N
N

N

HAL

open science

Generalized equation for transient-wave propagation in

continuous inhomogeneous rigid-frame porous materials

at low frequencies
Mohamed Fellah, Zine El Abiddine Fellah, Erick Ogam, F. G. Mitri, Claude
Dépollier

» To cite this version:

Mohamed Fellah, Zine El Abiddine Fellah, Erick Ogam, F. G. Mitri, Claude Dépollier.
ized equation for transient-wave propagation in continuous inhomogeneous rigid-frame porous ma-
terials at low frequencies. Journal of the Acoustical Society of America, 2013, 134 (6), pp.4642.

10.1121/1.4824838 . hal-00881886

HAL Id: hal-00881886
https://hal.science/hal-00881886

Submitted on 14 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

General-


https://hal.science/hal-00881886
https://hal.archives-ouvertes.fr

Generalized equation for transient-wave propagation in
continuous inhomogeneous rigid-frame porous materials

at low frequencies.

M. Fellah

Laboratoire de Physique Théorique, Faculté de Physique, USTHB, BP 32 El Alia, Bab Ezzouar
16111, Algérie.

Z.E.A Fellah, E. Ogam

LMA, CNRS, UPR 7051, Aiz-Marseille Univ, Centrale Marseille, F-13402 Marseille Cedex 20,
France.

F.G. Mitri

Los Alamos National Laboratory, MPA-11, Sensors Electrochemical Devices, Acoustics Sensors
Technology Team, MS D429, Los Alamos, NM 87545, USA.

C. Depollier

LUNAM Universite du Maine. UMR CNRS 6613 Laboratoire d’Acoustique de I’Universite du

Maine UFR STS Avenue O. Messiaen 72085 Le Mans CEDEX 09 France.

Submitted to publication in the Journal of Acoustical Society of America. !

running title : inhomogeneous porous material

1. Special issue on Acoustics of Porous Media



ABSTRACT

This paper provides a temporal model for the propagation of transient acoustic waves in
continuous inhomogeneous isotropic porous material having a rigid frame at low frequency range.
A temporal equivalent fluid model in which the acoustic wave propagates only in the fluid
saturating the material, is considered. In this model, the inertial effects are described by the
inhomogeneous inertial factor [A.N. Norris., J. Wave Mat. Interact. 1 365 (1986)]. The viscous
and thermal losses of the medium are described by two inhomogeneous susceptibility kernels
which depend on the viscous and thermal permeabilities . The medium is one dimensional and
its physical parameters (porosity, inertial factor, viscous and thermal permeabilities) are depth
dependent. A generalized wave propagation equation in continuous inhomogeneous material is

established and discussed.



I. INTRODUCTION

The propagation of sound in fluid-saturated porous media with rigid solid frames is of great
interest for a wide range of industrial applications. With air as the pore fluid! applications can be
found in noise control, nondestructive material characterization, thermoacoustically controlled
heat transfer, etc.

The acoustic propagation in homogeneous porous materials having rigid frame has been well

5 6—12

studied, different methods and techniques were developed in frequency'~> and time domains
for the acoustic characterization. All these techniques are valid only for homogeneous porous
materials, in which, their physical parameters are constant inside the porous medium. However,

13=15 and their physical properties are

in the general case, the porous media are inhomogeneous
locally constants, i.e. they are constant in the elementary volume of homogenization'®, but they
may vary from point to point in the porous medium. For this general case, a good understanding
of the acoustic propagation is necessary for developing a new methods of characterization. A
generalized hyperbolic fractional equation for transient wave propagation in inhomogeneous
rigid-frame porous materials has been established in the asymptotic domain (high frequency
range)'®, but not in the viscous domain (low frequency range), in which another set of physical
parameters (inertial factor, viscous and thermal permeabilities) intervene in the propagation.
The static thermal permeability'® k{ of the porous material is a geometrical parameter equal to
the inverse trapping constant of the solid frame'”. In the description of the thermal exchanges
between the frame and the saturating fluid, the static thermal permeability plays a role similar
to the viscous permeability in the description of the viscous forces. The inertial factor'® oy

corresponds to the low frequency approximation of the dynamic tortuosity'® given by Norris'®;

<v(r)2>
<v(r)>2’

oo = where < v(r) > is the average velocity of the viscous fluid for direct current flow
within a volume element, small compared to the relevant wavelength, but large compared to the

individual grains/pores of the solid.



