Evaluation of T-wave Morphology Parameters in Drug-Induced Repolarization Abnormalities
Nadine Khodor, Guy Carrault, Hassan Amoud, Mohamad Khalil, Philippe L’Hostis, Alfredo Hernandez

To cite this version:
Nadine Khodor, Guy Carrault, Hassan Amoud, Mohamad Khalil, Philippe L’Hostis, et al.. Evaluation of T-wave Morphology Parameters in Drug-Induced Repolarization Abnormalities. 2nd International Conference on Advances in Biomedical Engineering (ICABME), Sep 2013, Tripoli, Lebanon. pp.203 - 206, 2013, <10.1109/ICABME.2013.6648883>. <hal-00881382>

HAL Id: hal-00881382
https://hal.archives-ouvertes.fr/hal-00881382
Submitted on 8 Nov 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Evaluation of T-wave Morphology Parameters in Drug-Induced Repolarization Abnormalities

KHODOR Nadinea,b, CARRAULT Guyb, AMOUD Hassanb, KHALIL Mohamadb, L’Hostis Philippec, HERNANDEZ Alfredo b

aAzm Platform for Research in Biotechnology and its Applications, Electronic Team, Lebanese University, Tripoli, Lebanon
bINSERM, U1099, Rennes, F-35000, France and Universit\`{e} de Rennes 1, LTSI, Rennes, F-35000, France
cBiotrial Core Lab, CS 34246 | 35042 Rennes Cedex | France

Abstract—This study evaluates the predictive values of T-wave morphology parameters reflecting the repolarization changes by beat to beat calculation of parameters using different mathematical tools to identify additional markers sensitive to the variation induced by drug in the surface of the electrocardiogram. T-wave morphology indicators are extracted from nearly 6 hours recordings of two patients from a clinical d-Sotalol study. The results show that drug induced change in T-wave morphology as well as QT interval. In particular, parameters extracted from spherical coordinates of vectrocardiogram that were not tested before for drug effect evaluation show high sensitivity to small change induced by drugs.

Keywords—ECG; ventricular repolarization; T-wave morphology; d-Sotalol

I. INTRODUCTION

The pharmaceutical industry requires the measure of QT interval during the premarketing phase of drug evaluation. Drug induced prolongation QT interval is the single common use of restriction of drug [1]. However, most arrhythmogenic drugs cause not only prolongation of QT corrected interval but also transmural dispersion of action potential duration and thus T-wave modifications [2]. Therefore, others parameters extracted from the T-wave morphology can be useful addition features to characterize repolarization abnormalities and may contribute to drug safety evaluation as well.

The aim of this study is to compare the predictive value of T-wave parameters reflecting the repolarization modifications as well as on the duration but also on the morphology and to identify additional markers sensitive to the variations induced by drug. As illustration, a beat to beat computation in the surface electrocardiogram (ECG) of different features using d-Sotalol is proposed. The d-Sotalol is a commonly used antiarrythmic drug that has beta blocking action (blocks adrenaline to the heart) and it is used to treat ventricular tachycardia as well as atrial fibrillation. Sotalol leads to increase the action potential duration, refractory period and the QT interval during the premarketing phase of drug evaluation. After the presentation of the database in the next section, the ECG processing is detailed and the different parameters are described. In section III, the results are developed then discussed in section IV to end with a conclusion in section V.

A. Study population

Standard 12-lead ECG was recorded from two healthy patients (female, Age: 30 and 34 years) during 8 hours for the first woman and 6 hours for the second. Administration of d-Sotalol was realized after 25 min from the beginning of recording.

B. ECG processing

The Electrocardiogram signals were processed using the validated software Segmenta [4], which provides a fully automatic segmentation of all beats based on wavelet transform decomposition and using an evolutionary algorithm to optimize the parameters and threshold of the decision process. Segmenta provides consistently a set of several classical ECG features (RR-interval, QT-interval, PR-segment, QRS duration…) [4].

