Polymorphic Functions with Set-Theoretic Types. Part 2: Local Type Inference and Type Reconstruction

Abstract : This article is the second part of a two articles series about a calculus with higher-order polymorphic functions, recursive types with arrow and product type constructors and set-theoretic type connectives (union, intersection, and negation). In the first part, presented in a companion paper, we defined and studied the syntax, semantics, and evaluation of the explicitly-typed version of the calculus, in which type instantiation is driven by explicit instantiation annotations. In this second part we present a local type inference system that allows the programmer to omit explicit instantiation annotations, and a type reconstruction system that allows the programmer to omit explicit type annotations. The work presented in the two articles provides the theoretical foundations and technical machinery needed to design and implement higher-order polymorphic functional languages for semi-structured data.
Type de document :
Communication dans un congrès
POPL '15 Proceedings of the 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Jan 2015, Mumbai, India. <10.1145/2676726.2676991>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00880744
Contributeur : Giuseppe Castagna <>
Soumis le : mercredi 26 novembre 2014 - 15:15:09
Dernière modification le : samedi 18 février 2017 - 01:08:54
Document(s) archivé(s) le : vendredi 27 février 2015 - 12:30:12

Fichier

2main-popl.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Pietro Abate. Polymorphic Functions with Set-Theoretic Types. Part 2: Local Type Inference and Type Reconstruction. POPL '15 Proceedings of the 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Jan 2015, Mumbai, India. <10.1145/2676726.2676991>. <hal-00880744v4>

Partager

Métriques

Consultations de
la notice

133

Téléchargements du document

199