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Abstract – In many biological fields (e.g. horticulture, forestry, botany), a need exists to quantify different types of variability within
a set of plants. In this paper, we propose a method to compare plant individuals based on a detailed comparison of their architectures.
The core of the method relies on an adaptation of an algorithm for comparing rooted tree graphs, recently proposed by Zhang in theo-
retical computer science. Using this algorithm a distance between two plants is defined as the cost of transforming one into the other
(using basic “edit operations”). We illustrate this method in three application fields and then compare it with other methods for quan-
tifying plant similarity.

topological structure of plants / plant comparison / analytical method

Résumé – Définition d’une distance entre architectures de plantes. Dans de nombreux domaines de la biologie (arboriculture,
sylviculture, botanique), il est nécessaire d’étudier différents types de variabilité au sein d’une population de plantes. Nous propo-
sons, dans ce papier, une méthode de comparaison des plantes basée sur une comparaison détaillée de leur architecture. Cette métho-
de est une adaptation d’un algorithme de comparaison d’arborescences, proposé récemment par Zhang en informatique théorique. Cet
algorithme nous permet de définir une distance entre deux plantes comme le coût de la transformation de l’une en l’autre (à l’aide
d’opérations élémentaires d’édition). Cette méthode est illustrée dans trois domaines d’application et elle est comparée à d’autres
méthodes de quantification de la ressemblance entre plantes.

structure topologique des plantes / comparaison des plantes / méthode analytique

1. INTRODUCTION

The increasingly important role played by plant archi-
tecture in the structure/function modeling of plants gen-
erates a need for new investigational tools. Generic tools
have already been developed to visualize plant architec-
ture in 3-dimensions [4, 30], to model the growth of
plant architecture, e.g. [5, 20, 21, 25], to measure plant
architecture [9, 14, 33], and to explore and to analyze the
plant [10]. This paper introduces a new tool for the com-
parison of plant architectures. 

To compare two plants, a first approach consists of
summarizing each individual by a small number of syn-

thetic and global variables (e.g. fruit production, crown
size, etc.). The similarity of two individuals is then
reduced to the similarity between these synthetic vari-
ables. In forestry for instance, wood production and
quality are usually assessed by measuring variables such
as stem diameter, crown volume, branching density, etc.
Comparing different wood qualities thus amounts to
comparing these global variables. This defines global
comparison methodsin which the topological organiza-
tion of plant entities is not taken into account.

On the other hand, domains exist in which plant topo-
logical structure plays an important role. In forestry for
example, refining wood quality criteria leads foresters to
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consider more detailed descriptions of tree crowns, tak-
ing for instance into account the spatial distribution of
branches along the stems or branch geometry (e.g. [19]).
Similarly, in horticulture, determining the fruiting posi-
tion in the tree crown leads to a better understanding of
the fruiting habits and production parameters (e.g. [3]).
In such cases, the notion of distance between individuals
would naturally take into account the topological and
spatial organization of plant entities. This defines analyt-
ical comparison methods[26] which are based on a
piece-by-piece comparison of plants. 

In most applications, descriptions of plant architecture
usually rely on a tree graph representation of topological
structures [8]. An algorithm with bounded complexity
has recently been proposed in theoretical computer sci-
ence to compute a distance between tree graphs [43, 44].
This distance is defined as the minimum cost of the

sequence of elementary edit operations needed to trans-
form one tree graph into the other. This paper proposes
an analytical comparison method based on an adaptation
of this algorithm to deal with plant architectures. The
different methods used to tune the parameters of this
algorithm are then reviewed and discussed. Finally, the
use of this comparison algorithm is illustrated in three
different application contexts.

2. FORMAL REPRESENTATION OF PLANTS
AS TREE GRAPHS

A plant can be considered as a set of botanical entities
(e.g. internodes and nodes, growth units, annual shoots)
the topological organization of which can be represented
by a graph [8] (figure 1). A graph G = { V,E} consists of

Figure 1. Plant topology described at different scales, i.e.
in terms of (a) branching systems, (b) growth units, (c)
internodes, and represented as rooted tree graphs (on the
right hand side).

(a)

(b)

(c)
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a set V of vertices and a set of edgesE, each edge being
represented by an ordered pair of vertices [29]. If (v1, v2)
denotes an edge in E, the vertex v1 is called a fatherof v2
and the vertex v2 is called a sonof v1 [29]. Vertices rep-
resent botanical entities and edges correspond to the
physical connections between these entities. Each vertex
can be associated with one or several attributes that rep-
resent biological characteristics of the entity and consists
of either a real number (e.g. entity diameter, length), or a
symbol (e.g. entity type). Let α be a labeling function
which associates a label from a finite or infinite set
Σ = {a,b,c,...} with each vertex. A distance d, called ele-
mentary distance, is supposed to be defined on labels. A
distance on vertices of a graph can be defined using the
distance on labels: d(v1,v2) = d(α(v1), α( v2)). Let λ be a
unique symbol not in Σ, d is extended by defining quan-
tities d(α(v1),λ) and d(λ,α(v2)) so that d is a distance on
Σ ø { λ}. The distance d(α(v1), λ) between the label of a
vertex v1 and the label λ is denoted by d(v1,λ ) by
convention.