To study drug influence, each 10 seconds recording was used to form a mean beat in the eight independent leads of the 12 lead ECG (I, II, V1-V6). An SVD was performed on the mean beats to reduce the ECG signal into a minimum space that captures 98% of the ECG energy. From singular value components, principal component analysis (PCA) was performed [5], the resulting component coefficients were used to project the ECG signal onto the orthogonal eigenvectors. The T-wave of the first principal component lead PC1 was used to analyze the T-wave morphology, the peak and the end point of T-wave. These features were detected using Segmenta, whereas the starting point was approximately calculated as mentioned in [6]. After that, the ST-T segment was filtered using a low pass Kaiser Window FIR filter with 20 Hz as cut off frequency.

On the other hand, the 8 independent leads were transformed to XYZ leads using the Inverse Dower
transformation to compute the spherical coordination parameters.

C. Parameters

Parameters were classified into four categories: (i) duration parameters; (ii) PCA based parameters; (iii) Morphological parameters and (iv) Parameters related to the spherical coordinates of the VCG.

• Duration parameters measured on PC1 lead

QT_e: interval: corrected QT interval was measured where the end of T-wave can usually be clearly distinguished from the beginning of the U-wave, using Fridericia formula:

$$QT_e = \frac{QT}{\sqrt{RR}}$$

(1)

$QRSD$: QRS duration which is a time measuring of the QRS complex.
$ToTe$: Time interval from T-wave onset to T-wave end.
$TpTe$: Time interval from T-wave peak to T-wave end.

• Morphological T-wave parameters

All these parameters were computed from the T-wave of the PC1 lead [7][8].

$Tamp$: T-wave amplitude in T-wave peak.
$Upslope$: Ascending slope of the T-wave. Average value of the slopes at each point of the ascending part of the T-wave.
$Downslope$: Descending slope of the T-wave. Average value of the slopes at each point of the descending part of the T-wave.
$Asym$: As defined in [7], the asymmetry score of the T-wave computes the difference between the slope profile of the ascending and descending part after normalization of the first derivation of the T-wave and flipping the descending part to cover the ascending part.

$$Asym = \frac{\sum_{n=1}^{N} d(n)^2}{N}$$

(2)

Where $d(n)$ is the difference between the slope segments at point n.

$Flatness$: The flatness score is a modification of the kurtosis used in statistic. The T-wave area is normalized and the flatness is calculated as:

$$Flatness = 1 - \frac{M_4}{M_2^2}$$

(3)

With M_2 and M_4 are the second and the fourth central moments.

$Notch$: The notch score was obtained after computing the curvature signal from the first and second derivations of T-wave.

$$\text{curvature} = -\frac{d^2y}{dx^2} \left(1 + \left(\frac{dy}{dx}\right)^2\right)^{-\frac{3}{2}}$$

(4)

An up-down pair on the curvature signal reflects a real notch where the notch score is expressed as the value of the positive part.

• Principal component analysis based parameter

After performing PCA on the 8 independent leads, each eigenvalue obtained is a measure of the relevant of the corresponding component. Denoting by s, the eigenvalue of the i^{th} eigenvector, the following parameters are obtained as:

$$PCA_1 = \frac{s_1}{\sqrt{\sum_{i=2}^{8} s_i^2}} \times 100$$

(5)

$$PCA_2 = \frac{s_2}{s_1} \times 100$$

(6)

$$PCA_3 = \frac{s_3}{s_1} \times 100$$

(7)

Several studies have demonstrated that the remaining components (from 4 to 8) reflect regional heterogeneity in repolarization [8]. These components are called the non-dipolar components and can be expressed as:

$ATWR$: Absolute T-wave residuum, the absolute value of the sum of last four eigenvalues.
$RTWR$: relative T-wave residuum, the ratio between the sum of the last four eigenvalues to the sum of all eigenvalues [8].

