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Vehicle Trajectory Prediction based on Motion

Model and Maneuver Recognition

Adam Houenou∗, Philippe Bonnifait∗, Véronique Cherfaoui∗, Wen Yao+

Abstract—Predicting other traffic participants trajectories is
a crucial task for an autonomous vehicle, in order to avoid
collisions on its planned trajectory. It is also necessary for
many Advanced Driver Assistance Systems, where the ego-
vehicle’s trajectory has to be predicted too. Even if trajectory
prediction is not a deterministic task, it is possible to point out
the most likely trajectory. This paper presents a new trajectory
prediction method which combines a trajectory prediction based
on Constant Yaw Rate and Acceleration motion model and
a trajectory prediction based on maneuver recognition. It
takes benefit on the accuracy of both predictions respectively a
short-term and long-term. The defined Maneuver Recognition
Module selects the current maneuver from a predefined set
by comparing the center lines of the road’s lanes to a local
curvilinear model of the path of the vehicle. The overall
approach was tested on prerecorded human real driving data
and results show that the Maneuver Recognition Module has a
high success rate and that the final trajectory prediction has a
better accuracy.

I. INTRODUCTION

Active safety systems and self-driving cars are a promising

solution to reduce the number of traffic accidents ([1], [2]).

Some Advanced Driver Assistance Systems (ADAS) such

as Adaptive Cruise Control, Collision Warning System and

Emergency Braking System, that already exist in series

vehicles, are able to warn the driver and even to intervene

on the state of the vehicle when a hazardous traffic situation

is being developed. A Collision Avoidance System (CAS)

needs to continuously make a prediction of the evolution of

the scene, in order to detect any possible future collision with

the ego-vehicle. This means that it is necessary to predict

the trajectory of detected vehicles in the surroundings of the

ego-vehicle and its own trajectory in the case of ADAS.

Predicting the trajectory of a vehicle is not a deterministic

task since it depends on each driver’s intention and driving

habits. However, certain considerations about vehicle dynam-

ics can provide partial or fuzzy knowledge on the future. For

instance it is known that a vehicle moving at a given speed

will need a certain time to fully stop and that the curvature

of its trajectory has to be under a certain value in order to

keep stability. On the other hand, even if each driver has its

own habits, it is possible to point out some common driving
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(a) Lane changing (b) Entering a bend

Figure 1: Bad trajectory predictions.

maneuvers based on traffic rules for instance, or on some

common behaviors assuming that every driver keeps some

comfort while driving.

In many cases, trajectory prediction is made by assuming

a certain motion model. A comparison of different motion

models for target tracking was made in [3]. It appears that

the model assuming Constant Yaw Rate and Acceleration

(CYRA) gives the best results. This model was used in

[4] and [5] for vehicle trajectory prediction. So predicted

trajectories are very accurate if the vehicle has a monotonic

movement that perfectly fits the motion model. For a varying

movement, the accuracy is good only for a short time ahead

due to inertia, but the prediction can be pretty wrong for

longer term (see Fig.1). A CAS needs to predict trajectories

for at least a few seconds ahead and according to [6], 50% of

accidents occur at intersections or during specific maneuvers

where the dynamic of the vehicle could rapidly change.

In several works, a Maneuver Recognition Module (MRM)

is used in order to have a better prediction considering

the whole prediction. In [7] and [8], a set of trajectories

corresponding to different maneuvers is predefined. Then,

a Hidden Markov Model is used to select the most likely

trajectory of an object, based on its current measurements

sequence. In [9] Probabilistic Finite-State Machines are used

to model complex driving maneuvers as sequences of basic

elements that are specified by a set of rules in a fuzzy logic

system. The rules are obtained from a training data set

including signals such as velocity, acceleration and steering

angle. A Bayes filter approach is employed to recognize a

driving maneuver by computing the probability of each basic

element in the context of the maneuver model. In [10] the ego

vehicle trajectory is predicted by defining a driving context

which is a vector containing relevant signals from sensors of

the testbed such as light indicator or driver’s gaze direction.

