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ABSTRACT 

In this paper, we analyze the influence of the uncertainties on the behavior constitutive laws of ferromagnetic 

materials on the behavior of a turboalternator. A simple stochastic model of anhysteretic non-linear B(H) curve is 

proposed for the ferromagnetic yokes of the stator and the rotor. The B(H) curve is defined by five random 

parameters. We quantify the influence of the variability of these five parameters on the flux linkage of one phase of 

the stator winding depending on the excitation current I. The influence of each parameter is analyzed via the Sobol 

indices. With this analysis, we can determine the most influential parameters for each state of magnetization 

(according to the level of I) and investigate where the characterization process of the B(H) curve should focus to 

improve the accuracy of the computed flux linkage. 

KEYWORDS: Uncertainties quantification, Non-linear behavior laws, Stochastic approach, Global sensitivity 

analysis, Sobol coefficients, Polynomial chaos expansion. 

 

1. INTRODUCTION 

Numerical model can be used to predict the behavior of an electrical machine. Basically, the numerical model 

requires as input data the geometry of the device and the behavior laws of the materials. Uncertainties on the input 

data can appear due to several factors like the imperfection of the manufacturing process, the ageing of the material, 

the impacts of the environment (variation of temperature, humidity)... Thus, the output data of the model are also 

uncertain. Global sensibility analysis allows determining the influence of the variability of each input data on the 

variability of one or more observed output data. Then, the most influential and the less influential input parameters 

can be distinguished. Thus, the sensitivity analysis can be useful to several purposes like the reduction of the 

variability of the output data by reducing the variability of the most influential input data or the reduction of the 

computational cost by reducing the number of random inputs (the less influential input data can be considered 

deterministic and equal to a fixed value)… 

The probabilistic approach [1] that consists in modeling the uncertain inputs by random variables (or random fields) 

is one of the most popular among the methods [1-3] for uncertainty quantification. The outputs of the model are then 

also random variables or fields.  Characterization of the random outputs can be obtained using sampling technique 

as Monte Carlo Simulation Methods. Random outputs can be also approximated using well fitted space as 

Polynomial Chaos Expansion [6-12]. In the probabilistic approach, the global sensitivity of an observed output can 
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be quantified by an Analysis Of Variance (ANOVA) like the approach proposed by Sobol [4]. In the Monte Carlo 

simulation method (MSCM), the Sobol coefficients are calculated from a number of realizations of the observed 

output data [5]. In the chaos polynomial development method, the Sobol coefficients can be deduced directly from 

the coefficients in chaos polynomial expansion [13].  

In electromagnetism, few applications have been already processed to demonstrate the new possibilities provided by 

such approach especially for global sensitivity analysis. In [14], the influence of the uncertainties of the measured 

points used to characterize a B(H) curve on the magnetic field distribution created by accelerator magnets is studied. 

In this paper, based on a similar approach, we aim at analyzing the influence of uncertainties of the non-linear B(H) 

curve used to model ferromagnetic material  on the uncertainty of the predicted behavior of a turboalternator.  

The B(H) curve is defined by five parameters (B1, H1, B2, H2, α) which are the coordinates of two points P1 and P2 

and the asymptotic slope of the curve for high values of  H. We quantify the influence of the variability of these five 

parameters on the flux linkage through one of the phases of the stator in function of the excitation current I in the 

rotor. The influence of each parameter is analyzed using the Sobol coefficients. For each state of magnetization 

(according to the level of I), we determine the most influential parameters among (B1, H1, B2, H2, α).  