In a plant, since each entity is physically attached to at
most one parent entity, the topological structure is repre-
sented as a rooted tree graph, i.e. a graph in which every
vertex except one, called the root, has only one father
vertex. The root has no father vertex. In order to identify
the different axes on a given plant, two types of edges
between entities are distinguished: an entity can either
precede (symbol “<”) or bear (symbol “+”) another enti-
ty. This form of plant description can now be used to
present an analytical method for comparing plants.

3. PLANT COMPARISON METHOD

A considerable amount of work has been performed
on comparison algorithms for problems that can be mod-
eled as data sequences [35]: in molecular biology [16,
34], in speech or text recognition [23] or in code error
correction [39], in plant modeling [11]. In the early sev-
enties, Wagner and Fisher [42] presented an algorithm
which computes the distance between two strings of
characters as the minimum cost sequence of elementary
operations needed to transform one string into the other.
In order to define a distance between rooted tree graphs,
Tai [37], Selkow [32] and Lu [24] proposed a generaliza-
tion of the Wagner and Fisher algorithm with application
in different fields [27, 28, 32]. All the tree graphs dis-
cussed in these papers are ordered, meaning that the sets
of sons of any vertex are ordered sets. These algorithms
cannot be applied directly to the problem of plant com-
parison since tree graphs used to represent plant topolo-
gy are unordered [8]. However, recently, Zhang [43, 44]
proposed an algorithm in theoretical computer science
for computing a distance between unordered rooted tree

graphs based on Lu’s method, by introducing a new
hypothesis in the tree-graph transform. This paper briefly
describes the main principle of the algorithm and illus-
trates several applications to plant comparison. 

A distance measure between two trees T1 and T2 is
defined by considering the minimum cost of elementary
operations needed to transform T1 into T2. Three kinds of
elementary operations, called edit operations [42] are
considered: changing one vertex into another (note that
this may change labels), deleting (i.e. making the sons of
a vertex v become the sons of the father of v and then
removing v from T1) or inserting one vertex (i.e. the
symmetric operation on T2) (figure 2a). In order to trans-
form one tree graph into the other, all the vertices of T1
and T2 must be affected by at least one edit operation.

A cost function, called local distance, is defined for
each edit operation s. The local distance assigns a non-
negative real number γ(s) to s: 

• γ(s) = d(v1,v2) if s changes the vertex v1 into the ver-
tex v2,

• γ (s) = ddel(v1) = d(v1,λ) if sdeletes the vertex v1 and,

• γ (s) = dins(v2) = d(λ,v2) if s inserts the vertex v2.

Since d is a distance, the following property is always
satisfied:

(1)

Let S be a sequence of n edit operations (s1, s2, …, sn)
which transform one tree graph T1 into another one T2.
The cost γ(S) of a sequence of edit operations is defined
by summing up the cost of the edit operations that 

compose S: . The set of possible edit 

operation sequences which transform T1 into T2 is denot-
ed by S. The dissimilarity measure1 D(T1,T2) from a tree
graph T1 to a tree graph T2 is then measured as the mini-
mum cost of a sequence in S: 

In order to characterize the effect of a sequence of edit
operations on a tree graph, Taï [37] introduced a struc-
ture called mapping between tree graphs(figure 2b).
Based on the notion of tracebetween Wagner and Fisher
strings [42], a mappingis intuitively a description of

D T1, T2 = min
S ∈S

γ S .

γ S = γ siΣ
si∈S

.

d v1, v2 ≤ ddel v1 + d ins v2 .

1 A dissimilarity measure d over Σ is a function from Σ × Σ to
R+ such that for any a,b in Σ d(a,a) = 0, d(a,b) = d(b,a),
d(a,b) = 0 =>b = a (symmetry) and such that it does not neces-
sarily respect the triangle inequality.
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Figure 2. Mapping from one
tree graph T1 onto another tree
graph T2. (a) The five edit opera-
tions used to transform T1 into
T2. (b) Resulting mapping from
T1 onto T2 where black vertices
represent the inserted or deleted
vertices.
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how a sequence of edit operations transforms T1 into T2,
ignoring the order in which the edit operations are
applied. A mapping M is a set of ordered pairs (v1, v2) of
vertices from T1 × T2 (v1 and v2 are images of one anoth-
er). The set of vertices of T1 (resp. T2) which are 
not in a pair of M is denoted by M

—
1 (resp. M

—
2). Note that

M is a set of pairs of vertices while M
—

1 and M
—

2 are sets of 
vertices. The set of all possible mappings from T1 to T2
is denoted by M. 