This time-domain approach is an alternative to the classical frequency-domain model. It
is an advantage of the time-domain methodS—11:1415:19=22 that the results are immediate and
direct. The attraction of a time domain based approach is that analysis is naturally bounded by
the finite duration of acoustic pressures and it is consequently the most appropriate approach
for transient signals. However, for wave propagation generated by time harmonic incident waves
and sources (monochromatic waves), the frequency analysis is more appropriate! =5,

This work follows the investigation previously done in Refs. 6 and 15, in which a time-domain
approach was developed and a generalized hyperbolic fractional equation of propagation has been
established in the asymptotic domain (high frequency range). Here, a general expression for the
equation of wave propagation in continuous inhomogeneous porous medium is derived at viscous
domain (low frequency range) .

The outline of this paper is as follows. Section II shows the equivalent fluid model, the
relaxation functions describing the inertial, viscous and thermal interactions between fluid and
structure are recalled. In this section, the connection between the temporal operators and wave
propagation in rigid homogeneous porous media in the low frequency range is established. Finally,
in Section III the analytical derivation of the general propagation equation is given in time

domain. The different terms of this equation are discussed.

II. THE EQUIVALENT FLUID MODEL

In air saturated porous media, the structure is assumed to be motionless : the acoustic waves
travel only in the fluid filling the pores. The wave propagation is described by the equivalent
fluid model which is a particular case of the Biot’s theory?3. In this model, the interactions
between the fluid and the structure are taken into account in two frequency dependent response
3

factors which are the generalized susceptibilities : the dynamic tortuosity of the medium a(w)

and the dynamic compressibility of the air included in the medium B(w)'6. These two response



factors are complex functions which heavily depend on the frequency f = w/27, w is the angular
frequency. These functions represent the deviation from the behavior of the fluid in the free
space as the frequency increases. Their theoretical expressions are given by Johnson et al®, and

Allard! and Lafarge et al'6 :

po Ao npw
—1
n¢ Ak pwP;
=y—(v-1 |14+ ——/1+i————F 2
6(("}) Y (’7 ) + prk6PT + n¢2Al2 ’ ( )
where i? = —1, 7 represents the adiabatic constant, P, the Prandtl number, oo the tortuosity,

o the flow resistivity, A and A’ the viscous and thermal characteristic lengths'3, 7 is the fluid
viscosity, ¢ is the porosity and p is the fluid density. This model was initially developed by
Johnson®, and completed by Allard! by adding the description of thermal effects. Later on,
Lafarge' introduced the parameter k{, which describes the additional damping of sound waves
due to the thermal exchanges between fluid and structure at the surface of the pores. Generally
the ration between A’ and A is between 1 and 3.

The functions a(w) and f(w) express the viscous and thermal exchanges between the air and
the structure which are responsible of the sound damping in acoustic materials. These exchanges
are due on the one hand to the fluid-structure relative motion and on the other hand to the air
compressions-dilatations produced by the wave motion. The part of the fluid affected by these
exchanges can be estimated by the ratio of a microscopic characteristic length of the media, as for
example the sizes of the pores, to the viscous and thermal skin depth thickness ¢ = (277/wp)1/ 2
and &' = (2n/wpP,)/2. For the viscous effects this domain corresponds to the region of the fluid
in which the velocity distribution is perturbed by the frictional forces at the interface between
the viscous fluid and the motionless structure. For the thermal effects, it is the fluid volume
affected by the heat exchanges between the two phases of the porous medium, the solid skeleton