The driving context is continuously recorded over a sliding

time frame of 2 seconds and a trained classifier discriminates

between lane change and lane keeping a few seconds before



Figure 2: System overview

the maneuver starts.

This paper proposes a trajectory prediction method that

combines a trajectory predicted by CYRA motion model

and a trajectory predicted by maneuver recognition. The

combination rule takes benefit on the short-term accuracy

of the first trajectory and the better accuracy of the second

trajectory at longer term. The defined Maneuver Recognition

Module (MRM) uses no training data. It is based on the

modeling and the comparison of the instantaneous path of

the vehicle and the shape of the road. The proposed method

is applicable as well for the target vehicles as for the ego-

vehicle. In Section II, an overview of the trajectory prediction

system is shown. Section III presents the MRM. In section

IV, the proposed method is explained in detail. Some

experimental results and analyzes are given in section V.

Finally, section VI presents our conclusions and future work.

II. SYSTEM OVERVIEW

It is assumed that a target tracking system hosted by the

ego-vehicle provides for each target vehicle the state vector

ζ(target) and its covariance matrix in a local Cartesian

coordinate system:

ζ(target) = [x, y, θ, v, a, ω]
T

(1)

where x and y are the Cartesian coordinates, θ the yaw angle,

v and a the longitudinal velocity and acceleration and ω the

yaw rate.

For one prediction operation, the working frame is static and

corresponds to the current measurement frame. With the

same parametrization, the ego-vehicle’s state is thus defined

as:

ζ(ego) = [0, 0, 0, v, a, ω]
T

(2)

where v, a and ω are provided by proprioceptive sensors.

It is also assumed that a camera based system detects road-

markings and provides a local parabolic model of their center

lines [11] in the same Cartesian frame :

y (x) = c2x
2 + c1x

1 + c0 (3)

where c2, c1 and c0 are coefficients. The width of the lanes is

also measured. The tracker and the road-markings detection

system are called the Perception System in the following.

For each vehicle, including the ego-vehicle, the MRM detects

the current maneuver. Then, a first trajectory prediction is

made, only based on the recognized maneuver. A second

prediction is made by using CYRA motion model. The

final predicted trajectory is obtained by combining those two

predictions with a weighting-function (Fig 2).

III. MANEUVER RECOGNITION MODULE (MRM)

In a normal driving context (e.g. no control loss), the path

of a vehicle depends on the maneuvers decided by the driver.

These can roughly be limited to these canonical cases:

• Keep lane

• Change lane (to the right or the left side lane) on the

same road

• Turn (at an intersection).

A u-turn maneuver is excluded here. An overtaking ma-

neuver can be decomposed as: change lane - keep lane -

change lane. As it can be noticed, the maneuver is strongly

relative to the lanes of the road and so is the path of the

vehicle. The MRM is based on an early detection of the

lane where the driver is intending to go (or stay). The lane

intention detection exploits the current similarity between the

path of the vehicle under consideration and the lanes’ center

lines (the one of its current lane and the ones of the adjacent

lanes).

To evaluate the current similarity between the path of the

vehicle and a given lane’s center line, the path of the vehicle

is locally modeled as an arc of circle [12] defined by the

state vector X(p) = [dl, dr, θ, γ]
T

. dl and dr are respectively

the current distances of the the vehicle to the left and right

boundaries of the considered lane. Their values are calculated

from the lane’s center line equation, the current position of

the vehicle and the known width of the lane. Appendix-A

shows how to compute the distance between a point and a

line. θ is the current heading angle of the vehicle (known

from state ζ) and γ the current curvature of its path. The

estimated value of γ is obtained from Eq. 4, where v and ω

are the velocity and the yaw rate of the vehicle.

γ =
ω

v
(4)

The variances of dl, dr and θ are retrieved from the covari-

ance matrix of ζ. According to [13], if v and ω are Gaussian

distributed then the variance of γ can be approximated by Eq.

5, where σ denotes the standard deviation of the subscript

parameter.