 

2. STOCHASTIC MAGNETOSTATIC PROBLEM WITH UNCERTAINTIES ON THE BEHAVIOR LAW 

We consider a stochastic magnetostatic problem defined on a domain D: 

 

( , ) 0

( , ) 0

( , ) ( ( , ), , )

div x

x

x g x x

θ =
 θ =
 θ = θ θ

B

H

B H

curl  (1) 

where B(x,θ) and H(x,θ) are respectively the magnetic flux density and the magnetic field, θ is an elementary event 

referring to the randomness and x is the spatial coordinates. The function g represents the material behavior law. The 

problem (1) is supplemented by some boundary conditions. We assume that the domain D is deterministic and is 

composed by several sub-domains and in each sub-domain Di, the random curve B = gi(H,θ) is independent of the 

position  x. Random geometries can also be considered [15, 16, 17, 18] but they are out the scope of this paper.  If 

the behavior law is assumed linear and random, the curve B = gi(H,θ) is linear with a random slope which is the 

random permeability µi(θ). In the general case, the random curve B = gi(H,θ) is a random field. To solve 

numerically the problem (1), this curve should be represented (or at least approximated by a KL expansion like in 

[20]) by a function of a finite number of random parameters ξ(θ) = (ξ1(θ), ξ2(θ),..., ξM(θ)), that is to say B = gi(H, 

ξ1(θ), ξ2(θ),..., ξM(θ)). The M random variables ξj(θ) have a known probability density function (normal, uniform, 

etc.) that will be assumed to be independent. We denote jΘ ⊂ R j the set of value of ξj(θ), and fj its probability 

density function (pdf). We denote also 

 1 1 MΘ ×Θ ×⋅⋅⋅ΘΘ =Θ =Θ =Θ =  (2) 

the set of value of the random vector ξ(θ) and  

 
1

M

j
j

f
=

∏====f  (3) 
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its pdf . We then obtain a model with input random variables modeled by a random vector ξ(θ) = (ξ1(θ), ξ2(θ),..., 

ξM(θ)) with known pdf, then the fields B and H are functions of both the position x and the random vector ξ(θ). In 

the following, to simplify the notations, the dependency of the random vector ξ on θ will be removed.   

We consider now a quantity of interest Q = Q(ξ) (magnetic energy, mechanic torque, magnetic flux...). To 

characterize Q(ξ), sampling technique like the Monte Carlo Simulation Method can be used. Another possibility 

consists in approximating Q(ξ) in a finite dimension space of functions of ξ. Several methods were proposed in the 

literature to approach this expression [7-11] and [19]. Among these methods, polynomial chaos [12] is widely used. 

The approximation of Q(ξ) is obtained in the following form:  

 ( ) ( ) ( )
p

p

K

Q Q c
∈

≈ = Ψ∑ξ ξ ξξ ξ ξξ ξ ξξ ξ ξu u
u

 (4) 

where ( )Ψ ξξξξu  are multivariate orthogonal polynomials [12], cu are the coefficients to determine and the set Kp of M-

tuples is defined by:  

 1 2
1

( , ,..., ) |
M

M
p M i

i

K u u u u p
=

 = ∈ ≤ 
 

∑N  (5) 

The multivariate polynomials ( )Ψ ξξξξu  are obtained from monovariate orthogonal polynomials. If we denote 

(ψuj(y))uj∈ N the set of orthogonal polynomials according to the weight function fj (fj is the pdf of ξj), then the 

multivariate polynomial is given by: 

 
1 2( , , , ) 1 2

1

( , , , ) ( )
M i

M

u u u M u i
i

ξ ξ ξ ξ⋅⋅
=

Ψ ⋅⋅⋅ = ψ∏  (6) 

Example. Let ξ1, ξ2 are standard normal random variables, the monovariate polynomials (ψuj(y))uj∈ N are Hermite 

polynomials and the 6 first polynomials of the Polynomial Chaos are given by: 
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 (7) 

In the general case, the analytical expression of the coefficients cu of the approximation (2) of Q(ξ)  is not available. 

In [7-11], methods to determine cu are proposed. In our case, we will use the regression method [7]. Once the 

approximation (4) is available, the global sensitivity analysis of Q(ξ) versus each random variable ξj can be 

performed easily by calculating Sobol coefficients [13]. In the following section, we recall briefly one method 

proposed in [13] to calculate the Sobol indices from an approximation based on a polynomial chaos expansion.  

