ILClass: Error-Driven Antecedent Learning For Evolving Takagi-Sugeno Classification Systems

Abstract : The purpose of this research work is to go beyond the traditional classification systems in which the set of recognizable categories is predefined at the conception phase and keeps unchanged during its operation. Motivated by the increasing needs of flexible classifiers that can be continuously adapted to cope with dynamic environments, we propose a new evolving classification system and an incremental learning algorithm called ILClass. The classifier is learned in incremental and lifelong manner and able to learn new classes from few samples. Our approach is based on first-order Takagi-Sugeno (TS) system. The main contribution of this paper consists in proposing a global incremental learning paradigm in which antecedent and consequent are learned in synergy, contrary to the existing approaches where they are learned separately. Output feedback is used in controlled manner to bias antecedent adaptation toward difficult data samples in order to improve system accuracy. Our system is evaluated using different well-known benchmarks, with a special focus on its capacity of learning new classes.
Type de document :
Article dans une revue
Applied Soft Computing, Elsevier, 2013, pp.1-16. 〈10.1016/j.asoc.2013.10.007〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00881779
Contributeur : Eric Anquetil <>
Soumis le : mardi 28 janvier 2014 - 15:25:02
Dernière modification le : vendredi 25 mai 2018 - 01:07:47
Document(s) archivé(s) le : vendredi 7 avril 2017 - 23:11:02

Fichier

SoftComVfinale.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Abdullah Almaksour, Eric Anquetil. ILClass: Error-Driven Antecedent Learning For Evolving Takagi-Sugeno Classification Systems. Applied Soft Computing, Elsevier, 2013, pp.1-16. 〈10.1016/j.asoc.2013.10.007〉. 〈hal-00881779〉

Partager

Métriques

Consultations de la notice

352

Téléchargements de fichiers

156