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Modeling of interferences during thread 
milling operation  
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Tel.: +33 3 85 59 53 30 

Fax: +33 3 85 59 53 70 
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Abstract: Thread milling is becoming more and more employed as a technique for 
producing thread, due to its advantages for industrial manufacturing sectors, such as the 
aeronautics, aerospace, and energy industries. The thread milling operation is atypical 
and several aspects have to be taken into account to perform it in good conditions. As for 
milling or grinding worms, grooves, thread or others sculptured surfaces, in thread milling, 
there exists a geometrical interference between the tool and the nominal surface which 
would be obtained. Thread mills have quite complex geometry and their profile has an 
effect on the machined thread. The present study details geometrical aspects of the 
thread milling process. This article deals with the link between thread mill geometry and 
nominal thread profile. An approach is proposed to analyze the thread profile generated 
by the thread mill envelope. It is deduced that thread milling produces interferences, i.e. 
the machined thread profile is affected by an overcut. A method is proposed to correct 
this geometrical error in order to produce accurate thread. 
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NOMENCLATURE 

Subscripts and abbreviations: 

 m relative to the mill 

 t relative to the thread 

r,z cylindrical coordinates 

 

Referentials and parameters: 

 RO = (O,E1,E2,E3) referential linked to the thread (O,E3): hole axis 

 Ro = (o, e1,e2,e3) referential linked to the mill with E3 = e3 and         ( , )    

 t: time 

 : angular position of the mill  

 :angular position of the mill axis 

 zce: altitude of a cutting edge point in the Ro referential  

 u: parameter 

 

Metric thread characteristics: 

 D: nominal diameter of the internal thread 

 D1: minor diameter of the internal thread 

 D2: pitch diameter of the internal thread 

 R3: root radius of the internal thread (not standardized) 

 d: nominal diameter of the external thread 

 d1: minor diameter of the external thread 

 d2: pitch diameter of the external thread 

 R: root radius of the external thread 

 H: fundamental triangle height  

 P: thread pitch (mm) 

 p: angular thread pitch (mm/rad) 

 TD2: pitch diameter tolerance 

 td: thread direction (right-hand thread td = 1, left-hand thread td = -1) 

 kt: reduction coefficient of the thread profile height 
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 Dmgt: maximum diameter of the generated thread 

 Er: radial error between nominal and generated thread 

 Er: variation of radial error along the thread flank 

 

Mill dimensions: 

 Dm: maximum diameter (mm)  

 D2m: pitch diameter (mm) 

 km: reduction coefficient of the mill profile height 

 nfm: flute number 

 

Cutting parameters: 

 Vc: cutting speed (mm/min) 

 ft: feed rate (mm/rev/tooth) 

 Rmc: helix radius of the mill center trajectory (mm) 

 Rmc cor: correction value of helix radius of the mill center trajectory (mm) 

 mm: milling mode (down-milling mm = 1, up-milling mm = -1) 

 

Geometrical objects: 

 Pt i: i
th
 characteristic point of the nominal thread profile 

 Pm i: i
th
 characteristic point of the mill profile 

 MC(t): mill center trajectory 

 MP(zce): mill profile 

 ME(t,,zce): mill envelope 

 NTP(z): nominal thread profile 

 NTS(,z): nominal thread surface 

 MET(t,zce): mill envelope trace in the (O,E1,E3) plane 

 EMET(zce): envelope of the mill envelope trace in the (O,E1,E3) plane 

 GTP(z): generated thread profile 

 

Computing parameters: 
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Ss: spindle speed (rpm) 

: mill rotation speed (rad/s) 

: mill axis rotation speed (rad/s) 

Vf: feed rate (mm/min) 

Operators: 

R(): rotating operator

cos( ) sin( ) 0

( ) sin( ) cos( ) 0

0 0 1

          
R  
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1 Introduction 

1.1 Generalities on thread milling 

There are many methods to produce threads. The existing techniques may 

be classified into the following families: cutting, grinding, EDM, and 

forming. Screws represent the majority of produced external threads, and 

they are obtained, in most cases, by a rolling process. Concerning internal 

threads, they are mainly machined with a cut tap. The thread milling 

process is a method to machine both internal and external threads. Thread 

milling will probably not develop and become predominant as the two 

other threading techniques have. Nevertheless, thread milling has 

advantages and is actually being used increasingly, to obtain, for example, 

large internal or external thread diameters [1-2]. 