According to the definition of elementary costs, we
can assign a cost to each mapping M: 

(2)

The relation between a trace and a sequenceof edit
operations has been made explicit by Wagner and Fisher
[42]. This result has been generalized for mappings
between ordered tree graphs[37] and unordered tree
graphs[43, 45]. 

Property 1: Given S a sequence of edit operations
from T1 to T2, there exists a mapping M from T1 to T2
such that γ(M) ≤ γ(S). 

Property 2: For any mapping M from T1 to T2 there
exists a sequence of edit operations such that γ(M) =
γ(S). 

Based on these properties it can be shown that the dis-
similarity between two tree graphs is measured as the
mapping with minimum cost. Indeed, from property 1,
we obtain:

Let M* be the mapping with minimum cost. From prop-
erty 2 arises a sequence S* of edit operations such that:

Finally: 

and:

(3)

This equation shows that the computation of the edit dis-
tance between T1 and T2 leads us to solve an optimiza-
tion problem, i.e. finding the mapping with minimum
cost over M. 

However, when comparing plant architectures, we are
not interested in all possible mappings between plants.
For example, we do not want to consider mappings that
match the trunk of T1 with the leaves of T2 and the leaves
of T1 with the trunk of T2 (figure 3b). Only those map-
pings that preserve certain structural properties will be
considered. For example, in the case of sequence align-
ment, Wagner’s algorithm preserves the ancestor rela-
tionship between elements of the sequence. In a tree
graph, a vertex v1 is called the ancestorof another vertex
v2 if a path2 exists from v1 to v2. For example, one entity
a, ancestor of an other entity b, can only be mapped onto
an entity a’ that is an ancestor of the image b’ of b. This
ancestor relationship is also denoted by v1 ≤ v2. Similarly
to sequences, when comparing plant architectures we
wish to consider only mappings that preserve the ances-
tor relationships (figure 3a).

One of the results from Zhang [45] and Kilpelläinen
[17] is that finding the optimal matching function for an
unordered tree is an NP-complete problem. This means
that there is no reasonable chance of a polynomial-time
algorithm solving this optimization problem. Since
unordered tree graphs are important in our plant compar-
ison applications, it is necessary to change the matching
function definition in order to obtain an algorithm that
computes the distance between unordered tree graphs in
polynomial time.

An intuitive idea to solve this problem was proposed
by Tanaka and Tanaka [38] who introduced a distance
between ordered trees to preserve structural properties of
the tree graphs by the matching functions. Zhang [45]
extended the definition from ordered trees to unordered
trees. The idea is that two separate sub-trees of one tree
graph should be mapped onto two separate sub-trees.

The preservation of sub-trees can be formalized using
the notion of least common ancestor. In a tree-graph, the
least common ancestorof v1 and v2, denoted by 
lca(v1, v2), is a common ancestor of v1 and v2 such that
every common ancestor w of v1 and v2 satisfies
w≤ lca(v1, v2). For any vertex pair (v1, v2) of a mapping,
we define a branching system with reference to their
least common ancestor (figure 3c). Descendants of the
least common ancestor (including the least common
ancestor itself) represent the branching system B1. The
images of a1 and b2 define another branching system B2.
The new constraint implies that: any vertex in branching
system B1 can only be mapped onto branching system B2. 

D T1, T2 = min
S ∈S

d S = min
M ∈M

d M .

min
S ∈S

d S = min
M ∈M

d M

γ S * = γ M * = min
M ∈M

γ M ≤ min
S ∈S

γ S .

min
S ∈S

γ S ≥ min
M ∈M

γ M .

γ M = d v1, v2Σ
v1, v2 ∈ M

+ d v1, λΣ
v1 ∈ M1

+ d λ,v2Σ
v2 ∈ M2

.