   

3. SENSITIVITY ANALYSIS BASED ON SOBOL INDICES 

Sobol proposes in [4] to express the quantity of interest Q(ξ) in the following form: 
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1 2 1 2 1 2 1 2

1 2

0
1 1

( ) ( ) ( , ) ( , , , )
M M

M

i i i i i i i i i i i i
i i i M

Q Q Q Q Qξ ξ ξ ξ ξ ξ⋅⋅⋅
= ≤ < ≤

= + + + ⋅⋅⋅+ ⋅⋅ ⋅∑ ∑ξξξξ  (8) 

where Q0 is a constant and 
1 2 1 2

( , , , ),
s si i i i i iQ s Mξ ξ ξ⋅⋅⋅ ⋅ ⋅ ⋅ ≤ , defined such that: 

1 2 1 2
( , , , ) ( ) 0 with 1

s s k k k

ik

i i i i i i i i iQ f d k sξ ξ ξ ξ ξ⋅⋅⋅
Θ

⋅⋅ ⋅ ⋅ = ≤ ≤∫  (9) 

The decomposition (8) is unique (see [4] and [5]) when Q(ξ) is integrable overΘΘΘΘ  (2). From (9) it can be shown that 

the functions 
1 2 1 2

( , , , )
s si i i i i iQ ξ ξ ξ⋅⋅⋅ ⋅ ⋅ ⋅  are orthogonal in the sense that:  

1 2 1 2 1 2 1 2 1 2 1 2( , , , ) ( , , , ) ( ) 0 with ( , , , ) ( , , , )
s s t ti i i i i i j j j j j j s tQ Q f d i i i j j jξ ξ ξ ξ ξ ξ⋅⋅⋅ ⋅⋅⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅⋅ ⋅ ≠ ⋅⋅⋅∫

ΘΘΘΘ

ξ ξξ ξξ ξξ ξ  (10) 

According to the previous properties, it can be easily shown that the variance D of Q(ξ) can be decomposed in the 

following form: 

 
1 2 1 2

1 21 1
M

M

i i i i i i
i i i M

D D D D ⋅⋅⋅
= ≤ < ≤

= + + ⋅⋅⋅ +∑ ∑  (11) 

where 
1 2 si i iD ⋅⋅⋅  the partial variances defined by: 

 
1 2 1 2 1 2

2 ( , , , ) ( )
s s si i i i i i i i iD Q f dξ ξ ξ⋅⋅⋅ ⋅⋅⋅= ⋅⋅⋅∫

ΘΘΘΘ

ξ ξξ ξξ ξξ ξ  (12) 

The term 
1 2 si i iD ⋅⋅⋅ is the fraction of the variance of D explained by the interaction between the random variables 

1 2
( , , , )

si i iξ ξ ξ⋅⋅ ⋅ . Then, the Sobol coefficients are defined by: 

 1 2

1 2

s

s

i i i

i i i

D
S

D
⋅⋅⋅

⋅⋅⋅ =  (13) 

The Sobol coefficients are positive and their sum is equal to 1. A significant value of a Sobol index 
1 2 si i iS ⋅⋅⋅ versus the 

others means that the interaction between the parameters 
1 2

( , , , )
si i iξ ξ ξ⋅⋅ ⋅ contributes significantly to the variability of 

Q(ξ). The number of Sobol indices is equal to 2M-1 and can be very large if the number M of inputs random is large. 

