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ABSTRACT

This paper provides a temporal model for the propagation of transient a
ousti
 waves in


ontinuous inhomogeneous isotropi
 porous material having a rigid frame at low frequen
y range.

A temporal equivalent �uid model in whi
h the a
ousti
 wave propagates only in the �uid

saturating the material, is 
onsidered. In this model, the inertial e�e
ts are des
ribed by the

inhomogeneous inertial fa
tor [A.N. Norris., J. Wave Mat. Intera
t. 1 365 (1986)℄. The vis
ous

and thermal losses of the medium are des
ribed by two inhomogeneous sus
eptibility kernels

whi
h depend on the vis
ous and thermal permeabilities . The medium is one dimensional and

its physi
al parameters (porosity, inertial fa
tor, vis
ous and thermal permeabilities) are depth

dependent. A generalized wave propagation equation in 
ontinuous inhomogeneous material is

established and dis
ussed.
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I. INTRODUCTION

The propagation of sound in �uid-saturated porous media with rigid solid frames is of great

interest for a wide range of industrial appli
ations. With air as the pore �uid

1
appli
ations 
an be

found in noise 
ontrol, nondestru
tive material 
hara
terization, thermoa
ousti
ally 
ontrolled

heat transfer, et
.

The a
ousti
 propagation in homogeneous porous materials having rigid frame has been well

studied, di�erent methods and te
hniques were developed in frequen
y

1−5
and time domains

6−12

for the a
ousti
 
hara
terization. All these te
hniques are valid only for homogeneous porous

materials, in whi
h, their physi
al parameters are 
onstant inside the porous medium. However,

in the general 
ase, the porous media are inhomogeneous

13−15
and their physi
al properties are

lo
ally 
onstants, i.e. they are 
onstant in the elementary volume of homogenization

13
, but they

may vary from point to point in the porous medium. For this general 
ase, a good understanding

of the a
ousti
 propagation is ne
essary for developing a new methods of 
hara
terization. A

generalized hyperboli
 fra
tional equation for transient wave propagation in inhomogeneous

rigid-frame porous materials has been established in the asymptoti
 domain (high frequen
y

range)

15
, but not in the vis
ous domain (low frequen
y range), in whi
h another set of physi
al

parameters (inertial fa
tor, vis
ous and thermal permeabilities) intervene in the propagation.

The stati
 thermal permeability

16 k′0 of the porous material is a geometri
al parameter equal to

the inverse trapping 
onstant of the solid frame

17
. In the des
ription of the thermal ex
hanges

between the frame and the saturating �uid, the stati
 thermal permeability plays a role similar

to the vis
ous permeability in the des
ription of the vis
ous for
es. The inertial fa
tor

18 α0


orresponds to the low frequen
y approximation of the dynami
 tortuosity

1,6
given by Norris

18
;

α0 =
<v(r)2>

<v(r)>2 , where < v(r) > is the average velo
ity of the vis
ous �uid for dire
t 
urrent �ow

within a volume element, small 
ompared to the relevant wavelength, but large 
ompared to the

individual grains/pores of the solid.
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This time-domain approa
h is an alternative to the 
lassi
al frequen
y-domain model. It

is an advantage of the time-domain method

6−11,14,15,19−22
that the results are immediate and

dire
t. The attra
tion of a time domain based approa
h is that analysis is naturally bounded by

the �nite duration of a
ousti
 pressures and it is 
onsequently the most appropriate approa
h

for transient signals. However, for wave propagation generated by time harmoni
 in
ident waves

and sour
es (mono
hromati
 waves), the frequen
y analysis is more appropriate

1−5
.

This work follows the investigation previously done in Refs. 6 and 15, in whi
h a time-domain

approa
h was developed and a generalized hyperboli
 fra
tional equation of propagation has been

established in the asymptoti
 domain (high frequen
y range). Here, a general expression for the

equation of wave propagation in 
ontinuous inhomogeneous porous medium is derived at vis
ous

domain (low frequen
y range) .