• Parameters related to the spherical coordinates of VCG

The three VCG leads (X,Y,Z) are derived from the 12 standard leads of ECG using the inverse Dower transformation, after that spherical coordinates were computed to obtain instantaneous vector magnitude V_n, azimuth angle $\alpha(n)$ and elevation angle $\beta(n)$ describing the following indicators [9]:

DEA: difference between elevation and azimuth angles

$$DEA = \frac{1}{N} \sum_{n=1}^{N} |\alpha(n) - \beta(n)|$$

(8)

$RMMV$: Ratio of maximum to mean vector magnitudes

$$RMMV = \frac{\max(V_n)}{\text{mean}(V_n)}$$

(9)
III. RESULTS

Fig 1 shows the time series of QTc interval, DEA, RMMV and PCA1 for patient 1 in different recording time computed as described above. Each curve clearly indicates an evolution with time and then drug effect. This evolution appears qualitatively more clearly in the DEA time series. This figure also underlines the sensibility of the features in front the noise. We observe in the RMMV and PCA1 time series an abrupt change which is much more reduced in the DEA time series.

PCA was applied for feature selection on a matrix containing the times series of parameters in vector lines. Only parameters contributing in the first three principal components that represent 70% of total information were retained. Fig 2 and Fig 3 show contribution coefficients of parameters in order of increasing relevance in the first three components for the 2 subjects.

Average and standard deviation values of the remaining parameters were listed in TABLE I for each 1 hour recording where the drug was taken at 8h:10. Due to space limitation, only some parameters for the first patient are mentioned. In order to evaluate the significance evolution of each parameter, Friedman test (FT) was applied which is a non parametric statistical test, performed on ranks [10]. FT was used to detect differences in treatments across multiple measures attempts. Unlike the other non parametric test, FT does not require the hypothesis that the samples are independent. In order to decide in which recording a parameter is significantly different from other based upon the mean rank differences of the parameter in each recording that Friedman test calculate, a multiple comparison test was applied after Friedman test once the p-value is significant (p<0.05).

All remaining parameters show clear evolution after d-Sotalol administration. In patient 1, QTc increases significantly from the recording 7h:55 where the mean rank m1=1.77 to m2=6.96 at 12h:55 than it decreases to m3=5.03 at 14h:55. PCA2 increases significantly from m1=1.52 at 7h:55 to 7.99 at 13h:55 then no significant evolution has detected from 13h:55 to 14h:55, RTWR increases from m1=1.77 at 7h:55 to m2=7.69 at 12h:55 then it decreases at 13h:55 to m3=6.67, Flatness and downslope increase from 7h:55 to 13h:55 then no significant evolutions were found, Upslope decreases from 7h:55 to 13h:55 then it increases from 13h:55 to 14h:55, DEA decreases significantly from 7h:55 where m1=7.99 to 13h:55 where m2=1.5 and increases from 13h:55 to 14h:55, RMMV decreases also to m2=1 at 13h:55 then it increases significantly m3=1.9 at 14h:55, Tamp decreases significantly from m1=7.68 at 7h:55 to m2=1 at 13h:55 after that no significant evolution was found, TpTe increases from 7h:55 (m1=3.57) to 13h:55 (m2=6.15) then it decreases to m3=4.72 at 14h:55. Patient 2 has mainly the same evolution for all parameters.