2 A path from v1 to v2 is a sequence of vertices (w1, w2,… wn)
such that w1 = v1, wn = v2 and for each consecutive pair of ver-
tices (wi , wi +1) in the sequence, wi is the father of wi +1. 
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Mappings that preserve ancestor relationship and tree
separation are called valid mappings. A valid mapping M
is a set of ordered pairs (v1, v2) of vertices satisfying: 

v1 ∈ T1, v2 ∈ T2, and for any pair (v1, v2), (w1, w2), (u1, u2) in M

v1 = w1 ⇔ v2 = w2 (4)

v1 ≤ w1 ⇔ v2 ‹ w2 (5)

lca(v1, w1) < u1 ⇔ lca(v2, w2) < u2. (6)

Condition (5) expresses ancestor relationship conserva-
tion and condition (6) expresses a conservation of

branching systems. The set of valid matching functions
is denoted by Mv. We can now define a dissimilarity
measure between T1 and T2 as:

(7)

Zhang showed that the dissimilarity measure is a dis-
tance3 [43]. According to this definition, Zhang [43, 44]

D T1, T2 = min
M ∈Mv

γ M .

3 This means that D is a dissimilarity measure which respects
the triangle inequality.

Figure 3. Allowed and forbidden matching functions in tree graph comparisons: (a) preservation of ancestor relationship, (b) non-
preservation of ancestor relationship, (c) preservation of branching system, (d) non-preservation of branching system. This mapping
verifies conditions (4) and (5) but not (6).

B1

B2
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proposed an algorithm with bounded complexity for
solving the optimization problem (7) which consists of
finding a valid matching function with minimum cost.
To improve the analysis of the algorithm output and con-
sider new extensions, the computation of matching lists,
i.e. the computation of mapped vertices, has been devel-
oped in [7].

The algorithm described by Zhang [43, 44] uses a
recursive expression for calculating distances between
sub-trees of T1 and T2 (detailed in [7]). This algorithm
solves the problem of computing D (T1, T2) in polynomi-
al time. Figure 4 illustrates the computation time in rela-
tion with the size of the tree graphs.

4. THE LOCAL COST FUNCTION

As described in [18, 28, 43] and the previous section,
if a distance measure is to be determined between
sequences or tree graphs based upon edit operations, it is
necessary to consider an elementary distance between
the components of the sequences or tree graphs. In the
case of plant comparison, a local distance (called the
local cost function) assigns to each pair of entities
(v1, v2) of two plants T1 and T2 (represented by two tree
graphs), a non-negative real number (called a cost) for
deleting v1, for inserting v2, and for changing v1 into v2.
There are several possible methods for quantifying the
difference between any two plant elements depending on
the aim of the application.

A simple cost function used for comparing elementary
entities is based on a binary distance called a
Levenstein’s distance [22]. In this case, a null cost is

assigned to any changing operation and a cost of one to
any insert-delete operation. A local cost defined in this
way does not take into account the nature of the entities,
so the distance is independent of the entities involved in
the operation. A distance based on such a local cost
function only involves the topological structure of plants
and is called a topological cost.

This binary distance can be refined by using entity
attributes such as length, diameter, types, etc., and defin-
ing a distance in this space. We will suppose that, for
each elementary entity v of T1 and T2, precisely n attrib-
utes a1(v), a2(v),…, an(v) are defined which may have
symbolic or numerical values. In cases of multiple
numerical attributes (n > 1), it is necessary to homoge-
nize the attribute dynamics so that they have a compara-
ble importance in the definition of the metric. The
standardization[15] of data consists of calculating the
mean value mi of each variable ai and then computing for
each plant T a measure of the dispersion of this variable.
Traditionally, the standard deviation is used:

(8)

Let us assume that si is not zero (otherwise the variable fi
is a constant). The standardized measurements are thus
defined by:

(9)

For numerical attributes, the elementary distance
between two entities (v1, v2) is a metric distance in n-
dimensional space, and in practice this distance is often
computed as the Manhattan distance:

(10)

The insert-delete cost can be defined in several ways,
provided that equation (1) is satisfied. For example, the
insert-delete cost may be chosen to be proportional to the
sum of the absolute values of the attributes:

(11)

In order to ensure that such a local cost satisfies equation
(1), µ must be a real number greater than or equal to 1.0.
With such a local distance, the insert-delete cost for each
entity is directly dependent upon its nature. Another way
to define the insert-delete cost is to render it proportional

d ins v1 = µ fi v1Σ
i = 1

n

and ddel v2 = µ fi v2 .Σ
i = 1

n

d v1, v2 = fi v1 – fi v2Σ
i = 1

n

.

fi vk =
ai vk – mi

si
.

si =
1

n – 1
ai vk – mi

2Σ
vk ∈ T1 ∪ T2

.

Figure 4. Computation time according to the size of the tree
graphs (run on a SGI5000 Silicon graphics station).
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to the absolute difference between the maximum and the
minimum values of the attributes:

(12)

In order to ensure that such a local cost satisfies equation
(1), µ must be a real number strictly greater than 0.5 [7].
Both the insert and delete costs are the most widely used
in real and theoretical applications of this method [18].