σ2
γ =

(

ω.v

v2 − σ2
v

)2

−
ω2

− σ2
ω

v2 − σ2
v

(5)

The center line of the considered lane is also represented

with the same state parameters: X(l) = [dl, dr, θ, γ]
T

, with

dl and dr both equaling half the lane’s width. θ and γ are

the lane center line’s heading angle and its curvature in its

closest point to the vehicle’s position. Appendix-A shows

how to define this point. In a given abscissa x, θ and γ

are calculated with Eqs. 6 and 7 where y (x) is the known

equation of the line (Eq. 3).

θ (x) = arctan (y′ (x)) (6)

γ (x) =
y′′ (x)

(1 + y′2 (x))
3/2

(7)



where y′ (x) denotes the derivative of y (x). Then, the square

of the statistical distance between a given lane’s center line

and a given vehicle path is calculated with Eq.8 where P (•)

denotes the covariance matrix of state X(•).

D
2 =

(

X
(l) −X

(p)
)T

·
(

P
(l) + P

(p)
)

−1

·
(

X
(l) −X

(p)
)

(8)

D2 is Chi-square distributed. If its value is small, then the

path of the vehicle is assumed to be currently quite similar

to the lane’s center line. In order to avoid disturbance due

to punctual erroneous measurements, the distance considered

to evaluate the similarity is a weighted average of so defined

statistical distance, over the N last sample times (Eq.9).

D∗
k =

∑N−1
i=0 wiDk−i
∑N−1

i=0 wi

(9)

However, the weights wi are set to be smaller for older

sampled times. N is set so as not to use measurements

older than one sec and to keep reasonable computational

requirements. The distances Dk−i are calculated with Eq.8.

The intended lane of the vehicle is detected by first calcu-

lating the distance between its path and its current lane’s

center line. If the distance is lower or equal to a threshold

Th, the vehicle is supposed to be following that lane and

this is a keep lane maneuver. The value of the threshold

depends on the accuracy of the measurements and has to

be tuned experimentally so as to give realistic results (a use

case is shown is section V). If the distance is above the

threshold, then the vehicle is either going to leave its current

lane or has just entered it. In the first case, the distance

with that lane must be increasing and in the second case,

it must be decreasing. In order to be able to check the

sens of variation of the distance it is necessary to buffer the

calculated distances for at least one iteration. If the distance

is increasing, then the vehicle is leaving its current lane and

the intending lane is the one having the smallest distance,

apart from the vehicle’s current lane. Here, the maneuver

is a change lane, if the intended lane is an adjacent one

otherwise, it is a turn if the intended lane is a connected

lane at an intersection. If the distance is decreasing, then

the vehicle is entering its current lane and the maneuver is

a keep lane (even if it is the second part of an actual lane

change).

Notice that at the beginning of a change lane for instance,

the MRM tends to output a keep lane until the distance

between the vehicle’s path and its current lane’s center line

exceeds the chosen threshold. This may induce a short delay

in the detection of new started maneuvers (See section V).

The lower the threshold, the lower the delay but a too low

threshold will cause instability in case of zigzags within the

lane or because of measurement noise.

For the sake of clarity, only change lane and keep lane

maneuvers will be considered in the following. However,

the proposed approach is not significantly different for a turn

maneuver.

Figure 3: A trajectory in the Frenet frame

IV. TRAJECTORY PREDICTION

The method consists in mixing trajectory prediction based

on maneuver recognition and trajectory prediction based on

a motion model.

A. Trajectory prediction based on maneuver recognition

(Tman)

The MRM detects the current maneuver but there are many

possible realizations for a single maneuver. Depending on the

driver’s habits, the actual trajectory may be pretty smooth

or pretty aggressive. Moreover, the road geometry will

also have an influence. So, based on the vehicle current

state, the road parameters and the detected maneuver, a

set of trajectories are first generated and the best one is

selected with respect to a cost function described later. The

trajectories are first generated in the Frenet frame along the

center line of the current lane of the vehicle (see Fig.3),

then converted to the initial Cartesian coordinate system.