The outline of this paper is as follows. Se
tion II shows the equivalent �uid model, the

relaxation fun
tions des
ribing the inertial, vis
ous and thermal intera
tions between �uid and

stru
ture are re
alled. In this se
tion, the 
onne
tion between the temporal operators and wave

propagation in rigid homogeneous porous media in the low frequen
y range is established. Finally,

in Se
tion III the analyti
al derivation of the general propagation equation is given in time

domain. The di�erent terms of this equation are dis
ussed.

II. THE EQUIVALENT FLUID MODEL

In air saturated porous media, the stru
ture is assumed to be motionless : the a
ousti
 waves

travel only in the �uid �lling the pores. The wave propagation is des
ribed by the equivalent

�uid model whi
h is a parti
ular 
ase of the Biot's theory

23
. In this model, the intera
tions

between the �uid and the stru
ture are taken into a

ount in two frequen
y dependent response

fa
tors whi
h are the generalized sus
eptibilities : the dynami
 tortuosity of the medium α(ω)3

and the dynami
 
ompressibility of the air in
luded in the medium β(ω)1,16. These two response
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fa
tors are 
omplex fun
tions whi
h heavily depend on the frequen
y f = ω/2π, ω is the angular

frequen
y. These fun
tions represent the deviation from the behavior of the �uid in the free

spa
e as the frequen
y in
reases. Their theoreti
al expressions are given by Johnson et al3, and

Allard

1
and Lafarge et al16 :

α(ω) = α∞

(

1 +
φσ

iωα∞ρ

√

1 + i
4α2

∞
ηρω

σ2Λ2φ2

)

, (1)

β(ω) = γ − (γ − 1)



1 +
ηφ

iωρk′0Pr

√

1 + i
4k′20 ρωPr

ηφ2Λ′2





−1

, (2)

where i2 = −1, γ represents the adiabati
 
onstant, Pr the Prandtl number, α∞ the tortuosity,

σ the �ow resistivity, Λ and Λ′
the vis
ous and thermal 
hara
teristi
 lengths

1,3
, η is the �uid

vis
osity, φ is the porosity and ρ is the �uid density. This model was initially developed by

Johnson

3
, and 
ompleted by Allard

1
by adding the des
ription of thermal e�e
ts. Later on,

Lafarge

16
introdu
ed the parameter k′0 whi
h des
ribes the additional damping of sound waves

due to the thermal ex
hanges between �uid and stru
ture at the surfa
e of the pores. Generally

the ration between Λ′
and Λ is between 1 and 3.

The fun
tions α(ω) and β(ω) express the vis
ous and thermal ex
hanges between the air and

the stru
ture whi
h are responsible of the sound damping in a
ousti
 materials. These ex
hanges

are due on the one hand to the �uid-stru
ture relative motion and on the other hand to the air


ompressions-dilatations produ
ed by the wave motion. The part of the �uid a�e
ted by these

ex
hanges 
an be estimated by the ratio of a mi
ros
opi
 
hara
teristi
 length of the media, as for

example the sizes of the pores, to the vis
ous and thermal skin depth thi
kness δ = (2η/ωρ)1/2

and δ′ = (2η/ωρPr)
1/2

. For the vis
ous e�e
ts this domain 
orresponds to the region of the �uid

in whi
h the velo
ity distribution is perturbed by the fri
tional for
es at the interfa
e between

the vis
ous �uid and the motionless stru
ture. For the thermal e�e
ts, it is the �uid volume

a�e
ted by the heat ex
hanges between the two phases of the porous medium, the solid skeleton

being seen as a heat sink. At low frequen
ies (vis
ous domain)

24
, the vis
ous and thermal skin

thi
knesses are mu
h larger than the radius of the pores δ/r ≫ 1 and δ′/r ≫ 1. The vis
ous
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for
es are important everywhere in the �uid, the 
ompression dilatation 
y
le in the porous

material is slow enough to favor the thermal intera
tions between �uid and stru
ture. At the

same time the temperature of the frame is pra
ti
ally un
hanged by the passage of the sound

wave be
ause of the high value of its spe
i�
 heat : the frame a
ts as a thermostat. In this 
ase,

the expressions of the dynami
 tortuosity and 
ompressibility are given by the relations