Thread milling allows a high cutting speed, contrary to tapping, which 

requires a spindle inversion. Moreover, one thread mill may machine 

threads having a different nominal diameter and the same pitch. However, 

as explained below, a mill can not machine both an internal and external 

thread. In the case of an internal thread, the mill has a diameter less than 

the nominal diameter of the thread. If a tool breakage occurs, it can easily 

be removed, which may be problematic in tapping. As a consequence, an 

increasing use of thread milling is observed for the manufacturing of high-

cost parts, such as aeronautical and aerospace parts made from super 

alloys. 

The thread mill envelope is composed of the thread pitch profile, and 

during the thread milling cycle, the tool center strategy describes a circular 

helix as shown in Fig. 1. It requires a helical interpolation, which nowadays 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

may be executed easily on a CNC machine. The mill is engaged in the 

radial direction along a quarter of helix. In this case, the thread is 

machined along one tool path. It may also be machined along two or three 

paths, the radial penetration of the mill being incremented between each 

path. No previous research deals with this aspect, which merits closer 

study. 

1.2 Surfaces machined with form tools and interference 

Thread milling is a specific technique to produce threads, nevertheless 

with this, there exists a geometrical non-conformity to obtain desired final 

surface like for other techniques. The use of milling or of grinding with form 

tools for machining sculptured surfaces, worms, threads, grooves, flutes or 

helical gears leads to geometrical errors, named interference, which is an 

overcut (too much material is removed) or undercut (not enough material 

is removed). These errors can be corrected both by changing tool position 

during machining and by adapting tool profile. The first solution uses 

generally several computations with the interference model to minimize 

errors. The second solution needs a mathematical algorithm to define the 

tool profile as the function of the desired workpiece profile. 

In five axis flank milling of free form surfaces with cylindrical mills, different 

methods may be possible for errors minimization by changing tool 

positioning [3-5]. Further study also proposes to adapt tool shaped for 

better minimization of interference [6]. 

Worms, threads, flutes and grooves are mostly defined by helicoids which 

are mostly machined with a disk type tool [7-15] and sometimes with an 

axial type one [10].  There exists several methods to compute interference 
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errors (direct problem) and determine adapted tool profile (inverse 

problem) having a different complexity, approximation levels. Studies are 

also focused on the numerical aspect for computing solution and the 

sensitivity of algorithm to solve tool profile determination [11-12]. 

No study is reported in the available literature concerning the interference 

during thread milling. 

1.3 Context of study 

There are very few studies on thread milling and they usually deal with the 

force modeling [16]. Because of the complexity of thread milling, 

simplifying the kinematic approach is often considered. The aim of this 

study is to analyze and model, with the complete analytical approach, the 

thread mill profile and the resulted errors on the geometry of the generated 

thread. These errors may lead to obtain threads which do not respect the 

required quality. A method is proposed to correct geometrical errors by two 

combined means: an adaption of mill profile by the tool designer, and a 

modification the mill center trajectory by the mill user. 

All calculations are computed using Mathematica software. It is focused on 

internal threads, because it represents the major application of thread 

milling, and because external thread milling induces minor problems of 

interference. Furthermore, it was decided to consider metric threads, 

which are internationally standardized. Nevertheless, the proposed 

method can easily be applied to other thread profiles as well. 

Fig. 2 defines the parameterization of the internal thread milling operation. 