being seen as a heat sink. At low frequencies (viscous domain)?*, the viscous and thermal skin

thicknesses are much larger than the radius of the pores 6/r > 1 and ¢'/r > 1. The viscous



forces are important everywhere in the fluid, the compression dilatation cycle in the porous
material is slow enough to favor the thermal interactions between fluid and structure. At the
same time the temperature of the frame is practically unchanged by the passage of the sound
wave because of the high value of its specific heat : the frame acts as a thermostat. In this case,

the expressions of the dynamic tortuosity and compressibility are given by the relations?42° :

a(w) = oo <1 N L) , 3)

J waopko
(v = Dpkp By
Bw)=v—-—"——jw, (4)
) ne
where j? = —1, v represents the adiabatic constant, P, the Prandtl number, k is the viscous

permeability related to the flow resistivity o by the relation : k = n/o.

In the time domain, the factors a(w) and (w) are operators and their asymptotic expressions

are given by?+% .

a(t) = ag (5(1;) n agj’ko a;1> : (5)

- — 1)pk, P,
(v = 1)pkg a,.

Bt) = 74(t) > (6)

In these equations, 0, !is the integral operator o, Lyt) = fg g(t")dt'. In each of these equations
the first term in the right hand side is the instantaneous response of the medium (§(¢) is the Dirac
function) while the second term is the memory function. In electromagnetism, the instantaneous
response is called optical response. It describes all the processes which cannot be resolved by
the signal.

In this framework, the basic equations of the acoustic waves propagation along the positive axis

direction are :

0 0
pa(t) 5 = —6 5=, (7)
¢B(t) Ip _ Ow

The first equation is the Euler equation, the second one is the constitutive equation. K, is the

bulk modulus of air, p is acoustic pressure and w = ¢v where v is the particle velocity, * denotes



the shorthand notation for the time convolution

(f * o)t /ft—t (t')dt'. (9)

The wave equation is deduced from these equations®*25 :

2 2 3
Fpl,t) 1&pt)  opl,t)  p0"p(z,t)

0z2 2 Ot? ot ot3

=0, (10)

where the coefficients ¢, A and B are constants respectively given by ;

_ 5 P=DkPag
Koo K, Kang

1L_ <0407— (7_1)Prk6>’ A 19y _ dov (1)

62 K, a k‘o

the first one is related to the wavefront velocity ¢ = 1/ \/ p (ao M) /K, of the wave in

the air included in the porous material. The term <a0'y — %) appears as the refractive

index of the medium which changes the wave velocity from ¢y = /K,/p in free space to

c=cy/ \/ <a0’y — %) in the porous medium. The originality of this wavefront velocity is
its dependence on the inertial, viscous and thermal effects in the porous material, compared to

the wavefront velocity in high frequency range®10:11:15

which depends only on inertial interactions
via the tortuosity as. The coefficient A is responsible of the attenuation of the wave without
dispersion due to the viscous losses via the viscous permeability k9. The constant B governs the
spreading of the signal, and describes the dispersion due to the thermal interactions between
fluid and structure via the thermal permeability k(. To note that in this regime of frequency,
the dispersion phenomena describing by the term B 83p(z,t)/0t? is not as important as in the

6,10,11,15

high frequency range, in which the fractional derivatives are needed to describe in time

domain the high dispersion in the porous material. This propagation equation has been solved

analytically in Ref. 24. The direct?* and inverse?—27

scattering problem for a slab of porous
material has been studied given a good estimation of the physical parameters (viscous and

thermal permeabilities, and inertial factor).



ITI. GENERALIZED PROPAGATION EQUATION IN INHO-

MOGENEOUS POROUS MATERIALS

Consider the propagation of transient acoustic waves in continuous inhomogeneous porous
material having rigid frame. In this material, the acoustical parameters (inertial factor, poro-
sity, viscous and thermal permeability) depend on the thickness, and are continuous functions.
For a wave propagating along the x—axis, the fluid-structure interactions are described by the

inhomogeneous relaxation operators a(x,t) and §(x,t) given by

a(z,t) = ap(x) <6(t) + %W) , (12)

B(l‘,t) _ Vé(t) _ (/7 - 7172;2];/)(33)})7" d,.