24,25
:

α(ω) = α0

(

1 +
ηφ

j ωα0ρk0

)

, (3)

β(ω) = γ −
(γ − 1)ρk′0Pr

ηφ
jω, (4)

where j2 = −1, γ represents the adiabati
 
onstant, Pr the Prandtl number, k is the vis
ous

permeability related to the �ow resistivity σ by the relation : k = η/σ.

In the time domain, the fa
tors α(ω) and β(ω) are operators and their asymptoti
 expressions

are given by

24,25
:

α̃(t) = α0

(

δ(t) +
ηφ

α0ρk0
∂−1
t

)

, (5)

β̃(t) = γδ(t) −
(γ − 1)ρk′0Pr

ηφ
∂t. (6)

In these equations, ∂−1
t is the integral operator ∂−1

t g(t) =
∫ t
0 g(t

′)dt′. In ea
h of these equations

the �rst term in the right hand side is the instantaneous response of the medium (δ(t) is the Dira


fun
tion) while the se
ond term is the memory fun
tion. In ele
tromagnetism, the instantaneous

response is 
alled opti
al response. It des
ribes all the pro
esses whi
h 
annot be resolved by

the signal.

In this framework, the basi
 equations of the a
ousti
 waves propagation along the positive axis

dire
tion are :

ρα̃(t) ∗
∂w

∂t
= −φ

∂p

∂x
, (7)

φβ̃(t)

Ka
∗
∂p

∂t
= −

∂w

∂x
. (8)

The �rst equation is the Euler equation, the se
ond one is the 
onstitutive equation. Ka is the

bulk modulus of air, p is a
ousti
 pressure and w = φv where v is the parti
le velo
ity, ∗ denotes
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the shorthand notation for the time 
onvolution

(f ∗ g)(t) =

∫ t

0
f(t− t′)g(t′)dt′. (9)

The wave equation is dedu
ed from these equations

24,25
:

∂2p(x, t)

∂x2
−

1

c2
∂2p(x, t)

∂t2
−A

∂p(x, t)

∂t
+B

∂3p(x, t)

∂t3
= 0, (10)

where the 
oe�
ients c, A and B are 
onstants respe
tively given by ;

1

c2
=

ρ

Ka

(

α0γ −
(γ − 1)Prk

′

0

k0

)

, A =
ηφγ

Kak0
=

φσγ

Ka
, B =

ρ2(γ − 1)k′0Prα0

Kaηφ
, (11)

the �rst one is related to the wavefront velo
ity c = 1/

√

ρ
(

α0γ −
(γ−1)Prk′0

k0

)

/Ka of the wave in

the air in
luded in the porous material. The term

(

α0γ −
(γ−1)Prk′0

k0

)

appears as the refra
tive

index of the medium whi
h 
hanges the wave velo
ity from c0 =
√

Ka/ρ in free spa
e to

c = c0/

√

(

α0γ −
(γ−1)Prk′0

k0

)

in the porous medium. The originality of this wavefront velo
ity is

its dependen
e on the inertial, vis
ous and thermal e�e
ts in the porous material, 
ompared to

the wavefront velo
ity in high frequen
y range

6,10,11,15
whi
h depends only on inertial intera
tions

via the tortuosity α∞. The 
oe�
ient A is responsible of the attenuation of the wave without

dispersion due to the vis
ous losses via the vis
ous permeability k0. The 
onstant B governs the

spreading of the signal, and des
ribes the dispersion due to the thermal intera
tions between