The (O,E1,E3) referential is linked to the thread and the (o,e1,e3) referential 
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is linked to the mill. The mill center (MC) position is a function of the time t. 

Other parameters are explained in further sections. 

1.3 Used approach for the study 

The approach in this study is described Fig. 3. A nominal thread profile 

(NTP) is defined; it represents the goal profile to machine. Then, the mill 

profile (MP) and a mill center trajectory (MC) are applied. It results a 

machined thread profile, named generated thread profile (GTP). This 

profile is not exactly equal to nominal thread profile (NTP), because of 

inferences, and this difference is quantified by a radial error (Er). Further, 

the goal will be to adapt mill center trajectory (MC) (ith loop) and the mill 

profile (MP) (i+1th loop) for reducing the error and obtaining a generated 

thread profile (GTP) as closer as possible to the nominal thread profile 

(NTP). 

2 Metric thread profile 

The metric thread profile is defined by ISO standard [17-18]. As shown in 

Fig. 4, the thread profile is based on the fundamental triangle and the 

basic profile. Basic dimensions are defined by equations (1) to (4). The 

internal diameter D1 of the internal thread is equal to the hole diameter 

before the threading operation. The internal thread profile is cut at a 

quarter of the thread height, while the external thread profile is cut at one 

eighth of the thread height. The root radius (R) of the external thread is 

standardized and must be higher than a minimum value in order to 

guarantee the strength of the screw. On the other hand, the root of the 

internal thread is not standardized, and its form (linear or circular) will 

depend on the design of the tool profile used for threading. The tool 
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designer has to respect only one constraint: the thread flank limits must be 

above the basic profile. This means that the diameter of the flank limits 

must be smaller than the nominal diameter (D) of the thread. 

P
p

2
           (1) 

3
H P

2
          (2) 

1

5 5 3
D D H D P

4 8
           (3) 

2

3 3 3
D D H D P

4 8
           (4) 

3 Thread and tool profile 

This section describes the parameterization of the nominal thread profile 

(NTP), and the mill profile (MP).  

3.1 Definition of the nominal thread profile 

The nominal thread profile (NTP) is a thread profile which is required to be 

obtained after machining and which respects ISO standard [17]. It is 

decided to define this nominal thread profile (NTP) by six points (Pti) linked 

by lines as shown in Fig. 5. Their coordinates, in the (O,E1,E3) referential, 

are given by equations (5) to (10). The external diameter, fixed to the root 

diameter, depends on the reduction coefficient of the thread profile height 

(kt). According to standard [17], this coefficient may not be greater than 

one eighth. In this study, the root form which is sought is flat. The nominal 

thread profile (NTP) is parameterized, in the RO referential, by equation 

(11) as function of z axis coordinate in the (O,E1,E3) referential. This 
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thread profile has a pitch diameter equal to the standard pitch diameter 

(D2). 

T T T
t1r t1zP ,P P. 5 3 /16,0 D/ 2,0   [ ] [ ] [ ]P     (5) 

T T T
t2r t2zP ,P P. 5 3 /16,1/8 D/ 2,0   [ ] [ ] [ ]P     (6) 

T T T
t3r t3z t tP ,P P. 3(1/8 k ) / 2,8/16 k / 2 D/ 2,0    [ ] [ ] [ ]P   (7) 

T T T
t4r t4z t tP ,P P. 3(1/8 k ) / 2,8/16 k / 2 D/ 2,0    [ ] [ ] [ ]P   (8) 

T T T
t5r t5zP ,P P. 5 3 /16,7/8 D/ 2,0   [ ] [ ] [ ]P     (9) 

T T T
t6r t6zP ,P P. 5 3 /16,1 D/ 2,0   [ ] [ ] [ ]P     (10) 