Only a finite number of symbols are available for
symbolic attributes. The distance between entities is
defined as the distance between the different symbols. In
practice the user must construct a cost matrix between
these symbols. In figure 5, T1 and T2 are two theoretical
plants. A symbolic attribute, called a label, taken from
{ a,b,c,d} is attached to each entity. Table I indicates the
heuristic costs used when comparing these labels. If an
entity with a given label is inserted or deleted, the
assigned cost is shown in the Null column. The changing
cost between two elementary entities relies on the com-
parison of their labels which is indicated in the corre-
sponding cell. In our example, the cost of comparing
entity 1 and entity 2 of type a and b respectively, is 10.
Thus, plantsT1 and T2 are considered different while in a
topological sense they are identical. With such local
costs, the distance between the plants not only takes into
account the topological structure of plants but also other
architectural information.

Both types of attributes can be mixed within an appro-
priate local distance. Let f1, f2,…, fk, be k numerical
attribute functions and let fk+1, fk+2,…, fn be n symbolic
attribute functions. According to the previous discussion,
n cost matrices must be constructed that define, for each
symbolic attribute, the distance between symbols. Thus,
for each pair of entities (v1, v2) of T1 and T2 and for each
symbolic attribute fi , there exists a cost ci (v1, v2) for
changing the symbol fi (v1) into fi (v2). In the most general
form, a local distance is expressed as follows:

(13)

The local cost function and the insert-delete cost are cho-
sen depending on the application. The effect of this
choice is discussed in the next section.

5. EFFECT OF COMPARISON PARAMETERS

The distance between plants depends on two main
parameters: the topological structure of the plants and
the local distance between entities. The effect of both
parameters is analyzed hereafter using several sets of
theoretical plants represented in figures 6 and 7. In each
set of plants (S1), (S2), (S3) and (S4), each pair of plants
was compared by the algorithm using an appropriate
local distance. A matrix of the distances between plants
was thus obtained and these matrices were studied and
analyzed depending on the application.

5.1 Effect of topological structure 

Two topological structures may be different because
of two major factors: their number of entities and the

d v1, v2 = fi v1 – fi v2Σ
i = 1

k

+ ci v1, v2Σ
i = k +1

n

.

d ins v1 = ddel v2 = µ max
v ∈ T1 ∪ T2

fi v – min
v ∈ T1 ∪ T2

fi vΣ
i = 1

n

.

Figure 5. Comparison by label. (a) Theoretical tree graphs
with labeled entities. For each entity, a represents a large
length and a large diameter, b represents a small length and a
large diameter of the entity, c represents a small length and a
small diameter, and d represents a large length and a small
diameter. These values are graphically represented on the bio-
logical representation (b). (c) Distance from T1 to T2 and T3 as
computed by the algorithm.

Table I. Heuristic local distance between label a, b, c and d.
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Figure 6. Topological comparison. (a) Sets S1 and S2 of theoretical plants built from T1 and T2. (b) Distance from plants of S1 and S2
to reference plant T1 on a logarithmic scale.
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Figure 7. Two sets of theoretical plants: (a) Plants of S3 have different topologies. In the figure, plants are sorted according to their
topological similarity to the reference plant T1. (b) Plants of S4 have a similar topology and different geometry.
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organization of the connections between their entities.
These differences between two topological structures
were evaluated separately using a topological costwhich
gives results independent of the nature of the entities.

Effect of the number of entities. The effect on the
comparison of the difference in the number of plant enti-
ties was studied. A reference plant T1 made up of ten ele-
mentary entities was constructed. One set of theoretical
plants (S1) was generated by decreasing or increasing the
number of entities on each axis of the reference plant. A
set of fifteen plants was thus obtained with between six
and five hundred entities. A second set (S2) of twelve
plants was defined using the same method for another
reference plant T2. Figure 6 shows the distances from the
plants of (S1) and (S2) to the reference plant T1. When the
difference in the number of entities between a given
plant and T1 is large, the distance between the plants cor-
responds to the difference in their number of elementary
entities. Thus, the method proposed in this paper pro-
vides interesting information only for plants with a com-
parable number of entities.