�uid and stru
ture via the thermal permeability k′0. To note that in this regime of frequen
y,

the dispersion phenomena des
ribing by the term B ∂3p(x, t)/∂t3 is not as important as in the

high frequen
y range, in whi
h the fra
tional derivatives

6,10,11,15
are needed to des
ribe in time

domain the high dispersion in the porous material. This propagation equation has been solved

analyti
ally in Ref. 24. The dire
t

24
and inverse

25−27
s
attering problem for a slab of porous

material has been studied given a good estimation of the physi
al parameters (vis
ous and

thermal permeabilities, and inertial fa
tor).
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III. GENERALIZED PROPAGATION EQUATION IN INHO-

MOGENEOUS POROUS MATERIALS

Consider the propagation of transient a
ousti
 waves in 
ontinuous inhomogeneous porous

material having rigid frame. In this material, the a
ousti
al parameters (inertial fa
tor, poro-

sity, vis
ous and thermal permeability) depend on the thi
kness, and are 
ontinuous fun
tions.

For a wave propagating along the x−axis, the �uid-stru
ture intera
tions are des
ribed by the

inhomogeneous relaxation operators α(x, t) and β(x, t) given by

α̃(x, t) = α0(x)

(

δ(t) +
ηφ(x)

α0(x)ρk(x)
∂−1
t

)

, (12)

β̃(x, t) = γδ(t) −
(γ − 1)ρk′(x)Pr

ηφ(x)
∂t. (13)

In these equations, the porosity φ(x), the tortuosity α0(x), vis
ous and thermal permeability

k(x) and k′(x) depend on the thi
kness of the porous material for des
ribing the inhomogeneous

losses in the material.

In this framework, the basi
 equations

13−15
for our model 
an be written as

ρα(x, t) ∗
∂w(x, t)

∂t
= −φ(x)

∂p(x, t)

∂x
, (14)

φ(x)

Ka
β(x, t) ∗

∂p(x, t)

∂t
= −

∂w(x, t)

∂x
. (15)

In the next se
tion, the generalized propagation equation in 
ontinuous inhomogeneous porous

material having an a
ousti
al parameters varying with depth is derived. The derivation of the

generalized wave equation in an inhomogeneous porous material is important for 
omputing

the propagation of an a
ousti
 pulse inside the medium, and for solving the dire
t and inverse

s
attering problems.

Let us 
onsider the Euler equation (14) and the 
onstitutive one (15) in an in�nite inhomogeneous

porous material. By putting

a(x) =
ηφ(x)

α0(x)ρk(x)
and b(x) =

(γ − 1)ρk′(x)Pr

ηφ(x)
,

8



we obtain :

ρα0(x)δ(t) ∗
∂w(x, t)

∂t
+ a(x)w(x, t) = −φ(x)

∂p(x, t)

∂x
, (16)

φ(x)

Ka
γδ(t) ∗

∂p(x, t)

∂t
− b(x)

∂2p(x, t)

∂t2
= −

∂w(x, t)

∂x
. (17)

We note P (x, z) the Lapla
e transform of p(x, t) de�ned by

P (x, z) = L [p(x, t)] =

∫

∞

0
exp(−zt)p(x, t)dt. (18)

The Lapla
e transform of Eqs. 16, 17 yields

ρα0(x)

[

1 +
a(x)

z

]

zW (x, z) = −φ(x)
∂P (x, z)

∂x
, (19)

φ(x)

Ka
[γ − b(x)z] zP (x, z) = −

∂W

∂x
(x, z), (20)

where W (x, z) is the Lapla
e transform of w(x, t).

Using Eqs. 19 and 20 and the 
al
ulus developed in Appendix. A, we obtain the following

equation

∂2P (x, z)

∂x2
=

[

∂

∂x
ln

α0(x)

φ(x)
+

∂a(x)

∂x

(

1

z + a(x)

)]

∂P (x, z)

∂x

+
ρα0(x)

Ka

[

−b(x)z3 + (γ − a(x)b(x)) z2 + γa(x)z
]

P (x, z). (21)

Using the inverse Lapla
e transform of Eq. 21 and the initial 
onditions

10
;

∂p
∂t (x, 0) = p(x, 0) = 0,

we �nd the generalized propagation equation in time domain.