T
r

t1r t2z

t2r t2z t3z t2z t3r t2r t2z t3z

r t3r t3z t4z

t4r t4z t5z t4z t5r t4r t4z t5z

t5r t5z t6z

(z) TP (z),z

P if z P

P (z P ) /(P P ).(P P ) if P z P

with NTP (z) P if P z P

P (z P ) /(P P ).(P P ) if P z P

P if P z P


                

NTP [N ]

(11) 

The nominal thread surface (NTS), as a function of the nominal thread 

profile (NTP), may be analytically parameterized by equation (12). It is 

defined with cylindrical coordinates. The thread direction is defined by 

value td: td is equal to 1 or -1, respectively for a right-hand thread, and for a 

left-hand one. The thread direction (td) will change the mill center trajectory 

(MC) but without affecting the interference problem. This parameter is 

introduced for further studied aspects, such as the calculation of uncut 

chip thickness. 

T T
d r( , z) 0,0, t .p. ( ). NTP (z),0,z    NTS [ ] R [ ]     (12) 

3.2 Definition of the mill profile 

The maximum diameter of the mill is defined by Dm. It is also decided to 

define the mill profile (MP) by six points (Pmi) linked by lines. Their 
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coordinates, in the (o,e1,e3) referential, are given by equations (13) to (18). 

The minor diameter is fixed, as the mill may not cut the minor diameter of 

the thread. The crest of the mill is defined by a reduction coefficient of the 

mill profile height (km). The mill profile (MP) is parameterized, in the Ro 

referential, by equation (19) as a function of the altitude zce of a cutting 

edge point. Fig. 6 shows an example of a mill profile (MP). 

T T T
m1r m1z m mP ,P P. 3 3 /8 3(1/8 k ) / 2,0 D / 2,0     [ ] [ ] [ ]P   (13) 

T T T
m2r m2z m mP ,P P. 3 3 /8 3(1/8 k ) / 2,1/16 D / 2,0     [ ] [ ] [ ]P  (14) 

T T T
m3r m3z m mP ,P P. 0,8 /16 k / 2 D / 2,0   [ ] [ ] [ ]P    (15) 

T T T
m4r m4z m mP ,P P. 0,8 /16 k / 2 D / 2,0   [ ] [ ] [ ]P    (16) 

T T T
m5r m5z m mP ,P P. 3 3 /8 3(1/8 k ) / 2,15/16 D / 2,0     [ ] [ ] [ ]P  (17) 

T T T
m6r m6z m mP ,P P. 3 3 /8 3(1/8 k ) / 2,1 D / 2,0     [ ] [ ] [ ]P  (18) 

T
ce r ce ce

m1r ce m2z

m2r ce m2z m3z m2z m3r m2r m2z ce m3z

r ce m3r m3z m4z

m4r ce m4z m5z m4z m5r m4r m4z ce m5z

m5r m5z ce m6z

(z ) MP (z ),z with

P if 0 z P

P (z P ) /(P P ).(P P ) if P z P

MP (z ) P if P z P

P (z P ) /(P P ).(P P ) if P z P

P if P z P


         

     
 

MP [ ]




 

 (19) 

The pitch diameter of the mill is given by equation (20). 

 2m m m

3
D D P 1 2.k

2
          (20) 

4 Milling parameterization 

4.1 Definition of the mill center trajectory 

The milling machine moves the mill center (MC) along a circular helix (Fig. 

2). The helix pitch is equal to the thread pitch. Concerning its radius (Rmc), 
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a first proposal might be to determine the radial offset necessary to 

superimpose the pitch line of the two profiles as shown in Fig. 2 and 

Fig. 7. The approach is the same, whether the thread is milled in one pass 

or in several paths. This condition is represented by equation (21).  

 mc 2 2m

1
R D D

2
          (21) 

From equations (20) and (21), the solution may be established; it is given 

by equation (22). 

 mc m m

1 3 1
R D D P k

2 2 8
             (22) 

From this analysis, it can be established that the last points of the flank 

cutting edges which would cut as shown in Fig. 8. 

