 –0.6582 0.0315

Fang et al. (2000)

α0 0.000056 0.000002
0.9849

0.000053 0.000002
0.9894

0.000069 0.000003
0.9895α1 1.8731 0.0165 1.7869 0.0096 1.7630 0.0136

α2 0.9637 0.0251 1.0995 0.0200 1.0352 0.0207
p1 0.0299 0.0004

0.8476 0.53230.9815

0.0230 0.0004

0.8299 0.69380.9785

0.0360 0.0004

0.89621.70700.9769
p2 0.5439 0.0033 0.6057 0.0027 0.5989 0.0032
β1 0.0457 0.0006 0.0241 0.0010 0.0495 0.0004
β2 0.0372 0.0001 0.0393 0.0001 0.0382 0.0001
β3 0.0300 0.0001 0.0290 0.0001 0.0301 0.0001

std.: Standard error of estimated coefficients, CAR: estimated variance-covariance parameter, σ: estimated standard error of residuals.
Clark et al. (1991) I: upper stem diameters at 5.27 m were obtained by linear interpolation.
Clark et al. (1991) II: upper stem diameters at 5.27 m were predicted based on the regression form presented in Clark et al. (1991).

et al. (2000) equation performed well in estimating total stem
volume, but its RMSE for volume was similar and in some
cases, slightly worse than those of the non-compatible taper
equations. Interestingly, the Fang et al. (2000) equation has
primarily been used for Pinus species and the equation per-
formed best in predicting white pine stem volume in our analy-
sis. However, other models were generally superior to the Fang
et al. (2000) for predicting stem form, which suggests there are
some trade-offs to ensuring compatibility and need to be con-
sidered when selecting an appropriate model. As mentioned
above, one alternative to selecting the “best” taper equation is
to use the geometric mean of all predictions (W.T. Zakrzewski,
personal communication). For both stem form and stem vol-
ume predictions, this method provided the best predictions rel-
ative to the performance of any given equation. This indicates
that this may be a viable option when multiple taper equations
exist for a given species and reduces the difficulty of selecting
the “best” equation, which is usually dataset dependent.

The past literature suggests that the ability of crown vari-
ables to improve the performance of taper equations is species-
specific and possibly, study-specific too. The level of improve-
ment is likely a function of natural variation in crown dimen-
sions, the range of crown sizes represented by a given dataset,
and the sensitivity of particular model form to additional co-

variates. Over the entire stem, Leites and Robinson (2004) in
loblolly pine found that crown variables improved by aver-
age absolute difference in predicting dib by nearly 6% when
compared to the next best equation. In a hardwood species,
Jiang et al. (2005) found that dob and dib predictions were
improved by 0.5 to 4.1% with the inclusion of crown vari-
ables in a taper equation for yellow-poplar, while cubic vol-
ume predictions were only improved by <0.1 to slightly over
1%. Given the range of stand conditions and crown sizes ex-
amined in our analysis, the addition of crown variables was
expected to perform well. We observed a substantial reduction
of the bias in stem volume predictions for balsam fir with the
inclusion of crown ratio and crown length. In addition, crown
variables improved the RMSE of dib and stem volume predic-
tions by 3.9 and 10.9% for balsam fir, 4.8 and 14.8% for red
spruce, and 1.0 and 9.9% for white pine, respectively. It should
be noted that these improvements were generally observed
using the Clark et al. (1991) rather than the Kozak (2004)
Model 02 equation. Several other researchers have noted im-
provements in stem form and volume predictions with the in-
clusion of crown variables, particularly for several other Pinus
spp. such as loblolly pine (Valenti and Cao, 1986), lodgepole
pine (Muhairwe et al. 1994), shortleaf pine [Pinus echinata
Mill.] (Farrar and Murphy, 1987), and longleaf pine [Pinus
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Kozak (2004) Model 01 Kozak (2004) Model 02

Figure 3. Residual plots (observed-predicted) of fitted models of diameter inside bark for balsam fir. Solid line is a lowess regression.

palustris Mill.] (Shaw et al., 2003). The results of this study in-
dicated modest gains of stem form and relatively large gains of
stem volume for the most shade tolerant and intolerant species
examined in this analysis, which suggests that shade tolerance
might be the driving factor for the importance of crown vari-
ables in taper equations. The results of Walters and Hann
(1986) also indicated that crown ratio significantly improved

predictions of stem form across a wide range of species shade
tolerance levels in mixed conifer stands of southwest Oregon.
Hence, model form and study species are likely confounding
the interpretation of the importance of crown variable in ta-
per equations and an analysis utilizing a similar model form
across a wider range of species than this present study would
be a better test of this hypothesis.
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Kozak (2004) Model 01 Kozak (2004) Model 02

Figure 4. Residual plots (observed-predicted) of fitted models of diameter inside bark for red spruce. Solid line is a lowess regression.

White pine trees showed a slightly different trend from
the other two species in our study (e.g. higher between-tree
variation and greater bias in the final equation). A portion of
this difference can be easily attributed to the greater range of
tree sizes available in the white pine dataset in comparison to
the other two species (e.g. Figs. 1, 2 and Tab. I). White pine
may also have higher inherent between-tree variation because
of the long-term impacts of white pine weevil [Pissodes strobi

(Peck)] in this region, which can cause extensive damage to the
leader and severe stem deformities. Although severely dam-
aged stems were not utilized in this study, a high proportion
of white pines in the eastern US are impacted by the wee-
vil to some degree and consequently, subtle changes in the
stem form can not entirely accounted for by tree size. For a
given tree size, white pine showed larger inter-tree variation
and higher residual standard errors for all examined equations
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Kozak (2004) Model 01 Kozak (2004) Model 02

Figure 5. Residual plots (observed-predicted) of fitted models of diameter inside bark for white pine. Solid line is a lowess regression.

than the other two species (Tab. VII). However, for a tree with
the same size (i.e. same DBH and total height), the taper pro-
file of three species did not differ greatly, with the predicted
lower section almost identical among three species (Fig. 6).
The difference existed in the upper- and mid-portions of the
stem, where red spruce was predicted to have a greater rela-
tive diameter in the Kozak (2004) Model 02, and white pine
showed a greater relative diameter in the Clark et al. (1991)
equation in comparison to the other species.

5. CONCLUSIONS

This analysis represents one of the first attempts to develop
a regional taper equation for the primary conifer species in
the Acadian Region of North America. Of the ten taper equa-
tions evaluated, the Clark et al. (1991) equation proved to be
the best at predicting stem volume across the three species
when upper stem diameter measurements are available. The
Kozak (2004) Model 02 was the most accurate equation for
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Figure 6. Predicted relative diameter over relative height using the Kozak (2004) Model 02 (left) and Clark et al. (1991) (right) taper equations
for a large tree (upper; total height: 22 m, DBH: 35 cm) and a small tree (bottom; total height: 11.8 m, DBH: 11.6 cm).

predicting red spruce and white pine stem form. The inclusion
of additional crown variable generally had a minimal impact
on improving predictions of either stem form or volume for the
Kozak (2004) Model 02. Modest improvements in the Clark
et al. (1991) equation were observed for red spruce and white
pine. Compared to the Honer (1965) stem volume equations,
these taper equations are a vast improvement with reductions
in the prediction error upwards to 45%. However, selecting the
“best” equation is difficult as it depends on species, dataset,
and intended use. The use of the geometric mean of all pre-
dictions is, therefore, suggested when multiple equations for
a certain species exist. The equations performed well across
a range of stand conditions and will likely help improve esti-
mates of standing volume in the region.
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