In practice, only the M Sobol indices of first order Si and the M total Sobol indices STi are calculated: 

 

1 2 s

i

i
i

Ti i i i

D
S

D
S S ⋅⋅⋅

=

=∑
T

 (14) 

where  

 { }1 2( , , , ) | , 1 ,i s ki i i k k s i i= ⋅⋅⋅ ∃ ≤ ≤ =T  (15) 

From these both sets of indices, we can conclude that if Si is significant, the influence of ξi is also significant. If STi 

is small, ξi has no significant influence. The Sobol indices can be easily estimated using a MSCM by using two 

distinct samples for the inputs. If an approximation method is used, from the truncated PCE, it is straightforward to 

approximate the Sobol indices from the coefficients cu (see (16)) [13]. Indeed, the approximation (4) can be 

rewritten as the form (8) with:  

 
1 2 1 2 1 2

1 2

( , , , ) ( , , , )
s s M

i i i s

i i i i i i i i iQ cξ ξ ξ ξ ξ ξ
⋅⋅⋅

⋅⋅⋅
∈

⋅ ⋅ ⋅ = Ψ ⋅⋅⋅∑
T

u u
u

 (16) 
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where  

{ }
1 2 1 2 1 2 1 2( , , , ) | 0 if ( , , , ) and 0 if ( , , , )

s

p
i i i M k s k su u u K u k i i i u k i i i⋅⋅⋅ = = ⋅⋅⋅ ∈ = ∉ ⋅ ⋅ ⋅ > ∈ ⋅ ⋅⋅uT  (17) 

From (16) the Sobol coefficients can be deduced directly from the coefficients cu.  

 

Example.   If Q is written under the form 

1 2 (0,0) 1 2 (1,0) 1 2 (0,1) 1 2 (2,0) 1 2 (1,1) 1 2( , ) ( 2 1) ( , ) ( , ) ( , ) 2 ( , ) ( , )Q ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ= + Ψ + Ψ + Ψ + ⋅Ψ + Ψ  (18) 

 Then, the functions 
1 2 1 2

( , , , )
s si i i i i iQ ξ ξ ξ⋅⋅⋅ ⋅ ⋅ ⋅ are: 

 

1 1 (1,0) 1 2 (2,0) 1 2

2 2 (0,1) 1 2

12 1 2 (1,1) 1 2

( ) ( , ) 2 ( , )

( ) ( , )

( , ) ( , )

Q

Q

Q

ξ ξ ξ ξ ξ
ξ ξ ξ
ξ ξ ξ ξ

= Ψ + ⋅Ψ

= Ψ

= Ψ

 (19) 

The variance of Q is 2 2 2 2
(1,0) (0,1) (2,0) (1,1) 5D c c c c= + + + = . The Sobol coefficients 

1 2 si i iS ⋅⋅⋅ and the total Sobol coefficients 

STi are:  

 

2 2 2 2
(1,0) (2,0) (0,1) (1,2)

1 2 12

2 2 2 2 2
(1,0) (2,0) (1,1) (0,1) (1,1)

1 2

3 1 1
; ;

5 5 5

4 2
;

5 5T T

c c c c
S S S

D D D

c c c c c
S S

D D

+
= = = = = =

+ + +
= = = =

 (20) 

4. APPLICATION OF THE GLOBAL SENSITIVITY ANALYSIS APPROACH 

In the following we will apply the stochastic approach presented above to evaluate the influence of the variability of 

the behavior law of ferromagnetic materials on the performances of a turboalternator. First, we have to define a 

stochastic model for the non-linear behavior law. Then, a Stochastic Finite Element problem is solved to determine 

the flux linkage in function of the excitation current. This characteristic depends on the excitation current I and on 

the random input, this is consequently a random field . Then, a global sensitivity analysis is carried out to determine 

which random parameters of the behavior law are the most influential.  

4.1. PROBABILISTIC MODEL FOR A RANDOM NON-LINEAR BEHAVIOR LAW 

To model the behavior law of the ferromagnetic material, we propose to use a parametrized curve with five 

parameters (H1, B1, H2, B2, α) presented in Fig. 1. 

 
Fig. 1. Parametrized curve B(H) 
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The curve B(H) is split up in three parts. The part 1 is a straight line determined by the point P1 with coordinates 

(B1,H1). The part 3 is also a straight line and determined by the point P2 with coordinates (B2,H2) and the angle α. 