We know from [14] and [15] that the lateral component

d (t) and the longitudinal component s (t) (t being the time)

of the trajectory of a vehicle moving from the initial state

F0 =
(

s0, ṡ0, s̈0, d0, ḋ0, d̈0

)

in the Frenet frame to the final

state F1 =
(

s1, ṡ1, s̈1, d1, ḋ1, d̈1

)

can each be optimally

modeled as a quintic polynomial. This guaranties the jerk

continuity and provides a unique solution.

1) Initial state of the trajectories in the Frenet frame: All the

trajectories have the same initial state which is derived from

the current state ζ0 = [x0, y0, θ0, v0, a0, ω0] of the vehicle in

the Cartesian frame. Eq.10 shows the transformation.















































d0 = d∗0

ḋ0 = v0sin
(

θ0 − θ−→
T0

)

d̈0 =
√

(a2
0 + γ0v20)sin

(

θ0 − θ−→
T0

)

s0 = 0

ṡ0 = v0cos
(

θ0 − θ−→
T0

)

s̈0 =
√

(a2
0 + γ0v20)cos

(

θ0 − θ−→
T0

)

(10)

d∗0 is the Euclidean distance between point (x0, y0) and the

lane center line, θ−→
T0

is the orientation of the tangent vector
−→
T0

depicted in Fig.3. Appendix-A describes the calculation of

d∗0 and
−→
T0. The initial curvilinear abscissa s0 is arbitrarily set

to zero. γ0v
2
0 is the current value of the normal acceleration

of the vehicle.



2) Final state of the trajectories in the Frenet frame:

Since the trajectory prediction is made in order to detect

possible collisions, no constraint about obstacles is taken

into account. Only the following assumptions are made:

at the end state, the vehicle is moving right on the center

line of its intended lane (known from the MRM) and has

a constant longitudinal acceleration during the maneuver.

Thus, only partial knowledge is available about the final state

(see Eq.11).


















d1 = d∗1
ḋ1 = 0

d̈1 = 0

s̈1 = a0

(11)

For a change lane, d∗1 equals plus/minus the lane’s width

depending on the direction of the maneuver and is null for a

keep lane. A complete change lane maneuver has a limited

duration denoted t(K). We know from the experiments

described in section V that t(K)
≈ 6sec. One may extend

or reduce this duration if needed. That does not affect

the proposed method but may change the computational

requirements. A keep lane is obviously shorter. The time

interval
]

0, t(K)
]

is then sampled and each sample time is

used as maneuver ending time t1 to define a unique trajec-

tory. The set of trajectories originates from this sampling:

t1 =
{

t(i)
}

i=1..K
. So, an additional piece of information is:

ṡ1 = v0 + a0 · t1.

3) Lateral component description: The lateral component of

each trajectory is of the form:

d(t) = c5t
5 + c4t

4 + c3t
3 + c2t

2 + c1t+ c0 (12)

Where ci,i={0,1,2,3,4,5} are coefficients. Given a starting time

t0 = 0, a defined ending time t1 ∈ ]0, tmax] and knowing

the initial and final states, the coefficients ci,i={0,1,2,3,4,5} are

easily obtained by solving Eq.13















t50 t40 t30 t20 t10 1
t51 t41 t31 t21 t11 1
5t40 4t30 3t20 2t10 1 0
5t41 4t31 3t21 2t11 1 0
20t30 12t20 6t10 2 0 0
20t31 12t21 6t11 2 0 0















·















c5
c4
c3
c2
c1
c0















=

















d0
d1
ḋ0
ḋ1
d̈0
d̈1

















(13)

4) Longitudinal component description: Since s1 is un-

known, we loose one degree of freedom and the longitudinal

component of the trajectories will be modeled as a quartic

polynomial.

s(t) = c4t
4 + c3t

3 + c2t
2 + c1t+ c0 (14)

Where ci,i={0,1,2,3,4} are constant coefficients. The jerk

continuity is still guarantied since the polynomial is a least

three times derivable. The coefficients ci,i={0,1,2,3,4} are

obtained by solving Eq.15.











t40 t30 t20 t10 1
4t30 3t20 2t10 1 0
4t31 3t21 2t11 1 0
12t20 6t10 2 0 0
12t21 6t11 2 0 0











·











c4
c3
c2
c1
c0











=











s0
ṡ0
ṡ1
s̈0
s̈1











(15)

Notice that by dealing separately with longitudinal and lateral

components, we do not take into account the non holonomic

constraints, which means that this approach cannot be applied

to very low speed scenarios. A set of trajectories is obtained,

each corresponding to a different ending time (Fig.4).

