Draft Genome Sequence of Methylomicrobium buryatense Strain 5G, a Haloalkaline-Tolerant Methanotrophic Bacterium.

To cite this version:

Valentina N Khmelenina, David a C Beck, Christine Munk, Karen Davenport, Hajnalka Daligault, et al.. Draft Genome Sequence of Methylomicrobium buryatense Strain 5G, a Haloalkaline-Tolerant Methanotrophic Bacterium.. Genome Announc, 2013, 1 (4), epub ahead of print. <10.1128/genomeA.00053-13>. <hal-00880783>

HAL Id: hal-00880783
https://hal.archives-ouvertes.fr/hal-00880783
Submitted on 6 Nov 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Draft Genome Sequence of *Methylomicrobium buryatense* Strain 5G, a Haloalkaline-Tolerant Methanotrophic Bacterium

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russia; Department of Chemical Engineering, University of Washington, Seattle, Washington, USA; eScience Institute, University of Washington, Seattle, Washington, USA; Department of Microbiology, University of Washington, Seattle, Washington, USA; Los Alamos National Laboratory, Joint Genome Institute, Biosciences Division Genome Science B6, Los Alamos, New Mexico, USA; Equipe Adaptations et Interactions Microbiennes dans l’Environnement, UMR 7156 UDS–CNRS Génétique Moléculaire, Génomique, Microbiologie, Université de Strasbourg, Strasbourg, France; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA; Department of Biological Sciences, University of Calgary, Calgary, Canada; Department of Microbiology, Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, the Netherlands; Department of Biology, University of North Carolina, Charlotte, North Carolina, USA; Institute of Crop Science and Resource Conservation–Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany; School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom; Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan; Department of Civil & Environmental Engineering, the University of Michigan, Ann Arbor, Michigan, USA; Department of Arctic and Marine Biology, University of Tromsø, Tromsø, Norway; OMeGA, the Organization for Methanotrophic Genome Analysis, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada

Robust growth of the gammaproteobacterium *Methylomicrobium buryatense* strain 5G on methane makes it an attractive system for CH₄-based biocatalysis. Here we present a draft genome sequence of the strain that will provide a valuable framework for metabolic engineering of the core pathways for the production of valuable chemicals from methane.

Received 23 January 2013 Accepted 8 May 2013 Published 27 June 2013

Copyright © 2013 Khmelenina et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to Marina G. Kalyuzhnaya, mkalyuzh@uw.edu.
droxylamine oxidoreductase is present (17, 18). The ammonium assimilation inventory includes genes for glutamate and alanine dehydrogenases, glutamate synthase/glutamine synthetase, serine-pyruvate/serine-glyoxylate, and aspartate aminotransferases (19). Genes essential for ectoine biosynthesis were identified.

Nucleotide sequence accession numbers. The *Methylibium buryatense* 5G genome sequence was deposited in GenBank/EMBL under the accession numbers KB455575 and KB455576.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation (MCB-0842686, to M.G.K.), NSERC (L.Y.S.), and the Russian Foundation for Basic Research (RFBR 11-04-00801, to V.N.K.). The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (DE-AC02-05CH11231). Basic Research (RFBR 11-04-00801, to V.N.K.). The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (DOE-AC02-05CH11231).

REFERENCES