The part 2 is a part of an ellipsoid that verifies the continuity of the curve B(H) and its first order derivative at point 

P1 and P2. Indeed, the part 2 can be represented by the following expression: 

 

 
2 2

0 0
2 2

(B - ) (H - )
1

y x

b h
+ =  (21) 

where x0, y0, b, h are parameters determined in function of B1, H1, B2, H2, α by imposing the continuity of the curve 

and its first order derivative at point P1 and P2: 
2 2 2 2

1 0 1 0 2 0 2 0
2 2 2 2

1 0 1 0 2 0 2 0
1 12 2 2 2

(B - ) (H - ) (B - ) (H - )
1 ; 1

2(B - ) 2(H - ) 2(B - ) 2(H - )
B H 0 ; sin( ) cos( ) 0

y x y x

b h b h
y x y x

b h b h
α α

+ = + =

+ = + =
 (22) 

One can notice that equation (22) can be solved analytically that provides an analytical expression of x0, y0, b, h in 

function of B1, H1, B2, H2, α (see Appendix I). 

When 0 < B1 < B2, 0 < H1 < H2, 0 < tan(α) < B1/H1, the model presented in the Fig. 1 ensures that the following 

properties: 1. The curve B(H) is continue and strictly increasing, 2. The first order derivation of the curve B(H) is 

continue and decreasing.  

According to these parameterized model, we propose a stochastic model of a non-linear behavior law based on the 

parameters (H1,B1,B2,H2,α) assumed to be independent uniform random variables.  

4.2. ELECTRICAL MACHINE 

We are interested in the turboalternator geometry of which is given in Fig. 3. The power rate and the nominal voltage 

of the machine are respectively 1400MW and 20KV. The rotor excitation is fed by a current I. The stator is at no 

load (no connection to the network). We are interested in the value of the flux Φ flowing through one phase. The 

behavior of the ferromagnetic material of the stator and the rotor are non-linear. They are represented by two 

parametric B(H) curves presented in the previous section. The eddy current effects are neglected, so we have to 

solve a stochastic magnetostatic problem.  We are interested in the 3 following cases. In the case 1, the behavior law 

of the stator material is a random field whereas the one of the rotor is considered deterministic. In the case 2, the 

B(H) curve of the rotor is assumed to be a random field but not the one of the stator. Finally, in the case 3, we 

consider that both B(H) curves are random but with a reduced number of random parameters. In order to analyze the 

sensitivity of the flux versus the random parameters, the flux Φ is approximated by the expansion (4). The 

coefficients are calculated using a regression method [7] for each value of the current I. While the expression of the 

flux Φ(I,θ) in the form (4) is available. It is quite easy to characterize the random flux Φ. The proposed scheme is 

presented in the following flow chart: 
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Fig. 2. Uncertainties propagation 

B(H) curves of the raw ferromagnetic materials of the stator and the rotor have been measured. Values for the five 

parameters of the B(H) have been identified from these experimental curves. These values are considered as the 

mean of the 5 random parameters and are reported in the table I and II for the stator and the rotor respectively. To 

take into account the uncertainties introduced by the process of characterization, by the origin of the raw material 

and also by the process of assembling, we have considered these five parameters as uniform random variables with a 

variability of 15%. The range of variation for each parameter is reported in the table I and II. The B(H) curve 

corresponding to the identified values for the 5 parameters and also the domain of variability are represented in Fig. 

3 and 4 for the stator and the rotor respectively.   