The trajectories are then converted to the Cartesian coordinate

system (see Appendix-B) and the best one is selected with

respect to the cost function described hereafter.

5) Best trajectory selection by minimization of a cost func-

tion: It is admitted that an average driver will seek to mini-

mize the duration of his current maneuver but will also try to

keep some comfort in the cockpit and avoid oscillations and

overshoots. The trajectories generated here (denoted T
(i)
i=1..K)

have no oscillation but may have overshoots depending on

the initial state (see Fig.4) and the road’s geometry; which is

a realistic fact. Since there is no oscillation and constant

longitudinal acceleration is assumed, the comfort is only

quantified by the normal acceleration during the maneuver.

One can notice in Fig.4 that the trajectories with overshoots

are also the longer ones. So, the cost of a trajectory is defined

as shown in Eq.16.

C
(

T (i)
)

= max (ā (t)) + α · t(i) (16)

where ā (t) is the norm of the normal acceleration of the

vehicle at a given time t during the maneuver, t(i) is the

duration of the trajectory and α is a positive weighting

coefficients which is used to vary the behavior of the cost

function (a use case is shown in section V). This function

penalizes trajectories having a long duration and by the way

also penalizes trajectories having overshoots. Trajectories

with a high normal acceleration peak are also penalized.

Tman is the trajectory having the smallest cost:

Tman = argmin
(

C
(

T (i)
))

i=1..K
(17)

Instead of considering the maximum value of the normal

acceleration in Eq.16, one may think of computing its average

value on the whole maneuver but the fact is that some of

the generated trajectories having a very small duration but

abnormally high peak of normal acceleration, could then be

selected.

B. Trajectory prediction with motion model (Tmdl)

Assuming CYRA motion model, the components of the

velocity along each dimension in the Cartesian frame are

{

vx (t) = v (t) · cos (ω0 · t+ θ0)

vy (t) = v (t) · sin (ω0 · t+ θ0)
(18)

where v(t) = a0 · t+ v0. Tmdl is obtained on a closed form

by integrating the velocity.

Tmdl =

{

x (t) = a0

ω2

0

cos (θ (t)) + v(t)
ω0

sin (θ (t)) + cx

y (t) = a0

ω2

0

sin (θ (t))− v(t)
ω0

cos (θ (t)) + cy
(19)



(a) Change lane

(b) Keep lane

Figure 4: Trajectory generation and selection.

Figure 5: Weight function f (t).

where cx and cy are constants fixed with the initial values.
{

cx = x0 −
v0
ω sin (θ0)−

a0

ω2

0

cos (θ0)

cy = y0 +
v0

ω0

cos (θ0)−
a0

ω2

0

sin (θ0)
(20)

If ω0 = 0, the predicted trajectory is rectilinear and given by

Tmdl =

{

x (t) =
(

1
2 · a0 · t

2 + v0
)

cos (θ0) + x0

y (t) =
(

1
2 · a0 · t

2 + v0
)

sin (θ0) + y0
(21)

C. Combining Tman and Tmdl

As reminded earlier in Section I, Tmdl is very accurate only

for a short term. For a longer terms and for specific maneuver

the motion model does not fit the actual movement. Tman

is based on maneuver detection and is thus more adapted

to longer time prediction than Tmdl. So, the final predicted

trajectory Tfin, is a weighted sum of Tmdl and Tman as

described in Eq.22 where f (t) is a cubic spline function

depicted in Fig.5.