Effect of connection between entities. If two plants
have an equal number of entities, their topological struc-
ture may still differ because of the organization of the
entity connections. To study this factor, we built two sets
of seven theoretical plants containing ten elementary
entities in their decomposition. The first set of plants (S3)
contains seven plants and is sorted according to the simi-
larity of each plant to the reference plant T1 (figure 7a).
The second set gives an example of seven theoretical
plants (figure 7b) with a null topological distance
between each other but which are geometrically differ-
ent. In (S4) each plant is again composed of ten entities.
Plants T1 and T2 have identical topological structures but
different spatial arrangements. Plant T2 is the mirror-
image of T1, i.e. both plants have the same branching
systems but in a symmetric position with respect to a
vertical axis. The algorithm gives a null distance
between them:

D (T1, T2) = 0. (14)

The spatial ordering of the children of a given entity is
not taken into account by the method. Plants T3, T4, T5,
T6 and T7 have identical topological structures but differ
with respect to the types of connections between their
entities. The algorithm based on a topological cost does
not distinguish the different types of connections (“+” or
“<”) between two entities. However, to make such a dis-
tinction with the algorithm, an attribute must be associat-
ed with each entity representing the connection relation
between the entity and its father. A local cost depending
on this attribute would thus take into account the type of
connections between entities. These connections often

influence the geometrical disposition of the entities. For
example, a series of entities connected by a link “<” is an
axis which often can be represented as a straight seg-
ment. Such a local cost allows us to account for part of
the geometric description of the entities in plants.

5.2 Effect of the local cost function

In the previous section, we compared the topological
structures of plants without knowing the nature of the
entities. This nature can be taken into account by defin-
ing a local distance based on the attributes of the entities.
The local cost function may vary by two major parame-
ters, the choice of the entity features (e.g. length, diame-
ter) and the insert-delete cost. Different changing costs
are defined as shown in (11) and (13) to evaluate the
influence of attributes. The different values of the insert-
delete cost are discussed later.

Effect of attributes. Set (S3) was used to study the
effect of different local cost functions (figure 7a). Each
entity of each plant was associated with several attributes
such as length, diameter, number of internodes. For each
attribute fi (i ≥ 1), a local cost function was defined as
follows:

di (v1, v2) = | fi (v1) – fi (v2)| (15)

dins,i (v1) = fi (v1) and × ddel,i (v2) = fi (v2). (16)

The above algorithm was used to compare plants with
the different local cost functions, including a
Levenstein’s distance denoted by d0 [22]. For each di
(i ≥ 0), a distance matrix Mi, with a size 7×7, was
obtained. The individual elements of Mi , Di (Tk, Tl ), are
computed according to the definition of the distance
given by (7). In order to compare distance matrices, each
individual element Di (Tk, Tl ) is divided by the distance
between T1 and T8 (this pair being arbitrarily chosen).
These normalized distances are denoted by Dn

i :

(17)

For each fi , the mean distance to the reference plant T1,
denoted by D

—n
i , is computed. Figure 8gives the value of

D
—n

i (T1) in different cases. It can be observed that for
attributes showing marked variability, such as the length
or diameter entities, the mean distance to T1 is very dif-
ferent from the topological mean distance. On the other
hand, for attributes such as the number of internodes per
growth unit, which are roughly constant over the sets of
entities, the computed mean distance is far closer to the
topological mean distance. 

Di
n Tk, Tl =

Dfi
Tk, Tl

Dfi
T1, T8

.
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Effect of insert-delete cost. In equations (11) and (12)
several types of insert-delete cost were presented for
each local cost function based on a given attribute, that
were constant or dependent upon each entity. Set (S3) is
used to study the changes in the distance when the insert-
delete cost varies. Hereafter, only the length attribute is
considered (the results are similar for other attributes)
and the local cost was defined as in (10):

d(v1, v2) = |length (v1) – length (v2) | (18)

(19)

(20)

Both coefficients µ1 and µ2 are real numbers which vary
from 0.5 to infinity and 1.0 to infinity respectively [7].
We obtained different distance matrices for each value of
µ1 and µ2. These matrices were normalized as explained
in the previous section and the mean distance to the ref-
erence plant D

—n
i (T1) was considered. Figure 8 presents

the evaluation of the mean distance to the reference
plants when µ1 is increasing (the same results can be
observed with µ2). When the cost for inserting or delet-
ing increases, the mean distance to a reference plant
decreases to a limit value equal to the mean distance to a
reference tree when considering topological cost. This
limit value is always obtained rapidly and depends on
the attribute and the chosen insert-delete cost. If µ1 or µ2
are infinite, the normalized distance is equivalent to the
normalized distance in the topological case. On the other
hand when µ1 or µ2 are equal to a minimum value, the
effect of the insert-delete cost on the result reaches a
maximum.

6. APPLICATIONS

This section briefly illustrates the use of the compari-
son method in different application contexts. The com-
parison algorithm discussed in this paper is used as a
means to compare the phenotypic expression of plants.
To stress the generic character of this method, three
examples have been selected for comparing plants with
different degrees of genetic distances: the first example
illustrates the definition of a distance between groups of
plants corresponding to different growth strategies and is
based on a comparison of ideal individuals representing
the different groups. The second example illustrates the
definition of a distance between individuals of a given
genus, but with different species. Finally, the third exam-
ple sketches out the application of the method in the
comparison of hybrid individuals obtained by crossing
two fruit tree varieties. Each application outlines
different aspects of the  comparison algorithm.