∂2p(x, t)

∂x2
−

1

c2(x)

∂2p(x, t)

∂t2
−A′(x)

∂p(x, t)

∂t
+B′(x)

∂3p(x, t)

∂t3

−
∂a(x)

∂x

∫ t

0
exp (−τa(x))

∂p(x, t− τ)

∂x
dτ −

∂

∂x

[

ln
α0(x)

φ(x)

]

∂p(x, t)

∂x
, (22)

where

1

c2(x)
=

ρα0(x) [γ − a(x)b(x)]

Ka
, A′(x) =

ρα0(x)γa(x)

Ka
, and B′(x) =

ρα0(x)b(x)

Ka
.

Eq. (22) is the generalized propagation equation for lossy inhomogeneous porous material in low

frequen
y range. This equation is very important for treating the dire
t and inverse s
attering

9



problems in inhomogeneous porous materials in time domain. It is easy to �nd the spe
ial 
ase

of homogeneous porous medium, i.e. when α0(x), φ(x), k(x) and k′(x) be
ome 
onstants (inde-

pendent of x), we �nd A′(x) = A(x), B′(x) = B, ∂a(x)/∂x = 0. In this 
ase, the generalized

wave propagation (Eq. 22) is redu
ed to the propagation equation in homogeneous material (Eq.

10).

The �rst and se
ond term in the propagation equation (22) :

∂2p
∂x2 (x, t)−

1
c2(x)

∂2p
∂t2

(x, t) des
ribe the

propagation (time translation) via the front wave velo
ity c(x). The term

√

(

α0(x)γ −
(γ−1)Prk′(x)

k(x)

)

appears as the refra
tive index of the medium whi
h 
hanges the wave velo
ity from c0 =
√

Ka/ρ

in free spa
e to c = c0/

√

(

α0(x)γ −
(γ−1)Prk′(x)

k(x)

)

in the porous medium. From this equation,

(as it has been shown in the homogeneous 
ase

24
), it 
an be seen that the inertial, vis
ous and

thermal e�e
ts are all responsible of the 
hange in the wave front velo
ity 
ompared to the high

frequen
y inhomogeneous 
ase

15
in whi
h only the inertial e�e
t modify the front wave velo
ity.

The third term in the propagation equation (22) :A′(x)∂p(x,t)∂t is the most important one for

des
ribing the a
ousti
 attenuation in porous materials at low frequen
y range

26
, it results on

the attenuation of the wave without dispersion. It depends on the vis
ous permeability, whi
h

is the most in�uential parameter in this domain of frequen
y. This term des
ribes the a
ousti


attenuation due to the vis
ous and inertial intera
tions between �uid and stru
ture. To note

that the thermal e�e
ts do not intervene in this therm. This 
an be explained by the fa
t that

the vis
ous e�e
ts are the most important at this range of frequen
y. The 
ontribution of the

thermal e�e
ts is taken into a

ount only in the se
ond term in Eq. 4. This term is very sensitive

to the spatial variation of the vis
ous permeability k(x).

The fourth term in the propagation equation (22) :B′(x)∂
3p(x,t)
∂t3

governs the spreading of the

signal, and des
ribes the weak dispersion due to the thermal intera
tions between �uid and

stru
ture via the spatial thermal permeability k′(x). To note that in this regime of frequen
y,

the dispersion phenomena des
ribed by this term are not as important as in the high frequen
y

range, in whi
h the fra
tional derivatives are needed to des
ribe in the time domain the high

10



dispersion in the porous material.

The �nal term :

∂
∂x

[

ln α0(x)
φ(x)

]

∂p(x,t)
∂x des
ribes the attenuation 
aused by the spatial variation

of the tortuosity and the porosity. In 
ontrast to the other terms, this term does not 
ontains

temporal derivative of the pressure, it is independent of the relaxations times of the medium

and thus to the frequen
y 
omponent of the a
ousti
 signal.