(13)

In these equations, the porosity ¢(z), the tortuosity «g(z), viscous and thermal permeability
k(x) and k'(x) depend on the thickness of the porous material for describing the inhomogeneous
losses in the material.

In this framework, the basic equations'3~1% for our model can be written as

ow(z,t) Op(x,t)

pa(e,t) » 2200 _ o WD, (1)
o(x) op(x,t)  Ow(x,t)
X, Bz, t) * 5 = (15)

In the next section, the generalized propagation equation in continuous inhomogeneous porous
material having an acoustical parameters varying with depth is derived. The derivation of the
generalized wave equation in an inhomogeneous porous material is important for computing
the propagation of an acoustic pulse inside the medium, and for solving the direct and inverse
scattering problems.

Let us consider the Euler equation (14) and the constitutive one (15) in an infinite inhomogeneous

porous material. By putting

(v = Dpk'(z) Pr
ne(z)

no(x)

1) = @)k

and b(x) =




we obtain :

pao(z)3(t) * awé”;’t) +a(z)w(z,t) = — ($)ap(8:;, 23 (16)
x x 2p(x w(x
‘bf((a) o or 0p(at, D _ pa)? %(t;t) _ 9 Z(?:; t) (17)
We note P(z,z) the Laplace transform of p(z,t) defined by
P(z,z) = Lp(z,t)] = /000 exp(—zt)p(x,t)dt. (18)
The Laplace transform of Eqgs. 16, 17 yields
pao(o) |1+ 22| oz, 2) = o) 202 (19
¢(=) [y —b(z)z] zP(z, 2) = —a—W(x,Z), (20)

K, Ox

where W (x, z) is the Laplace transform of w(x,t).

Using Egs. 19 and 20 and the calculus developed in Appendix. A, we obtain the following

equation

9?P(z,2) [0 . aolx) 8a(x)< 1 >] OP(z, )

D2 or  ¢(x) Or  \z+a(z) Oz
+%ff) [~b(2)2® + (7 — a(2)b(x)) 2* + 7a(2)z] P(a, 2). (21)

Using the inverse Laplace transform of Eq. 21 and the initial conditions' ; #(x,0) = p(x,0) =0,

we find the generalized propagation equation in time domain.

Polet) 1 Pplet) o oed) | g 9l

9r2  A(z) o2 ot ot
da(x) [* op(z,t —T) 0 ap(z) ] Ip(z,t)
ar /0 exp (—7a(z)) 0 dr — 2 [ln e ] 5 (22)
where
e gl le) g g - )

Eq. (22) is the generalized propagation equation for lossy inhomogeneous porous material in low
frequency range. This equation is very important for treating the direct and inverse scattering

9



problems in inhomogeneous porous materials in time domain. It is easy to find the special case
of homogeneous porous medium, i.e. when «ag(x), ¢(x), k(x) and ¥'(x) become constants (inde-
pendent of x), we find A'(z) = A(x), B'(x) = B, da(xz)/dx = 0. In this case, the generalized
wave propagation (Eq. 22) is reduced to the propagation equation in homogeneous material (Eq.
10).

The first and second term in the propagation equation (22) : %(w, t)— %% (x,t) describe the

propagation (time translation) via the front wave velocity ¢(z). The term \/(ao(az)'y — M)

k()

appears as the refractive index of the medium which changes the wave velocity from ¢o = /K, /p

in free space to ¢ = co/\/(ao(az)’y — %) in the porous medium. From this equation,

24) it can be seen that the inertial, viscous and

(as it has been shown in the homogeneous case
thermal effects are all responsible of the change in the wave front velocity compared to the high

15

frequency inhomogeneous case™ in which only the inertial effect modify the front wave velocity.