From a practical point of view, the user of the com-
parison algorithm must first define a local distance
between elementary entities. This distance is defined
using either real or symbolic attributes of entities. The
comparison algorithm can then be used in two different
contexts: either to assess the architectural variability of a
set of plants or to carry out a piece-by-piece comparison
between two plants. When used for sets of plants, the
algorithm produces distance matrices that can be ana-
lyzed by classical clustering methods, e.g. [15]. For pairs
of plants, the algorithm outputs a list of all the matched
entities. A detailed analysis of the matched subparts of
the plants can then be realized. 

d ins v1 = µ2 × max
v ∈ T1 ∪ T2

length v – min
v ∈ T1 ∪ T2

length v

ddel v2 = µ2 × max
v ∈ T1 ∪ T2

length v – min
v ∈ T1 ∪ T2

length v

.

d ins v1 = µ1 × length v1

ddel v2 = µ1 × length v2

Figure 8. Mean distance to the reference plant T1. (a) Value of
the mean distance using several local costs, (b) Changes in the
mean distance according to the changes in the insert-delete cost
value, the gray line represents the mean distance with a
Levenstein’s distance and its asymptote.

Coefficient µ
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Distance between architectural models. In the
1970’s, Hallé et al. [12, 13] proposed to identify a finite
number of growing strategies characterizing the develop-
ment of tropical plants. Each growing strategy is identi-
fied by a growth pattern, called an architectural model,
defined by a combination of a limited set of morphologi-
cal features [1]: the growth type(rhythmic or continuous
growth), the branching pattern(presence or absence of
vegetative branching, terminal or lateral branching,
monopodial or sympodial branching, rhythmic, continu-
ous or diffuse branching), the morphological differentia-
tion of axes(orthotropy or plagiotropy) and the position
of sexuality(terminal or lateral). For example, Corner’s
model corresponds to unbranched plants with lateral
inflorescences. Up to 23 different models were thus
identified corresponding to different combinations of
morphological features. Using these concepts, Hallé and
Oldeman [12] discussed the relationships between these
models reflecting the architectural proximity of certain
groups: for example Prévost’s model and Leeuwenberg’s
model are claimed to be close since Prévost’s model
derives from Leeuwenberg’s model by linear indefinite
repetition [12]. Recently, Robinson [31] attempted to
formalize the combination of these morphological char-
acters by introducing an appropriate coding strategy
which underlines the model similarities. For instance,
Massart’s model, coded by the chain of symbols (O)r(P),
is close to Cook’s model coded by (O)c(P) (where (O)
symbolises an orthotropic trunk, r and c respectively rep-
resent rhythmic and continuous branching and (P) repre-
sents plagiotropic branching). According to Robinson,
this formalism defines “an appropriate symbolism that
would give a framework within which relationships
between the models could be explored”. 

In the following application, we show how the pro-
posed comparison algorithm can be used as a new
method for comparing architectural models. We selected
12 theoretical plants representing 12 different models
which can be easily modeled as tree graphs. The plants
were defined with the same number of entities. Fruit
position and axis orientation were described by corre-
sponding attributes associated with each entity.
Continuous branching was represented by the presence
of one branch on each entity of the trunk, and rhythmic
branching was symbolized by two branches on regularly
spaced entities of the axes to represent branch whorls.
The growth type was not represented here. A local cost
was defined depending on axis orientation, fruit position
and father-son relationships for each entity with the
attributes having identical weights. The 12 plants were
compared providing a matrix distance between “mod-
els”. The distance between the plants was consistent with
the used of a clustering algorithm. The taxonomy tree [2]
output by this clustering technique is a tree whose termi-

nal vertices represent the architectural models and the
non–terminal vertices represent the distance between the
models contained in the sub-trees (figure 9). Three clus-
ters can be identified: A Holtum’s cluster containing
Corner’s and Chamberlain’s model which is defined by a
monopodial or sympodial trunk without branches, a
Leeuwenberg’s cluster characterised by a sympodial
branching sequence or a true dichotomy, and an interme-
diate cluster which contains models such as Massart’s,
and Roux’s models (In another interpretation,
Scarronne’s model could be isolated in a fourth cluster). 

Taxonomy trees between different species or genera
usually reflect a genetic distance, e.g. [36]. The compari-
son algorithm produces another type of taxonomy tree,
reflecting a phenotypic distance between groups of plants.  