Finally the term in the propagation equation (22) : −
∂a(x)
∂x

∫ t
0 exp (−τa(x)) ∂p(x,t−τ)

∂x dτ des
ribes

the spatial variation of the inhomogeneity of the porous medium due to the inertial and vis
ous

intera
tions (there are no thermal e�e
ts) of the medium.

The generalized propagation equation derived at the vis
ous domain (low frequen
y range)

and given by Eq. 22 is very di�erent from the generalized fra
tional equation derived at the

asymptoti
 domain (high frequen
y range)

15
. The physi
al parameters des
ribing the propaga-

tion are not the same in the two domains, for example, the vis
ous and thermal intera
tions

between �uid and stru
ture are des
ribed by the vis
ous and thermal 
hara
teristi
 lengths Λ

and Λ′
at the asymptoti
 domain, however at the vis
ous domain, these intera
tions are des
ri-

bed by the vis
ous and thermal permeabilities k0 and k′0. The inertial e�e
ts are also des
ribed

by di�erent parameters at the two regimes of frequen
ies, the tortuosity α∞ is used for the high

frequen
y range, while the inertial fa
tor α0 is used at the low frequen
y range. In addition the

relaxations times responsible of the dispersion phenomenon and memory e�e
ts of the a
ous-

ti
 wave are expressed by di�erent temporal operators. It has been shown

6,15
in the asymptoti


domain (high frequen
y range), that the tortuosity and 
ompressibility operators depend on fra
-

tional operators for des
ribing the vis
ous and thermal intera
tions. These fra
tional operators

give a fra
tional derivative term in the generalized propagation equation for the inhomogeneous

material. This fra
tional term is not found in the derived equation (equation 22). For the vis
ous

domain 
orresponding to the low frequen
y range, the loss operator have a simple expressions,

whi
h are fun
tions of simple derivatives, and thus there is no fra
tional term in the generalized

propagation equation. However, we �nd a term with third derivative responsible of the disper-

11



sion whi
h is not found in the asymptoti
 domain. To note that the dispersion phenomenon

des
ribed by the fra
tional derivative

10,11
is more important in the asymptoti
 domain than the

dispersion phenomenon des
ribed by the third derivative term

24,25
in the vis
ous domain. The

porosity is the only parameter whi
h plays an important role in both the high and low frequen-


ies domains. The variation of the porosity with the depth φ(x) is found in the two generalize

equations (asymptoti
 and vis
ous domains).

Generally it is interesting to work at the very low frequen
ies, espe
ially when we want to

obtain the vis
ous permeability or the �ow resistivity by solving the inverse problem dire
tly

in time domain via transmitted or re�e
ted a
ousti
 waves

25−27
. In this 
ase, the e�e
t of the

inertial fa
tor α0 be
omes negligible in the expression of the inhomogeneous relaxation operator

α̃(x, t) given by Eq. 12, in this 
ase, we obtain the following expression :

α̃(x, t) =
ηφ(x)

ρk(x)
∂−1
t .

The vis
ous intera
tions are the most important in this 
ase, the inertial ex
hange between �uid

and stru
ture are negligible. The thermal permeability is not involved in the basi
 equations of

a
ousti
 in porous material in this domain of frequen
y. The inhomogeneous relaxation operator

β̃(x, t) be
omes independent of the depth x, its expression will be given by

β̃(t) = γδ(t),

In this framework, the basi
 equations of the model be
ome

ηφ(x)

k(x)
w(x, t) = −φ(x)

∂p(x, t)

∂x
, (23)

γφ(x)

Ka

∂p(x, t)

∂t
= −

∂w(x, t)

∂x
, (24)

where the Euler equation (23) is redu
ed to Dar
y's law whi
h de�nes the variation of the stati


�ow resistivity with the depth x ; σ(x) = η/k(x). The wave equation in time domain is given by

∂2p(x, t)

∂x2
+

[

∂

∂x
ln

(

k(x)

η

)]

∂p(x, t)

∂x
−

γηφ(x)

Kak(x)

∂p(x, t)

∂t
= 0 (25)

12



The �elds whi
h are varying in time, the pressure, the a
ousti
 velo
ity, et
., follow a di�usion

equation with the di�usion 
onstant

D(x) =
Kak(x)