Tfin (t) = f (t) · Tmdl (t) + (1− f (t)) · Tman (t) (22)

For the first second of prediction, Tfin is closer to Tmdl.

As the prediction time horizon gets longer, Tfin gets pro-

gressively closer to Tman. With this function, not only the

accuracy of Tmdl for short time horizon is kept, but also, the

possible delay in the detection of a new started maneuver is

partially covered.

Figure 6: Set of 236 human lane change trajectories

V. EXPERIMENTAL RESULTS

A prerecorded human driving data in semi-urban conditions

was used to test the maneuver recognition algorithm and

the trajectory prediction method. The acquisition platform

was POSS-V (PKU Omni Smart Sensing - Vehicle). The

integrated system recorded position data of the host vehicle

with timestamps as explained in [16]. The experiment was

carried on the 3rdand 4th ring roads of Beijing, China.

Drivers were asked to change lanes or to overtake other

vehicles when possible, on straight road portions. Then,

the lane change maneuver trajectories have been extracted

from the recordings and conditioned to fit the same Carte-

sian coordinate system as depicted in Fig.6. The standard

deviation of the localization system is 2m and the vehicle

drove approximately at 80km/h.

As it can be noticed, the lane change trajectory extraction is

not perfect but most of the extracted trajectories were actual

lane changes. All the trajectories start on lane 2. There are

91 right lane changes (RLC), 119 left lane changes (LLC)

and 24 trajectories that are either incomplete lane change

or unknown maneuvers. The later are not considered in the

following.

Since the available data format is not rich enough to fit the

requirements of the proposed method, the data set has been

preprocessed in order to retrieve the missing information

such as yaw angle, velocity, acceleration, yaw rate with

their respective variances. The preprocessing consists in

performing a Kalman filtering with a CYRA motion model

for the prediction steps.

A. Maneuver recognition

The MRM was executed for each sampled data of each

extracted trajectory. The goal here is to check if the right

maneuver is always detected before the vehicle actually

reaches its intended lane and to report the time before the

detection and the lateral offset between its initial position

and its position at the moment of detection. Then, the mean

values were calculated for the set of extracted lane changes.

After having tuned the threshold by using a few extracted

trajectories, the results for all the 210 ones are shown in

Tab.I.

All the lane changes have been detected before the vehicle

reaches the intended lane. The mean time of detection is

about 1sec. Even if this may seem high, the low value of



LLC RLC
Detection 100% 100%

Mean time before detection 1.15s 1.09

Mean lateral offset before detection 0.3m 0.33m

Table I: Lane change maneuver detection and mean time of

detection. With standard deviations: σdl
= σdr

= 0.5m,

σθ = 5°, σγ = 0.05m−1 and Th = 2.

[0s, 1s[ [1s, 2s[ [2s, 3s[ [3s, 4s[
Tmdl 0.1m 0.49m 2.3m 4.31m

Tman 0.15m 0.2m 0.33m 0.45m

Tfin 0.09m 0.17m 0.28m 0.45m

Table II: Accuracy of trajectory prediction

the mean lateral offset before detection indicates that this is

because most of the trajectories were pretty smooth, meaning

that most of the drivers slowly left the initial lane. For the

most aggressive trajectory the reported values were 0.4s and

0.25m.

B. Trajectory prediction

The goal is to check the accuracy of the trajectory prediction

for different time horizons: [0s, 1s[, [1s, 2s[, [2s, 3s[ and

[3s, 4s[. Let’s first consider only one extracted trajectory.

For each sample time, a prediction was made for 4s ahead

and for each future pose, the Euclidean distance between

the actual position of the vehicle and the corresponding

future pose according to the prediction, has been reported.

The reports were classified into 4 categories depending on

the corresponding time horizon. Then, the mean error of

prediction for each time interval was computed as the average

of the reported distances. Since the delay in the detection of

the lane change at the beginning of the maneuver has an

influence on the overall result, only the predictions after the

lane change have been considered. The coefficients α in the

cost function (see Eq.16) was set to 0.25. Tab.II shows the

overall average values for all the extracted trajectories, per

type of prediction.