<p>| Table I. Parameter Changes in Time for the First Patient, The symbol ‘*’ indicates hours after d-Sotalol Administration |</p>
<table>
<thead>
<tr>
<th>DEA</th>
<th>RMMV</th>
<th>PCA2</th>
<th>RTWR</th>
<th>Asym</th>
<th>Tamp</th>
<th>Downslope</th>
<th>QTc</th>
</tr>
</thead>
<tbody>
<tr>
<td>07:55</td>
<td>1.765±0.01</td>
<td>7.343±0.1</td>
<td>26.642±0.94</td>
<td>0.009±0.0003</td>
<td>0.153±0.006</td>
<td>318.077±11.28</td>
<td>2.079±0.16</td>
</tr>
<tr>
<td>08:55</td>
<td>1.719±0.01</td>
<td>7.144±0.2</td>
<td>27.796±1.49</td>
<td>0.009±0.0007</td>
<td>0.186±0.03</td>
<td>300.106±13.63</td>
<td>2.971±0.16</td>
</tr>
<tr>
<td>09:55</td>
<td>1.701±0.02</td>
<td>6.88±0.19</td>
<td>29.531±1.76</td>
<td>0.010±0.0011</td>
<td>0.217±0.04</td>
<td>277.514±11.01</td>
<td>2.755±0.15</td>
</tr>
<tr>
<td>10:55</td>
<td>1.640±0.01</td>
<td>7.083±0.33</td>
<td>34.047±2.25</td>
<td>0.012±0.0012</td>
<td>0.215±0.04</td>
<td>237.076±14.43</td>
<td>2.347±0.17</td>
</tr>
<tr>
<td>11:55</td>
<td>1.611±0.02</td>
<td>6.966±0.26</td>
<td>33.13±2.07</td>
<td>0.015±0.0015</td>
<td>0.228±0.04</td>
<td>230.876±10.48</td>
<td>2.226±0.14</td>
</tr>
<tr>
<td>12:55</td>
<td>1.574±0.01</td>
<td>7.073±0.29</td>
<td>35.04±4.29</td>
<td>0.018±0.0017</td>
<td>0.205±0.05</td>
<td>205.818±14.66</td>
<td>1.929±0.18</td>
</tr>
<tr>
<td>13:55</td>
<td>1.590±0.078</td>
<td>8.746±0.29</td>
<td>47.074±4.33</td>
<td>0.015±0.0013</td>
<td>0.156±0.04</td>
<td>152.15±17.08</td>
<td>1.370±0.12</td>
</tr>
<tr>
<td>14:55</td>
<td>1.603±0.01</td>
<td>8.118±0.23</td>
<td>42.251±1.86</td>
<td>0.015±0.0009</td>
<td>0.195±0.02</td>
<td>170.662±7.88</td>
<td>1.664±0.11</td>
</tr>
</tbody>
</table>
IV. DISCUSSION

After d-Sotalol administration, all parameters derived from the T-wave show clear evolution as the corrected QT interval during time recording. The amplitude of the T-wave was decreased leading to increase the flatness. The decreasing in Upslope and increasing in Downslope can be explained by the increasing of T_{pTe} leading to increase descending segment of the T-wave.

At the end of the recording, the evolution of parameters has changed suggesting that the concentration of d-Sotalol in plasma was reduced. However, not all parameters have the same sensibility with respect to drug concentration. Only some parameters DEA and $RMMV$ have shown significant evolution in patient 1 and maximum evolution in patient 2 passing from the first to the second hour of recording where the effect of d-Sotalol was still reduced. In parallel some parameters (QTc, Flatness, Tamp, Downslope and PCA2) have showed maximum evolution in early hours then no significant changes was noticed, whereas other parameters still change for the last hours even with reduced concentration of Sotalol (DEA, $RMMV$, $RTWR$, T_{pTe}).

V. CONCLUSION AND PERSPECTIVES

During the past decade, a number of drugs have had their authorization revised because they induced a prolongation of the QT interval. QT prolongation is now the subject of increased regulatory review and is considered a significant risk factor for drug evaluation.

In this study, we proposed to identify here a set of T-wave parameters which can be useful to evaluate drug effect on repolarization. In particular, parameters related to the spherical coordinates (DEA, $RMMV$, ...) of VCG have demonstrated a high sensitivity to small concentration of d-Sotalol. These results have to be assumed as preliminary due to the limited number of patients. Our current objective is now evaluating the T-wave morphological features in a larger database during longer period. This strategy would be carry out using QT parameters evolution with a placebo and another type of drugs such as moxyfloxacine in order to take into account circadian rhythm.

ACKNOWLEDGMENT

Authors thank AZM and SAADE Association and Campus France for their fund of this research.

REFERENCES