γηφ(x)

A quite similar result is given in Refs. 6, 26 and 27 for the homogeneous porous materials. For

liquid saturated porous materials, the thermal expansion is negle
ted, and thus the adiabati



onstant does not appear in the Johnson's

28
model for homogeneous porous materials. We re
all

that in the homogeneous 
ase, we have the following di�usion equation :

∂2p(t)

∂x2
−

(

γηφ

Kak

)

∂p(t)

∂t
= 0. (26)

The main di�eren
e between Eqs. 25 and 26 is the depth dependen
e of the porosity φ(x) and the

vis
ous permeability k(x). In addition, the term :

∂
∂x ln

(

k(x)
η

)

∂p(x,t)
∂x des
ribes the attenuation


aused by the spatial variation of the permeability k(x) due to the inhomogeneity of the porous

material. At the very low frequen
ies, the generalized propagation equation (22) is redu
ed to

the di�usion equation (25). These equations are very important for the solving the dire
t and

inverse problem in time domain for the inhomogeneous porous materials. This is our obje
tive

in the future works.

IV. CONCLUSION

In this paper the generalized wave equation in inhomogeneous porous material is established

in the vis
ous domain (low frequen
y range when δ/r ≫ 1 and δ′/r ≫ 1). The di�erent terms of

the propagation equation show how the spatial variation of the inertial fa
tor, porosity, vis
ous

and thermal permeabilities a�e
t the propagation. In this propagation equation there is no

fra
tional derivatives as it has been shown in the asymptoti
 domain

15
(high frequen
y domain),

but a third derivative term is needed for des
ribing the dispersion in the porous material. At low

frequen
ies, the inertial, vis
ous and thermal e�e
ts are involved in the expression of the velo
ity

13



of the wavefront. The domain of very low frequen
y range is also studied and a generalized

di�usion equation is derived.

These established equations 
onstitute a basis for the resolution of the dire
t and inverse

s
attering problems. Future studies will 
on
entrate on methods and inversion algorithms to

optimize the a
ousti
 properties of inhomogeneous porous media.

14



APPENDIX. A

By di�erentiating both sides of Eq. 19 with respe
t to x, one �nds that

ρ
∂α0(x)

∂x
[z + a(x)]W (x, z) + ρα0(x)

∂a(x)

∂x
W (x, z)

+ρα0(x) [z + a(x)]
∂W (x, z)

∂x
= −φ(x)

∂2P (x, z)

∂x2
−

∂P (x, z)

∂x

∂φ(x)

∂x
. (27)

From Eq. 19, we obtain

W (x, z) =
−φ(x)

ρα0(x) [z + a(x)]

(

∂P (x, z)

∂x

)

(28)

The two �rst terms of Eq. 27 
an be written as

ρ
∂α0(x)

∂x
[z + a(x)]W (x, z) = −

∂α0(x)

∂x

φ(x)

α0(x)

∂P (x, z)

∂x

ρα0(x)
∂a(x)

∂x
W (x, z) = −

∂a(x)

∂x

φ(x)

z + a(x)

∂P (x, z)

∂x

Using Eq. 20, the third term of Eq. 27 
an be written as :

ρα0(x) [z + a(x)]
∂W (x, z)

∂x
= −

ρα0(x)φ(x)

Ka
[z + a(x)]

[

γz − b(x)z2
]

P (x, z)

Eq. 27 be
omes :

[

−
∂α0(x)

∂x

φ(x)

α0(x)
−

∂a(x)

∂x

(

φ(x)

z + a(x)

)]

∂P (x, z)

∂x
−

ρα0(x)φ(x)

Ka
[z + a(x)]

[

γz − b(x)z2
]

P (x, z)

= −
∂φ(x)

∂x

∂P (x, z)

∂x
− φ(x)

∂2P (x, z)

∂x2
(29)

By dividing the two members of Eq.29 by −φ(x), we obtain the relation (21).

15
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