r ce 1 mc ce inf .lim. ce sup.lim.MP (z ) D / 2 R z P /8 or z 7.P /8       (23) 

The spindle speed and the feed rate are determined with equations (24) 

and (25) as a function of cutting parameters (cutting speed and feed per 

revolution) and mill properties. 

c
S

m

1000.V
S

.D
           (24) 

f fm t SV n .f .S          (25) 

Further, the mill rotation speed is given by equation (26). In the case of a 

modern machine tool applying the feed rate along the 3D trajectory, i.e. a 

circular helix, it may be demonstrated that the expression of the mill axis 

rotation speed around the hole axis is equation (27). It also takes into 

account the milling mode mm, which is equal to either 1 or -1; the milling 

operation is respectively down- or up-milling. 
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S.S

30

           (26) 

 m fm t mcm .n .f . 2 . p² R ²          (27) 

From the milling mode (mm) and the thread direction (td), the mill center 

trajectory (MC) is expressed by equation (28) in the RO referential. 

T
mc mc d(t) R .cos( .t),R .sin( .t), t .p. .t   MC [ ]     (28) 

4.2 Definition of the mill envelope 

The mill envelope (ME) is the surface obtained by the revolution of the mill 

profile (MP) around the mill axis. From the previously defined elements, 

the surface of the mill envelope (ME) can be analytically formulated by 

equation (29) in RO referential. Fig. 8 shows this surface (ME) and the 

nominal thread surface (NTS) at a given time. Because of the helix angle 

of the nominal thread surface (NTS), it is clear that the mill envelope (ME) 

crosses the upper flank of the nominally defined thread surface. It also 

crosses the lower flank, but from the opposite side of the (O,E1,E3) plane. 

This means that there is interference, which is an overcut on the thread 

flanks. 

T
ce r ce ce(t, , z ) (t) ( ). MP (z ),0,z   ME MC R [ ]     (29) 

5 Interference parameterization 

In order to parameterize the generated thread profile (GTP), the mill 

envelope trace (MET) in the (O,E1,E3) plane is observed. The mill 

envelope trace (MET) represents the curve described by the intersection 

point of a circle contained in the mill envelope (ME) with this plane when 

mill moves, as shown Fig. 8. Equation (30) gives the value of parameter  

when the mill envelope (ME) intersects the (O,E1,E3) plane. Thus, this 
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trace can be analytically defined from equations (29) and (30) by 

expression (31). It is the curve family equation in the (O,E1,E3) referential. 

 ce ce mc r ce(t, ,z ). 0 (t,z ) arcsin R .sin( .t) / MP (z )    ME E
2

 (30) 

T
ce ce ce ce ce(t, z ) (t, (t, z ), z ). , (t, (t, z ), z ).  MET [ME E ME E ]   (31) 

Fig. 9 shows curves representing the trace of specific points of the mill 

envelope (ME). Each point of the mill profile (MP) generates a trace which 

crosses over the nominal thread profile (NTP). As a consequence there is 

interference, and the overcut may be quantified by expressing a radial 

error (Er) (cf. Fig. 9). It can be seen that the points MP(zce inf.lim.) and 

MP(zce sup.lim.) are not the points of the mill profile which generated the 

interior points of the thread flanks. Thus equation (23) gives an 

approximation, because it does not take into account the interference. 

The MET curves for any points of the mill profile represents a family of 

curves. There exits an envelope curve to this family of curves. The 

envelope of the mill envelope traces (EMET) may be determined from the 

condition formulated by relation (32). The “f” function is calculated 

numerically, and using equation (31) it is possible to obtain equation (33) 

of the envelope of the mill envelope traces (EMET) in the (O,E1,E3) plane. 