Clustering of pine families. The piece-by-piece plant
comparison algorithm presented here was also used to
compare a set of five Pinus nigra and five Pinus halepen-
sis, 8-years old, described at growth unit scale, and
obtained from simulation (figure 10). Three global vari-
ables were associated with each tree, namely the mean
length of the tree growth units, the number of tree com-
ponents and the number of branches along the trunk.
These variables characterize different aspects of the tree
morphology. A distance between two trees was defined
for each global variables corresponding to the difference
between the values for this variable in the two trees.
Three matrices were computed for the set of 10 trees,
corresponding to these 3 distances. Finally, a fourth
matrix distance was computed using the plant compari-
son method presented above and Levenstein’s distance.

Then, for each matrix, a classical clustering method
[15] was applied to automatically separate the set of 10
pines into two clusters. We compared the obtained clus-
ters with the original pine families. We then computed a
recognition rate corresponding to the number of individ-
uals correctly classified for the 10 individuals. Figure 11
shows that the recognition rate may vary markedly
depending on the considered global variable and that the
highest recognition rate (100%) was obtained for the
topological comparison. This suggests that plant archi-
tectures cannot always be reduced to global variables in
applications using plant architecture comparison. A
piece-by-piece comparison may in fact be necessary.

Detailed comparison of hybrids. This application is
intended to illustrate another aspect of the comparison
algorithm output. After a piece-by-piece comparison, the
algorithm provides the optimal sequence of edit opera-
tions found. The corresponding mapping between the
plant entities can be observed using three-dimensional
plant reconstruction [9]. Coloring tools used for 3-D rep-
resentation provide a feed-back on the detailed matching
between elementary tree entities. This type of analysis
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showed that some local similarities between two plants
can appear in a global comparison. Let us consider for
example the mapping resulting from the comparison of
two apple tree hybrids measured at internode scale

(figure 12). The parts of the plants shown with identical
colors have been mapped onto each other by the compar-
ison algorithm and entities in black have been inserted or
deleted. This mapping reveals an interesting similarity

Figure 9. Taxonomy tree whose
terminal vertices correspond to
architectural models and the
non–terminal vertices represent the
distances between the models
appearing on the leaves.
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between the two hybrids: the trunk of T1 (in grey) is
more similar to the (grey) branching system of T2 than to
the trunk of T2. This suggests that the differentiation
sequence of the meristem which created the T1 trunk is
similar to the differentiation sequence followed by the
meristem that created a T2 branch. The biologist can use
such results to orient her interpretation of the biological
phenomena. In such applications, the comparison
method gives the biologist a quantitative overview of the
similarity between two plants and a qualitative outline of
the similar subparts of both plants.

Figure 10.Three individuals from each pine set: Pinus halepensis on left-hand side and Pinus nigra on right-hand side.

Figure 11. Recognition rate of the clustering algorithm for dif-
ferent definitions of the distance between individual pine trees:
(a) distance defined as the difference of growth units, (b) ditto
but using the total number of branches on the trunk, (c) ditto
but using the number total number of growth unit, (d) distance
defined by the piece-by-piece comparison algorithm using a
Levenstein’s distance.

Figure 12. Detailed analysis: Each internode of the apple tree
on the left-hand side is colored according to its order: grey for
order 1, white for order 2 and 3. Black denotes deleted intern-
odes. The matched entities of the second apple tree are colored
with the same color as their image and the inserted entities are
colored in black. A similarity between the trunk of the first
apple tree and a branching of the second plant (in grey color) is
outlined by the matching.
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7. PERSPECTIVES

This paper develop a technique which opens new per-
spectives n plant architecture modelling. Motivated by
these early results, we considered extending the algorithm
to multiscale structures by adding a new constraint to take
into account all information contained in the plant
description. In order to express both the modularity and
multiscale nature of plant structures and to define a com-
parison method according to the topological structure of
plants, we used a formalism based on multiscale tree
graphs [8]. Another application of this algorithm consists
of identifying a branching system in a plant and then
proposing an automatic labeling method of a set of plants.

The differences between this analytical method and
other methods for comparing plants need further investi-
gation. The definition of a distance between plants high-
lights some general aspects concerning plant comparison
are pointed out: clustering problems, automatic labeling
of plant structure and, above all, the evaluation of simu-
lated plants. These methods will be a useful and essential
tool to improve plant simulation techniques.

8. CONCLUSION

In this paper we propose an analytical methodology
for comparing plants at a macroscopic scale. Such a
method gives a strong meaning to the concept of similar-
ity between plants. The piece-by-piece tree comparison
presented here was tested on various plant databases
(measured apple trees, simulated and real pines).

This work is part of a project to develop quantitative
evaluation tools for plant similarity. Such a tool gives a
point of view different from that of global methods and
uses the topological structure of plants.
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