 

Fig. 3. Geometry of the turboalternator 

TABLE I : Information of random variables Bs1, Hs1, Bs2, Hs2, αs 

 Bs1 Hs1 Bs2 Hs2 αs 

Mean value 1 233 1.94 19440 2µ0 

Lower bound 0.85 198 1.65 16524 µ0 

Upper bound 1.15 268 2.23 22356 3µ0 
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TABLE II: Information of random variables Br1, Hr1, Br2, Hr2, αr 

 Br1 Hr1 Br2 Hr2 αr 

Mean value 1.11 1639 2.01 13632 2µ0 

Lower bound 0.96 1411 1.73 11739 µ0 

Upper bound 1.26 1866 2.29 15525 3µ0 

  

 
Fig. 4. Curves B(H) of the ferromagnetic material of the stator with the mean (red) and the domain of variability between the blue 

and black curves 

 

 

 

Fig. 5. Curves B(H) of the ferromagnetic material of the rotor with the mean (red) and the domain of variability between the blue 

and black curves. 

A. Case 1 

The behavior law of the ferromagnetic material of the rotor is assumed to be deterministic and corresponds to the 

mean curve presented in Fig.4 . The B(H) curve of the stator is a random field which model has been presented in 

sections 4.1 and 4.2. First, 200 realizations of the curve Φ(I) obtained by a Monte Carlo Simulation Method are 

presented in Fig. 6. We have generated a sample of 200 realizations of the 5-tuple (Bs1(θi) Hs1(θi), Bs2(θi), Hs2(θi), 

αs(θi)), i=1:200. For each realization (Bs1(θi) Hs1(θi), Bs2(θi), Hs2(θi), αs(θi)), the flux Φ is calculated for each value of  

I in order to obtain one curve Φ(I,θi). The red curves in the correspond to the envelop of the 200 realizations Φ(I,θi). 

From Fig. 6, one can observe the magnitude of variability of the flux Φ in function of current I. One can notice that 

in the linear zone the variability of Φ is very small whereas it is quite large in the saturated area. Fig. 7 represents the 

mean value and the standard deviation of the flux Φ the excitation current I. One can notice that the standard 

deviation (image of the flux variability) is an increasing function of the excitation current I confirming the result 

obtained with the Monte Carlo Simulation (see Fig. 6). From the expansion (2), we also have calculated the 

evolution of the Sobol indices versus the excitation current. First, it should be noticed that Si and STi are almost 

H 

B 

H 

B 
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equal (see Fig. 8 and Fig. 9) meaning that the contribution to the flux variability of the interactions between 

parameters is very small. In the following, we will only consider the total Sobol indices that are given in  Fig. 8. We 

can see that for low excitation currents, Hs1 and Bs1 are the most influential parameters. Their influence becomes 

negligible in the saturation area where Bs2 becomes the most influential, followed by the slope αs. We can see that 

the magnetic field Hs2 has almost no influence even in the saturated area.  We consider now the partial variances Vi 

defined by:  

 i TiV S D= ⋅  (23) 

In Fig. 10, we represent the evolution of these partial variances in function of the excitation current. Thought Bs1 and 

Hs1 are the most influential parameters at low excitation currents, their contribution to the variability of the field 

remains small. The contribution of the parameter Bs2 to the variability of the flux is large. Nevertheless, from the 

value I = 4000 A, one can notice a decreasing influence of Bs2 and an increasing influence of αs on the flux Φ. This 

phenomenon can be explained intuitively by the fact that in the saturated area, the ferromagnetic material state 

moves progressively from the part 2 of the B(H) curve (see Fig. 1) to the part 3 where the influence of αs increases.  

The almost negligible influence of Bs1, Hs1 and Hs2 can be shown again by plotting the mean value and the standard 

deviation of the flux Φ in function of the current I in the case where Bs2 and αs are fixed equal to their mean value 

(see Fig. 11). One can notice that the variation of Φ is much smaller than in the Fig. 7.       