This envelope is shown in Fig. 9 and it is the same on the upper and lower 

flank. 

ce ce
ce

ce

( (t,z ) ( (t,z )
DET 0 t f (z )

t z

        
MET MET

   (32) 

ce ce ce(z ) (f (z ),z )EMET MET       (33) 
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Points MP(zce inf.lim.2) and MP(zce sup.lim.2) of the mill profile, which generated 

the interior points of the thread flanks, can be numerically calculated by 

solving equation (34). 

1
ce inf .lim.2

D
(z ).

2
EMET

1
E        (34) 

From this analysis, the generated thread profile (GTP) is composed of 

several curves, among the upper and the lower envelopes of the mill 

envelope trace (EMET) and two mill envelope traces (MET). It is defined in 

pieces as in equation (35). Two of these are the envelopes of the mill 

envelope trace (EMET), which are the flanks. The root of the thread is 

composed of a vertical line and two mill envelope traces (MET), of points 

MP(Pm3z) and MP(Pm4z). Points EMET(Pm3z) and EMET(Pm4z) may be 

considered as being the last points of the flanks. Next, the maximum 

diameter of the generated thread (Dmgt) is given by equation (36). 

Whereas the mill profile (MP) considered does not have corner radius at 

points Pm3 and Pm4, the root of the generated thread does. 

ce ce inf .lim2 ce m3z

m3z
T

mc m3r ce m3z ce m4z

m4z

ce ce sup.lim2 ce m5z

(z ) if z z P

(t,P )

R P ,z if P z P

(t,P )

(z ) if z z P

       

EMET

MET

[ ]GTP
MET

EMET

    (35) 

mgt m3zD = 2. (P ).EMET
1
E        (36) 

In case A, the maximum diameter of the generated thread (Dmgt) is equal 

to 15.88 mm, which is less than the nominal diameter (D = 16 mm). As a 

consequence, because of the interference the flanks are not high enough 

to respect the ISO standard, despite the fact that the flank diameter is 

larger than it should be. 
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6 Results and interference correction 

From the defined approach, the radial errors generated thread profile 

(GTP) during thread milling may be computed with the calculus software. 

The same results are also obtained with a CAD software which indicates 

that the programmed algorithm works. Moreover experimental 

measurements on machined threads are made to check the model. Fig. 10 

represents the radial error (Er) for case A. This error is not strictly constant, 

which means that the generated flank is not perfectly linear and the real 

flank angle is not equal to 60°. The radial error (Er) is higher on the 

external diameter (Er max = 57.3 m) of the flank than on the internal one 

(Er = 54.5 m), i.e. Er =  2.8 m. A mean least square line may be 

associated with the flank, which enables the straightness of the flank and 

its inclination to be calculated. In this case, straightness is equal to 

0.05 m; this value is very low, and may consist mainly of a numerical 

computation error. Thus, the generated flank is very near to be linear. The 

real flank angle is 60.07 °, which is very near to what would be obtained 

nominally. Thus, the defects which occur because of the interference may 

be considered mainly as an offset of the profile. 

The radial error is lower than half the tolerance interval (TD2/2 = 106 m) 

on D2 flank diameter defined for 4 quality thread. That means that 

interference alone may not cause a non-standard thread; the defects on 

the milled thread also result from other sources such as mill deflection, 

vibrations and machine motion errors. 

The algorithm for correcting overcut is described in Fig. 3. Because the 

interference is not constant along the flank, the method for correcting this 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

overcut could be to adapt the mill profile (MP) to the thread dimension 

which has to be milled. This solution is not satisfying, however; not only 

would it be complex, but then a thread mill could not be used for 

machining threads having different diameters, because the interference is 

linked to the diameter. As a consequence, the solution which appears to 

suppress the overcut caused by interference is to correct the radius (Rmc) 

of the mill center trajectory (MC) (cf. Fig. 3 ith loop). This approach requires 

an increase of the mill triangular profile by decreasing the reduction 

coefficient of the mill profile height (km) (cf. Fig. 3 i+1th loop), in order to 

obtain a sufficient maximum diameter of the generated thread (Dmgt). 