The third term in the propagation equation (22) ZA,(ZE)% is the most important one for
describing the acoustic attenuation in porous materials at low frequency range?®, it results on
the attenuation of the wave without dispersion. It depends on the viscous permeability, which
is the most influential parameter in this domain of frequency. This term describes the acoustic
attenuation due to the viscous and inertial interactions between fluid and structure. To note
that the thermal effects do not intervene in this therm. This can be explained by the fact that
the viscous effects are the most important at this range of frequency. The contribution of the
thermal effects is taken into account only in the second term in Eq. 4. This term is very sensitive
to the spatial variation of the viscous permeability k(z).

The fourth term in the propagation equation (22) :B’ (m)% governs the spreading of the
signal, and describes the weak dispersion due to the thermal interactions between fluid and
structure via the spatial thermal permeability &'(z). To note that in this regime of frequency,

the dispersion phenomena described by this term are not as important as in the high frequency

range, in which the fractional derivatives are needed to describe in the time domain the high

10



dispersion in the porous material.

The final term : 8% [ln O;’(%)} % describes the attenuation caused by the spatial variation
of the tortuosity and the porosity. In contrast to the other terms, this term does not contains
temporal derivative of the pressure, it is independent of the relaxations times of the medium
and thus to the frequency component of the acoustic signal.

Finally the term in the propagation equation (22) : —ag—(;) fg exp (—7a(z)) %aﬁ- describes
the spatial variation of the inhomogeneity of the porous medium due to the inertial and viscous
interactions (there are no thermal effects) of the medium.

The generalized propagation equation derived at the viscous domain (low frequency range)
and given by Eq. 22 is very different from the generalized fractional equation derived at the
asymptotic domain (high frequency range)'®. The physical parameters describing the propaga-
tion are not the same in the two domains, for example, the viscous and thermal interactions
between fluid and structure are described by the viscous and thermal characteristic lengths A
and A’ at the asymptotic domain, however at the viscous domain, these interactions are descri-
bed by the viscous and thermal permeabilities ky and k(. The inertial effects are also described
by different parameters at the two regimes of frequencies, the tortuosity o is used for the high
frequency range, while the inertial factor aq is used at the low frequency range. In addition the
relaxations times responsible of the dispersion phenomenon and memory effects of the acous-

15 in the asymptotic

tic wave are expressed by different temporal operators. It has been shown®
domain (high frequency range), that the tortuosity and compressibility operators depend on frac-
tional operators for describing the viscous and thermal interactions. These fractional operators
give a fractional derivative term in the generalized propagation equation for the inhomogeneous
material. This fractional term is not found in the derived equation (equation 22). For the viscous
domain corresponding to the low frequency range, the loss operator have a simple expressions,

which are functions of simple derivatives, and thus there is no fractional term in the generalized

propagation equation. However, we find a term with third derivative responsible of the disper-

11



sion which is not found in the asymptotic domain. To note that the dispersion phenomenon

10,11

described by the fractional derivative is more important in the asymptotic domain than the

24,25 i the viscous domain. The

dispersion phenomenon described by the third derivative term
porosity is the only parameter which plays an important role in both the high and low frequen-
cies domains. The variation of the porosity with the depth ¢(z) is found in the two generalize
equations (asymptotic and viscous domains).