The mean error for Tmdl is very low for short time predictions

but exponentially increases as the time horizon gets bigger.

The accuracy of Tman does not vary a lot and the values

show that the trajectory prediction based only on maneuver

recognition is already close to the actual trajectory. This

means that the trajectory generation mechanism and the cost

function for the best trajectory selection is relevant. For

Tfin, in the intervals [0s, 1s[ and [3s, 4s[, the mean errors are

respectively the same as for Tmdl and Tman. This behavior

was expected because of the weighting function in Eq.22. In

the intervals [1s, 2s[ and [2s, 3s[ the accuracy of Tfin is better

than the accuracies of Tmdl and Tman because the actual

trajectory is, most of the time, between Tmdl and Tman (see

Fig.7 and 8). Globally speaking, Tfin is more accurate than

Tmdl and Tman which means that the proposed weighting

function and the overall approach are also relevant. The mean

errors on the final prediction are very low and can thus fit

the requirements of a collision detection system.

(a) t=0.7s: Before detection of lane change

(b) t=1.5s

(c) t=2s

(d) t=3.1s

Figure 7: Example of predictions for a left lane change

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a new approach for trajectory

prediction. The method includes a prediction based on

CYRA motion model which is very accurate for a short term

and a prediction based on maneuver recognition which is

more adapted for longer term prediction. The experimental

results on human real driving data proved the relevance

of the method. The second contribution of the paper is

a deterministic and efficient method for maneuver recog-

nition. It is based only on kinematic measurements and

road geometry detection. For real-time implementation, the

complexity of the method can be kept low if the number of

generated trajectories remains reasonable and if the curvature

of the road is constant (in this case, the transformation

from the Frenet frame to the Cartesian frame is trivial).

Future works include the estimation of the uncertainty along

the predicted trajectories in order to estimate the Time-

To-Collision with an associated probability of collision for

Collision Warning/Avoidance Systems.
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APPENDIX

A. Computation of d∗0 and
−→
T0 (section IV-A1)

The distance between a point and a curve is the smallest

distance between this point and any point belonging to the

curve. The square distance between point X0 = (x0, y0)
and a point (x, y) belonging to the the lane’s center line is

d2 = (x− x0)
2
+ (y − y0)

2
. Since we know the equation

of the lane’s center line as y (x) = a2x
2 + a1x

1 + a0, the

expression of d2 can be developed and rewritten as

d
2 = b4x

4 + b3x
3 + b2x

2 + b1x+ b0x0

where bi|i=0..4 are constants values depending on x0, y0
and coefficients ai|i=0..4 . One can then easily find the

abscissa xa that minimizes d2 (and by the way d) and find

the corresponding point A = (xa, ya) in the line be . So,

d∗0 = AX0
−→
T0 is the unit tangent vector of the lane’s center line in point

A. y′ (xa) being the slope of the tangent of the line in A,

we then have

−→
T0 =

(

1
√

1 + y′2 (xa)
,

y′2 (xa)
√

1 + y′2 (xa)

)

B. From Frenet frame to Cartesian X = (s, d) → X = (x, y)

Let’s consider the point A of the center line, defined in the

Frenet frame as (s, 0) and in the Cartesian frame as (xa, ya).

Let
−→
N be the unit normal vector of the line in A and point O

be the origin of the Cartesian frame. Assuming y′ (xa) 6= 0,

we have

−−→
OX =

−→
OA+ d · −→N with

−→
N =

(

1√
1+1/y′2(xa)

,
−1/y′(xa)√
1+1/y′2(xa)

)

So, finding xa leads to defining X in the Cartesian frame. s

is the distance from the origin of the Frenet frame to point

A along the center line. Thus

s =
∫ xa

x0

√

1 + y′2 (x)dx

Since y (x) is a second order polynomial, it is not analytically

possible to find a function f so that xa = f (s). However

this can be solved numerically by sampling the X-axis and

summing of elementary distances.
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