Fig. 11 and table 1 show the results of the iterative approach to 

interference reduction in order to obtain an internal thread having H 

tolerance classes. For case B, the radius (Rmc) is corrected from a radial 

correction value (Rmc cor), equal to the minimal radial error (Er min) obtained 

in case A, as explained by equation (37). Then, the coefficient (km) is 

decreased from case B (1/8) to C (1/16), in order to generate larger flanks. 

The change in the coefficient (km) also modifies the flank diameter of the 

thread mill, and it introduces a radial error which is not completely 

corrected by the radial correction value (Rmc cor) established in case B. On 

the last step, from case C to D, the radius (Rmc) is corrected once more. 

After these three iterations, the variation in radial error (Er) is equal to 

3 m and the maximum diameter of the generated thread (Dmgt) obtained 

is 16.00 mm, which appears to be an acceptable result. 

     
mc m m mc cor mc cor r min

1 3 1
R i 1 D D P k R with R E i

2 2 8
           (37) 
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If the goal is to obtain a thread outside the H tolerance classes, a radial 

correction value (Rmc cor) has to be adapted to the position of the tolerance 

interval. 

7 Parameters influencing interference 

The model presented may be used for different cases by considering 

different thread and mill sizes. Table 2 sums up the data obtained. 

It appears that one significant parameter is the ratio between the mill 

diameter (Dm) and the nominal thread diameter (D). The lower this ratio is, 

the lower the overcut is. This may be easily understood but does not really 

constitute a method to minimize interference. For a given thread, the 

smaller the mill diameter (Dm), the more fragile the tool is. These two 

conflicting considerations are difficult to reconcile. 

Interference is also influenced by the helix angle of the thread. For an 

identical mill diameter (Dm) and the same nominal thread diameter (D), the 

radial error (Er) increases with thread pitch (P). Effectively, the higher the 

helix angle of the thread, the more the mill bites into the nominal thread 

surface (NTS). 

There is a third parameter which influences interferences; that is the 

thread profile itself. In this study, a metric thread is considered and there 

appears to be no interference induced by the front edge. The interference 

is generated by the flank edge. Flank orientation also has an influence on 

interference phenomena. The higher the inclination of the thread, the 

greater the overcut. This means that for square threads the overcut would 

be maximum. 
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8 Conclusion 

Thread milling uses form tool for machining threads and may lead to 

interference with nominal thread surface. The present study proposed a 

model for radial errors due to interferences on milled threads. An analytical 

parameterization of the problem is defined without any simplification of the 

operation kinematics, the thread profile or the mill profile. The proposed 

approach considers the mill envelope. It enables an analysis of the effect 

of the thread mill profile on the generated thread profile. Moreover, 

parameters influencing overcut are identified. Those which have an effect 

are: the thread helix angle, the mill diameter & thread diameter ratio and 

the flank angle of the thread profile. An iterative method is presented for 

reducing overcut by changing the radius of the helical interpolation and by 

adapting the mill profile. 
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FIGURES  

 

Fig. 1 Thread mill machining cycle - source: Emuge (catalogue of thread mill supplier) 
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Fig. 2 Parameterization of thread milling operation 

 

 

 

 

Figure
Click here to download Figure: Article1_fromentin _thread millling_final_figures.doc

http://www.editorialmanager.com/ijamt/download.aspx?id=124033&guid=3882a429-a32b-473a-bb28-6133f822836a&scheme=1


 

Fig. 3 Algorithm for interference calculation and correction 
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Fig. 4 Metric ISO standardized thread profile 

 

NTP Definition: 

D, P, kt 

MP Definition: 

Dm, km 

ME, MET Calculation 

EMET, GTP 
Calculation: Dmgt 

MC Calculation: 

Rmc 

Interference 
Calculation: Er 

i+
1th

 L
oo

p:
  

k m
 c

or
re

ct
io

n 

ith
 L

oo
p:

