Skip to Main content Skip to Navigation
Conference papers

A Study of Association Measures and their Combination for Arabic MWT Extraction

Abstract : Automatic Multi-Word Term (MWT) extraction is a very important issue to many applications, such as information retrieval, question answering, and text categorization. Although many methods have been used for MWT extraction in English and other European languages, few studies have been applied to Arabic. In this paper, we propose a novel, hybrid method which combines linguistic and statistical approaches for Arabic Multi-Word Term extraction. The main contribution of our method is to consider contextual information and both termhood and unithood for association measures at the statistical filtering step. In addition, our technique takes into account the problem of MWT variation in the linguistic filtering step. The performance of the proposed statistical measure (NLC-value) is evaluated using an Arabic environment corpus by comparing it with some existing competitors. Experimental results show that our NLC-value measure outperforms the other ones in term of precision for both bi-grams and tri-grams.
Complete list of metadatas

Cited literature [18 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00881175
Contributor : Abdelkader El Mahdaouy <>
Submitted on : Friday, November 8, 2013 - 1:49:42 AM
Last modification on : Monday, April 20, 2020 - 11:24:01 AM
Document(s) archivé(s) le : Sunday, February 9, 2014 - 4:30:31 AM

File

MWT_Latex_7_pages.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00881175, version 1

Collections

CNRS | LIG | UGA

Citation

Abdelkader El Mahdaouy, Saïd El Alaoui Ouatik, Eric Gaussier. A Study of Association Measures and their Combination for Arabic MWT Extraction. Terminology and Artificial Intelligence, Oct 2013, Paris, France. pp.45-52. ⟨hal-00881175⟩

Share

Metrics

Record views

690

Files downloads

190