 

 
 

Fig. 6. 200 realizations of the flux Φ versus the excitation current I 

 

 

 

Fig. 7. Mean value and standard deviation of the flux Φ versus the excitation current I 
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Fig. 8. Total Sobol coefficients of each random input data Bs1, Hs1, Bs2, Hs2, αs 

 

 

 

Fig. 9. First order Sobol coefficients of each random input data Bs1, Hs1, Bs2, Hs2, αs 

 

 

 

Fig. 10. Partial variance contributed by each random input data Bs1, Hs1, Bs2, Hs2, αs 
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Fig. 11. Mean value and standard deviation of the flux Φ versus the excitation current I (Bs2, αs are fixed) 

B. Case 2 

In this case, the B(H) curve of the stator is assumed to be deterministic and equal to the mean curve represented in 

Fig.3. The B(H) curve of the rotor is a random field which model has been presented in sections 4.1 and 4.2. In Fig. 

12, the evolutions of the mean and the standard deviation of the flux in function of the current are given. This figure 

can be compared to the Fig. 7 corresponding to the case 1. We can see that the evolution of the mean of the flux is 

almost the same. The difference appears on the standard deviation. The variability of the flux is higher in the case 2 

for excitation current I lower than 4000A. Then, the variability of the flux becomes higher in the case 1. We could 

expect that the variability of the B(H) curve of the rotor will contribute the most for the values of the excitation 

current lower than 4000A.  

Concerning the sensitivity analysis, the results obtained in the case 2 are very similar to the case 1. The flux Φ is less 

sensitive in the linear zone than in the saturated area and the influence of Br1, Hr1, Hr2 on the variability of the flux Φ 

is very small compared to the one of Br2, αr. 

 

  

 

Fig. 12. Mean value and standard deviation of the flux Φ versus the excitation current I 
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The most influential random variable are, in cases 1 and 2, the ordinate B2 of the point 2 and the slope α  (see Fig. 1). 

In the case 3, we consider that both materials in the stator and in the rotor are random but the randomness of the 

curves B(H) is borne only by the random variables  Br2, αr and Bs2, αs. Other input parameters Br1, Hr1, Hr2, Bs1, Hs1, 

Hs2 are assumed to be deterministic. This assumption is not mathematically rigorous but in practice, it seems to be 

reasonable. It allows reducing the number of input parameters to 4 instead of 10 and so, it allows to dramatically 

reduce the computation time. The input random parameters Br2, αr and Bs2, αs are assumed to be uniform and are the 

same as in the previous cases (see TABLES I and II).  

The steps of calculation are the same as in the case 1. First, we have simulated a sample of 200 realizations of the 

curve Φ(I,θ). The dispersion is a little higher than in the case 1 (see Fig. 13 and Fig. 6) where the variability is only 

borne by the B(H) curve of the stator. Afterwards, the flux Φ is approximated by the expansion  (4) and then, the 

mean value, standard deviation of Φ and the Sobol coefficients can be deduced.  

Fig. 14 presents the evolution of the mean and the standard deviation in function of the excitation current. We can 

see that, compared to the case 1, the variability has increased for excitation current values between 2000A and 

5000A. It means that the contribution to the variability of Φ(I,θ) is mainly due to the variability of the B(H) curve of 

the rotor for high excitation current in the range [2000A, 5000A]. 

In this case, the difference between the first order and the total Sobol coefficients is also very small. Therefore, we 

consider only the Total Sobol coefficients (Fig. 16). We have also drawn the evolution of the partial variances (see 

(21)) in function of the current I in Fig. 15. It confirms the fact noticed above where the parameter Br2 is the most 

influential up to I=4200A. Above this value of I, the parameter Bs2 becomes the most influential. From I=6000A, 

one can notice the increasing influence of αr and αs with a decreasing influence of Br2 and Bs2 , meaning that the 

saturated zone of the rotor and the stator moves from the part 2 toward the part 3 of the B(H) curve (see Fig. 1).  