 

 R
m

c 
co

rr
ec

tio
n 



 

Fig. 5 Nominal thread profile (NTP) - case A: D = 16 mm, P = 2 mm, kt = 1/8 

 

 

 

Fig. 6 Mill profile (MP) - case A: P = 2 mm, Dm = 12 mm, km = 1/8 
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Fig. 7 Superposition of nominal thread profile (NTP) and mill profile (MP) - case A: 
D = 16 mm, P = 2 mm, kt = 1/8, Dm = 12 mm, km = 1/8, Rmc = 2 mm 

 

 

 

 

 

 

Fig. 8 3D Visualization of profiles and surfaces - case A: D = 16 mm, P = 2 mm, td = 1, 
kt = 1/8, Dm = 12 mm, km = 1/8, Rmc = 2 mm 
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Fig. 9 Generated thread profile (GTP) - case A: D = 16 mm, P = 2 mm, kt = 1/8, 
Dm = 12 mm, km = 1/8, Rmc = 2 mm 

 

 

 

 

 

 

Fig. 10 Radial error (Er) on the flanks of the generated thread profile (GTP) - case A: 
D = 16 mm, P = 2 mm, kt = 1/8, Dm = 12 mm, km = 1/8, Rmc = 2 mm 
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Fig. 11 Radial error (Er) - cases B to D: D = 16 mm, P = 2 mm, kt = 1/8, Dm = 12 mm 

 

 



 

Case   A B C D 

TD2/2 for 4 quality thread [18,19] m 66 66 66 66 

TD2/2 for 6 quality thread [18,19] m 106 106 106 106 

TD2/2 for 8 quality thread [18,19] m 167.5 167.5 167.5 167.5 

km   1/8 1/8 1/16 1/16 

Rmc mm 2.000 1.945 2.054 2.056 

Rmc cor m 0.0 54.5 54.5 52.5 

zce inf.lim. mm 0.25 0.28 0.28 0.28 

zce inf.lim.2 mm 0.28 0.31 0.31 0.31 

Er max = Er(Pm3z) m 57.3 4.9 0.9 2.9 

Er min = Er(zce inf.lim.2) m 54.5 2.2 -2.0 -0.1 

Er m 2.8 2.7 3.0 3.0 

Real flank angle ° 60.07 60.07 60.07 60.07 

Straightness flank m 0.05 0.05 0.06 0.06 

Dmgt mm 15.88 15.77 15.99 16.00 

Table 1 Results of interference modeling for cases A to D: D = 16 mm, P = 2 mm, 
D1 = 13.835 mm, D2 = 14.701 mm, kt = 1/8, Dm = 12 mm 
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Case  D P 

TD2/2 
for 6 
quality 
thread 
[18,19] Dm Er

Er 

max Dmgt 
Thread 
helix angle Dm/D 

  mm mm m mm m m mm    

E 8 1 75 6 1.6 26 8.053 87.72 0.75 

F 16 1 80 6 0.4 2.8 16.103 88.86 0.38 

G 16 1 80 12 0.4 13 16.081 88.86 0.75 

H 16 2 106 12 3.1 53 16.108 87.72 0.75 

I 16 4  ND 12 28.4 204 15.998 85.45 0.75 

J 32 1 85 6 0.1 0.5 32.107 89.43 0.19 

K 32 1 85 12 0.1 1.4 32.105 89.43 0.38 

L 32 2 112 12 0.8 5.6 32.205 88.86 0.38 

M 32 4 150 12 6.4 22 32.389 87.72 0.38 

N 32 1 85 24 0.1 7 32.094 89.43 0.75 

O 32 2 112 24 0.7 27 32.161 88.86 0.75 

P 32 4 150 24 6.2 107 32.215 87.72 0.75 

 

Table 2 Results of interference modeling for cases E to P: kt = 1/8, km = 1/16, 
Rmc cor = 0 mm, 
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