Generally it is interesting to work at the very low frequencies, especially when we want to
obtain the viscous permeability or the flow resistivity by solving the inverse problem directly
in time domain via transmitted or reflected acoustic waves?®~27. In this case, the effect of the

inertial factor ag becomes negligible in the expression of the inhomogeneous relaxation operator

a(z,t) given by Eq. 12, in this case, we obtain the following expression :

The viscous interactions are the most important in this case, the inertial exchange between fluid
and structure are negligible. The thermal permeability is not involved in the basic equations of
acoustic in porous material in this domain of frequency. The inhomogeneous relaxation operator

B(z,t) becomes independent of the depth x, its expression will be given by

B(t) = ~4(1),

In this framework, the basic equations of the model become

no(x) _ Ip(z,1)
yo(z) Op(x,t)  Ow(z,t)
K, ot oz (24)

where the Euler equation (23) is reduced to Darcy’s law which defines the variation of the static

flow resistivity with the depth z; o(z) = n/k(z). The wave equation in time domain is given by

0?p(x,t) 0 k(x) op(z,t)  yne(x) Op(x,t)
Ox? * [% ln< n >] or  Kuk(x) ot 0 (25)

12



The fields which are varying in time, the pressure, the acoustic velocity, etc., follow a diffusion

equation with the diffusion constant

K. k(x)
- ng(x)

D(z)

A quite similar result is given in Refs. 6, 26 and 27 for the homogeneous porous materials. For

liquid saturated porous materials, the thermal expansion is neglected, and thus the adiabatic

2

constant does not appear in the Johnson’s?® model for homogeneous porous materials. We recall

that in the homogeneous case, we have the following diffusion equation :

&p(t)  (yme ap(t)
dx? _<Kak> o (26)

The main difference between Eqs. 25 and 26 is the depth dependence of the porosity ¢(z) and the
viscous permeability k(z). In addition, the term : a% In (@) % describes the attenuation
caused by the spatial variation of the permeability k(x) due to the inhomogeneity of the porous
material. At the very low frequencies, the generalized propagation equation (22) is reduced to
the diffusion equation (25). These equations are very important for the solving the direct and

inverse problem in time domain for the inhomogeneous porous materials. This is our objective

in the future works.

IV. CONCLUSION

In this paper the generalized wave equation in inhomogeneous porous material is established
in the viscous domain (low frequency range when ¢/r > 1 and ¢’ /r > 1). The different terms of
the propagation equation show how the spatial variation of the inertial factor, porosity, viscous
and thermal permeabilities affect the propagation. In this propagation equation there is no
fractional derivatives as it has been shown in the asymptotic domain'® (high frequency domain),

but a third derivative term is needed for describing the dispersion in the porous material. At low

frequencies, the inertial, viscous and thermal effects are involved in the expression of the velocity

13



of the wavefront. The domain of very low frequency range is also studied and a generalized
diffusion equation is derived.

These established equations constitute a basis for the resolution of the direct and inverse
scattering problems. Future studies will concentrate on methods and inversion algorithms to

optimize the acoustic properties of inhomogeneous porous media.

14



APPENDIX. A

By differentiating both sides of Eq. 19 with respect to x, one finds that

o2 (- o) W, 2) + poo(r) 22w a2
T,z 2 T,z T,z X
tpoo(e) [z + a@)] TADD) - PLGE) O 2 00@) oy
From Eq. 19, we obtain
B —¢(x) 0P (x,z)
Wiw2) = @ = + a@)] ( o ) (28)

The two first terms of Eq. 27 can be written as

Oagp(x)

) _8a0(az) o(z) OP(z,2)
or

or «ap(z) Ox
_Oa(z) ¢(z) OP(z,z)
Or z+a(x) Oz

[z +a(x)|W(x,z) =

pao(e) 2Dy (2, 2) =

Using Eq. 20, the third term of Eq. 27 can be written as :

pao () [z + a()] OW(z,2) _ _pao(z)¢(z) [

Ox K, 2+ a(@)] [z — b(x)2*] P(z, 2)

Eq. 27 becomes :

[z + a(2)] [vz — b(z)2*] P(x, 2)

_Oag(z) ¢(x)  Oa(x) < ¢(x) >] OP(x,2)  pog(z)p(x)
or op(x) ox \z+a(x) Ox K,
0¢(x) OP(x, z) 0?P(z,2)

=" e " Tae

(29)

By dividing the two members of Eq.29 by —¢(z), we obtain the relation (21).

15
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