It appears, using this approach, that in order to reduce the variability of the output Φ(I,θ) in the range of the study 

[0A, 9000A], one should reduce the variability on the parameters Br2 and Bs2 , meaning that the measurement of the 

quantity B should be carefully done in the range [1.6T, 2.2T] for Bs2 and [1.7T, 2.3T] for Br2. In the area [0A, 

9000A], we can see that the parameters Hs2 and Hr2 have almost no influence on the variability of the flux.  We can 

see also that the B(H) curve has few effects for I lower than 2000A. This statement can be useful to specify a set up 

in situ to characterize directly the B(H) in the machine like proposed [21] and [22]. The measurements of B should 

be accurate whereas a loss of precision on the measurement of H can be accepted (due to parasitic air gap for 

example ).  

 

 

Fig. 13. 200 realizations of the flux Φ in function of the excitation current I 
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Fig. 14. Mean value and the standard deviation of the flux Φ in function of the excitation current I 

 

 

 

Fig. 15. Partial variances contributed by each random input data Bs2, αs, Br2, αr 

 

 

 

Fig. 16. Total Sobol coefficients correspond to each random input data Bs2, αs, Br2, αr 

 
It should be mentioned that the results concerning the influence of the parameter could be qualitatively predicted just 

considering physical considerations. However, the additional value of the stochastic approach relies on the 

quantitative evaluation of the influence. We can see clearly that the point P1 in its range of variability has no 

influence on the flux linkage. We could have expected a fewer influence than the point P2 and the slope α but not no 

effect. The fact that the parameters B2 (particularly the one of the stator) are more influential in the range of study 

than α the slope was not predictable also.  This representation of the B(H) curve coupling with the stochastic 
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the uncertainty on the output. The stochastic approach can be also used with other representation of the B(H) curve 

(Langevin for example) and to determine which parameters of the model should be carefully identified. 

 

5. CONCLUSION 

In this paper, the influence of the non-linear material behavior law on the performance of a turbogenerator have been 

analyzed. A stochastic model of the non-linear curve B(H) has been proposed. Using this model, the randomness of 

the curve B(H) can be borne only by a finite number of random variables. From the proposed model, a global 

sensitivity analysis based on Sobol coefficients have been performed. The obtained results show that the influence of 

the input parameters on the performance is not the same for all the parameters and depend on the level of saturation 

of the machine. At low excitation current, the variability on the B(H) curve has almost no effect on the flux linkage. 

The variability of the flux linkage is maximum when the machine is saturated (at high excitation current). The 

stochastic approach enables to characterize quantitatively this variability by determining the standard deviation.  The 

global sensitivity analysis based on the Sobol approach allows to determine the most influential parameters of the 

B(H) curve. It appears that the magnetic flux density B value is the most influential but not the magnetic field H in 

the saturation area. The proposed approach provides the area where the input parameters are the most influential and 

then allows to act in order to reduce their variability by increasing the accuracy of the measurement in the 

corresponding area.  
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Appendix I 

In this appendix, the expressions of the solutions of (22) are given. If we denote: 

1
1 1 2 2

1 1 2

1 2 2 1 2 1 2
1 2 3

1 2 1 2 1 2

2 1 2 1 1 2 1 1 2
4 5 6

1 2 1 2 1 2

2 2
2 5 3 4 6
2 2
6 4 1 5 2

B 1 1
; _ ; tan( ); _

H

H H (B B ) (B B )
; ; ;

_ _

_ (H H ) (B B ) _ (H H )
; ;

_ _ _ _

2 ( )

2 ( )

in in

c c c
in in

in in
c c c

in in in in

c c c c c
k

c c c c c

µ µ µ α µ
µ µ
µ

µ µ µ µ µ µ
µ µ µ
µ µ µ µ µ µ

= = = =

− − −
= = =

− − −
− − −

= = =
− − −

− + −
=

− + −

 (24) 

The solutions of (22) are given by: 

 

2
2 232
1 1 2 4

0 1 1 2

3
0 4 1

2 ( )

B

H

cc
h c k c c c

k k
b k h

y k c c

c
x c

k

= + + + +

= ⋅
= ⋅ + +

= + +

 (25) 

 


